はてなキーワード: 多様体とは
1. (多様体構造) M は滑らかな11次元位相多様体である。
2. (ゲージ構造) E は M 上のベクトルバンドルで、構造群 G を持つ。
3. (超対称性) M 上に32個の超対称性生成子 Q_α (α = 1, ..., 32) が存在し、以下の反交換関係を満たす:
{Q_α, Q_β} = 2(CΓ^μ)_αβ P_μ + Z_αβ
ここで C は電荷共役行列、Γ^μ はガンマ行列、P_μ は運動量演算子、Z_αβ は中心電荷。
S = ∫_M (R * 1 + 1/2 * F ∧ *F + ψ̄Γ^μ∇_μψ + ...)
ここで R はスカラー曲率、* はHodgeのスター演算子。
5. (双対性) 異なるコンパクト化 M → M' に対して、物理的に等価な理論が得られる。
エネルギーが中心電荷で下から押さえられるBPS状態が存在する。
証明:
1. 超対称性代数から、エネルギー演算子 H は以下の不等式を満たす:
H ≥ √(Z_αβ Z^αβ)
2. この不等式の等号が成り立つ状態を BPS 状態と呼ぶ。
3. 超対称性の表現論により、このような状態は必ず存在する。
M2ブレーンの張力 T_M2 は、11次元プランク長 l_p を用いて以下のように与えられる:
T_M2 = 1 / (4π²l_p³)
証明:
3. 次元解析により、張力 T_M2 の次元が [長さ]^(-3) であることがわかる。
M理論を用いたビッグバンの数理的解明は、現代理論物理学の最前線に位置する課題である。以下に、より厳密な数学的枠組みを用いてこの問題にアプローチする。
(M¹¹, g) ≅ (R¹,³ × X⁷, η ⊕ h)
ここで、M¹¹は11次元多様体、gはその上の計量、R¹,³はミンコフスキー時空、X⁷はコンパクトな7次元多様体、ηはミンコフスキー計量、hはX⁷上のリッチ平坦計量である。
M理論の超対称性は、以下のスピノール方程式で特徴づけられる:
D_μ ε = 0
ここで、D_μはスピン接続、εは11次元のMajorana-Weylスピノールである。
M2-ブレーンの動力学は、以下のNambu-Goto型作用で記述される:
S[X] = -T_2 ∫_Σ d³σ √(-det(g_αβ))
ここで、T_2はブレーン張力、g_αβ = ∂_αX^μ ∂_βX^ν G_μνはブレーンの誘導計量、G_μνは背景時空の計量である。
ビッグバンを膜の衝突として捉える場合、以下の位相的遷移を考える:
M¹¹ ⊃ M₁ ∪ M₂ → M'
ここで、M₁とM₂は衝突前の膜宇宙、M'は衝突後の統合された宇宙を表す。この遷移は、コボルディズム理論の枠組みで厳密に定式化される。
11次元重力定数G₁₁と4次元重力定数G₄の関係は、以下の積分方程式で表される:
1/G₄ = Vol(X⁷)/G₁₁
ここで、Vol(X⁷) = ∫_X⁷ √det(h) d⁷y はX⁷の体積である。
M理論の無矛盾性は、以下のBianchi恒等式とアノマリー相殺条件によって保証される:
dH = 1/(2π)² [p₁(R) - 1/2 tr F² + tr R²]
ここで、Hは3形式場、p₁(R)は第一ポントリャーギン類、FとRはそれぞれゲージ場と重力場の曲率である。
Multiverse ≅ lim→ (M_i, φ_ij)
ここで、M_iは個々の宇宙、φ_ijは宇宙間の遷移を表す射である。
これらの数学的構造は、M理論を用いたビッグバンの理解に対して厳密な基礎を提供する。しかしながら、完全な証明には至っておらず、特に量子重力効果の非摂動的取り扱いや、実験的検証可能性の問題が残されている。今後、代数幾何学や位相的場の理論などの高度な数学的手法を用いた更なる研究が期待される。
非可換幾何学は、空間の幾何学的性質を非可換代数を通じて記述する理論である。ここでは、空間を古典的な点集合としてではなく、代数的な対象として扱う。
∥ab∥ ≤ ∥a∥ ∙ ∥b∥, ∥a*a∥ = ∥a∥²
ここで、∥·∥ はノルムを表す。この代数のスペクトル理論を通じて、空間の幾何学的性質を解析する。
量子群は、リー群の代数的構造を量子化したもので、非可換幾何学や統計力学において重要な役割を果たす。
(Δ ⊗ id) ∘ Δ = (id ⊗ Δ) ∘ Δ, (ε ⊗ id) ∘ Δ = id = (id ⊗ ε) ∘ Δ
トポロジカル量子場理論は、トポロジーと量子物理を結びつける理論であり、コボルディズムの圏における関手として定義される。
量子コホモロジーは、シンプレクティック多様体のコホモロジー環を量子化したもので、フロアホモロジーを用いて定義される。
a *_q b = a ∪ b + Σ_{d>0} q^d ⟨a, b, γ⟩_d
ファースト・ウェルフェア定理は、競争均衡がパレート最適であることを主張する定理である。多様体を用いて定式化する。
多様体 M 上の消費集合 X_i ⊆ M と生産集合 Y_i ⊆ M を持つエージェント i の集合 I があるとする。エージェント i の効用関数 u_i : X_i → ℝ は上半連続(上半連続多様体の意味で)であり、全ての x ∈ X_i に対して局所非飽和性が成り立つと仮定する。
消費可能集合と生産可能集合は以下のように定義される連結多様体の部分集合とする:
X = ∏_{i ∈ I} X_i, Y = ∏_{i ∈ I} Y_i
局所座標系を用いて、これらは連結な実多様体として考えられる。
競争均衡 (p*, x*) が与えられると、全てのエージェント i に対して次が成り立つ場合、その点 (p*, x*) はパレート最適である:
∇u_i(x_i*) · p* = 0
ここで、p* は価格ベクトルであり、∇u_i は多様体上の勾配ベクトル場である。
セカンド・ウェルフェア定理は、任意のパレート最適な配分が適切な初期財産の再配分のもとで競争均衡経済に達成可能であることを主張する。
多様体 M 上の消費集合 X_i ⊆ M と生産集合 Y_i ⊆ M を持つエージェント i の集合 I があるとする。エージェント i の効用関数 u_i : X_i → ℝ は全ての x ∈ X_i に対して上半連続であり、局所非飽和性が成り立つとする。
任意のパレート最適配分 (x_i*)_{i ∈ I} に対して、ある価格ベクトル p* が存在し、そのもとで (p*, x_i*) が競争均衡である:
∃ p* ∈ ℝⁿ \ {0} such that ∇u_i(x_i*) · p* = 0
ここで、再配分は適切に選ばれた初期財産の設定によって行われる。
この定理の証明には、エージェントの一次資源制約と市場のクリアリング条件に関する詳細な解析が必要である。それらは複雑な多様体の幾何学的性質を用いて示される。
厚生経済学の基本定理を多様体のフレームワークで抽象化したが、具体的な応用や証明にはさらに専門的な知識と数学的技術が求められる。これにより、経済理論の理解が抽象代数や微分幾何の視点からも深まる。
ループ量子重力理論は、4次元ローレンツ多様体 M 上で定義される。この多様体上に、SU(2)主束 P(M,SU(2)) を考え、その上の接続 A を基本変数とする。
A ∈ Ω^1(M) ⊗ su(2)
ここで、Ω^1(M) は M 上の1-形式の空間、su(2) は SU(2)のリー代数である。
Ψ_γ[A] = f(hol_γ[A])
ここで、γ は M 上の閉曲線、hol_γ[A] は γ に沿った A のホロノミー、f は SU(2)上の滑らかな関数である。これらのシリンダー関数の完備化により、運動学的ヒルベルト空間 H_kin が構成される。
H_kin の正規直交基底は、スピンネットワーク状態 |Γ,j,i⟩ で与えられる。ここで、Γ は M 上のグラフ、j はエッジに付随するスピン、i は頂点に付随する内部量子数である。
面積演算子 Â と体積演算子 V̂ は、これらの状態上で離散スペクトルを持つ:
Â|Γ,j,i⟩ = l_P^2 Σ_e √j_e(j_e+1) |Γ,j,i⟩
V̂|Γ,j,i⟩ = l_P^3 Σ_v f(j_v,i_v) |Γ,j,i⟩
ここで、l_P はプランク長さ、f は頂点での量子数の関数である。
時空の発展は、スピンフォーム σ: Δ → SU(2) で記述される。ここで、Δ は2-複体である。物理的遷移振幅は、
Z(σ) = Σ_j Π_f A_f(j_f) Π_v A_v(j_v)
で与えられる。A_f と A_v はそれぞれ面と頂点の振幅である。
W_γ[A] = Tr P exp(∮_γ A)
を通じて特徴づけられる。ここで、P は経路順序付け演算子である。
理論は微分同相不変性を持ち、変換群 Diff(M) の作用の下で不変である。さらに、ゲージ変換 g: M → SU(2) の下での不変性も持つ:
A → gAg^-1 + gdg^-1
理論の数学的構造は、BF理論を通じてトポロジカル場の理論と関連付けられる。これにより、4次元多様体のドナルドソン不変量との関連が示唆される。
SVD (特異値分解) について、異なる難易度で説明します。
SVDは、大きな絵を小さなパーツに分ける魔法のようなものです。この魔法を使うと、複雑な絵をシンプルな形に分けることができます。例えば、虹色の絵を赤、青、黄色の3つの基本的な色に分けるようなものです。
SVD (Singular Value Decomposition) は、行列を3つの特別な行列の積に分解する線形代数の手法です。
A = UΣV^T
ここで:
SVDは次元削減、ノイズ除去、データ圧縮などの応用があります。主成分分析 (PCA) とも密接な関係があり、多変量解析や機械学習で広く使用されています。
SVDは任意の複素数体上の m×n 行列 A に対して以下の分解を提供します:
A = UΣV*
ここで:
1. A の階数 r は、非ゼロ特異値の数に等しい
2. A の核空間は V の r+1 列目から n 列目によってスパンされる
3. A の値域は U の最初の r 列によってスパンされる
5. ||A||_2 = σ_1, ||A||_F = √(Σσ_i^2)
応用:
1. 低ランク行列近似 (Eckart–Young–Mirsky の定理)
高度な話題:
6. 量子アルゴリズム:
7. 非線形SVD:
学部+αくらいの基本的な理論物理はわかるよ。純粋数学はほとんどわからんけど微分幾何や多様体論、測度論的確率論、関数解析、(Lie)群論の初歩くらい多少わかる。
位相的K理論は、超弦理論におけるD-ブレーンの分類に本質的な役割を果たす。具体的には、時空多様体XのスピンC構造に関連付けられたK理論群K(X)およびK^1(X)が重要である。
ここで、X+はXの一点コンパクト化を表し、K(X+)はX+上のベクトル束の同型類のGrothedieck群である。
Type IIB理論では、D-ブレーン電荷はK(X)の要素として分類され、Type IIA理論ではK^1(X)の要素として分類される。これは以下の完全系列に反映される:
... → K^-1(X) → K^0(X) → K^1(X) → K^0(X) → ...
背景にNS-NS H-フラックスが存在する場合、通常のK理論は捻れK理論K_H(X)に一般化される。ここでH ∈ H^3(X, Z)はH-フラックスのコホモロジー類である。
捻れK理論は、PU(H)主束のモジュライ空間として定義される:
K_H(X) ≅ [X, Fred(H)]
ここで、Fred(H)はヒルベルト空間H上のフレドホルム作用素の空間を表す。
D-ブレーンのアノマリー相殺機構は、微分K理論を用いてより精密に記述される。微分K理論群K^0(X)は、以下の完全系列で特徴付けられる:
0 → Ω^{odd}(X)/im(d) → K^0(X) → K^0(X) → 0
ここで、Ω^{odd}(X)はXの奇数次微分形式の空間である。
アノマリー多項式は、微分K理論の言葉で以下のように表現される:
I_8 = ch(ξ) √Â(TX) - ch(f!ξ) √Â(TY)
ここで、ξはD-ブレーン上のゲージ束、fはD-ブレーンの埋め込み写像、ch(ξ)はチャーン指標、Â(TX)はA-hat種を表す。
Kasparovの KK理論は、弦理論の様々な双対性を統一的に記述するフレームワークを提供する。KK(A,B)は、C*-環AとBの間のKasparov双モジュールの同型類のなす群である。
KK(C(X × S^1), C) ≅ KK(C(X), C(S^1))
導来圏D^b(X)は、複体の導来圏として定義され、K理論と密接に関連している:
K(X) ≅ K_0(D^b(X))
(H, ⟨·|·⟩)を可分なヒルベルト空間とし、B(H)をH上の有界線形作用素の集合とする。
S(H) = {ρ ∈ B(H) : ρ ≥ 0, Tr(ρ) = 1}を密度作用素の集合とする。A ⊂ B(H)を自己共役作用素の部分代数とし、これを観測量の集合とする。
ユニタリ群{Ut}t∈ℝを考え、シュレーディンガー方程式を以下のように表現する:
S(H)上にトレース距離を導入し、位相空間(S(H), τ)を定義する。
A上にC*-代数の構造を導入し、局所的な部分代数の族{A(O)}O⊂ℝ⁴を定義する。ここでOは時空の開集合である。
A(O1)とA(O2)が可換であるとき、O1とO2は因果的に独立であると定義する。これにより、ℝ⁴上に因果構造を導入する。
状態ρ ∈ S(H)に対し、関数dρ : A × A → ℝ+を以下のように定義する:
dρ(A, B) = √Tr(ρ[A-B]²)
この関数から、ℝ⁴上の擬リーマン計量gμνを再構成する手続きを定義する。
(ℝ⁴, gμν)を基底時空とし、これに対して商位相を導入することで、等価類の空間M = ℝ⁴/∼を定義する。Mを創発した時空多様体とみなす。
写像Φ : S(H) → Mを構成し、量子状態と時空点の対応を定義する。
シュレーディンガー方程式による時間発展ρ(t) = Ut ρ Ut*が、M上の滑らかな曲線γ(t) = Φ(ρ(t))に対応することを示す。
情報理論を幾何学的に定式化するには、微分幾何学、特にリーマン幾何学とアフィン接続の理論を使う。
1. 統計多様体: 統計多様体𝓜は、パラメータ空間Θ上の確率分布p(x|θ)の集合として定義され、滑らかな多様体の構造を持つ。ここで、θ = (θ¹, θ², ..., θⁿ)は局所座標系である。
2. フィッシャー情報計量: 統計多様体𝓜上のリーマン計量gは、フィッシャー情報計量として与えられる。これは、次のように定義される二次形式である:
gᵢⱼ(θ) = ∫ (∂ log p(x|θ)/∂θⁱ)(∂ log p(x|θ)/∂θʲ) p(x|θ) dx
1. アフィン接続: 統計多様体には、双対のアフィン接続∇と∇*が定義される。これらは、次の条件を満たす:
- 接続∇は、∇g = 0を満たし、統計多様体の平行移動を定義する。
- 双対接続∇*は、∇*g = 0を満たし、∇に対する双対接続である。
2. 双対平坦性: 統計多様体が双対平坦であるとは、∇と∇*の両方の曲率テンソルがゼロであることを意味する。これにより、𝓜は双対平坦な多様体となる。
1. エントロピー: 確率分布p(x|θ)のエントロピーH(θ)は、次のように定義される:
H(θ) = -∫ p(x|θ) log p(x|θ) dx
2. KLダイバージェンス: 二つの確率分布p(x|θ)とq(x|θ')の間のKLダイバージェンスは、次のように定義される:
Dₖₗ(p ∥ q) = ∫ p(x|θ) log (p(x|θ)/q(x|θ')) dx
KLダイバージェンスは、統計多様体上の測地距離として解釈されることがある。
3. 測地線: フィッシャー情報計量に基づく測地線は、統計多様体上で最小のKLダイバージェンスを持つ経路を表す。測地線γ(t)は、次の変分問題の解として得られる:
δ ∫₀¹ √(gᵧ(t)(ẏ(t), ẏ(t))) dt = 0
ここで、ẏ(t)はtに関するγ(t)の微分を表す。
数学的宇宙仮説を説明するには、宇宙をどのようにモデル化するかを考え、各理論の役割を明確にする必要がある。
以下に、各概念を説明し、物理宇宙を数学的にどのように捉えるかを示す。
数学的宇宙仮説の中心にあるのは、宇宙が数学的構造そのものであるという考え方である。数学的構造は、集合とその上で定義される関係や演算の組み合わせである。
具体例として、微分多様体を考える。微分多様体は、局所的にユークリッド空間に似た構造を持ち、滑らかな関数が定義できる空間である。物理学では、時空を微分多様体としてモデル化し、一般相対性理論の基盤としている。このように、宇宙全体を一つの巨大な数学的構造として捉え、その性質を研究する。
集合論は、数学の基礎を形成する理論であり、すべての数学的対象を集合として扱う。特に、Zermelo-Fraenkel集合論(ZFC)は、集合の存在とその性質を定義する公理系である。数学的宇宙仮説では、宇宙を集合として捉え、その集合上の関係や演算が物理法則を表現していると考える。
モデル理論は、形式的な論理体系が具体的な構造としてどのように実現されるかを研究する。数学的宇宙仮説では、物理宇宙がある論理体系のモデルであると仮定する。具体的には、物理法則を公理とする論理体系のモデルとして宇宙を捉える。これは、ペアノ算術の公理系のモデルとして自然数が存在するのと類似している。
カテゴリ理論は、対象(オブジェクト)とそれらの間の射(モルフィズム)を扱う理論である。カテゴリ 𝒞 は次のように定義される:
射は合成可能であり、合成は結合的である。さらに、各対象に対して恒等射が存在する。
数学的宇宙仮説では、宇宙を一つのカテゴリとして捉えることができる。カテゴリの対象は異なる数学的構造であり、射はそれらの間の変換や関係を表す。これにより、異なる「宇宙」間の関係性を数学的に探求することが可能になる。
トポス理論は、集合論の一般化であり、論理と空間の概念を統一する枠組みである。トポスは、論理体系のモデルとして機能し、異なる数学的構造を統一的に扱うことができる。
数学的宇宙仮説では、宇宙をトポスとして捉えることができる。トポスは、論理体系のモデルであり、異なる物理的現実を表現するための柔軟な枠組みを提供する。トポス理論を用いることで、宇宙の数学的性質をより深く理解することが可能になる。
数学的宇宙仮説を抽象数学で説明するためには、数学的構造、公理系、集合論、モデル理論、カテゴリ理論、トポス理論といった数学的概念を用いることが必要である。
これにより、物理的現実を数学的に厳密に記述し、数学と物理の深い関係を探求することができる。
この仮説は、数学的対象が物理的実体として存在するという新しい視点を提供するが、現時点では哲学的な命題としての性格が強く、数学的に証明可能な定理ではない。
ヒルベルト空間は無限次元の線形空間だが、射影ヒルベルト空間として有限次元多様体のように扱うことができる。射影ヒルベルト空間 P(H) は、ヒルベルト空間 H の単位球面上のベクトルをスカラー倍による同値類で割った空間であり、量子状態の集合を位相的に解析するための空間だ。局所座標系は、例えば、正規直交基底を用いてチャートとして定義され、局所的にユークリッド空間に似た構造を持つ。この構造により、量子状態の位相的特性を解析することが可能となる。
スキーム理論は代数幾何学の概念であり、ヒルベルト空間においては作用素環を通じて状態空間を解析するために用いる。特に、自己共役作用素のスペクトル分解を考慮し、各点を極大イデアルに対応させる。このアプローチにより、量子状態の観測可能量を代数的にモデル化することができる。例えば、観測可能量としての作用素 A のスペクトルは、A = ∫ λ dE(λ) という形で表され、ここで E(λ) は射影値測度である。これにより、量子状態の代数的特性を解析することが可能となる。
ヒルベルト空間における射は、線形作用素として表現される。特に、ユニタリ作用素 U: H → H は、U*U = UU* = I を満たし、量子力学における対称変換を表す。これにより、系の時間発展や対称性を解析することができる。射影作用素は、量子状態の測定を表現し、観測可能量の期待値や測定結果の確率を計算する際に用いられる。これにより、量子状態の射影的性質を解析することが可能となる。
ヒルベルト空間のコホモロジーは、量子系のトポロジカル不変量を解析するための手段を提供する。例えば、ベリー接続 A = ⟨ψ(R) | ∇ | ψ(R)⟩ やベリー曲率 F = ∇ × A は、量子状態のパラメータ空間における幾何学的位相的性質を記述する。チャーン数は、∫ F により計算され、トポロジカル不変量として系のトポロジカル相を特徴付ける。これにより、量子系のトポロジカル特性を解析することが可能となる。
ヒルベルト空間の基底を用いて、空間を再構築する。直交基底 { |e_i⟩ } は、量子状態の展開に用いられ、|ψ⟩ = Σ_i c_i |e_i⟩ と表現される。これにより、状態の表現を簡素化し、特定の物理的状況に応じた解析を行う際に有用である。例えば、フーリエ変換は、状態を異なる基底で表現するための手法であり、量子状態の解析において重要な役割を果たす。
ヒルベルト空間における構造を保つ変換は、ユニタリ群 U(H) として表現される。これらの群は、量子系の対称性を記述し、保存量や選択則の解析に利用される。例えば、回転対称性は角運動量保存に対応し、ユニタリ変換は系の時間発展や対称性変換を記述する。これにより、量子系の対称性特性を解析することが可能となる。
ヒルベルト空間は、内積により誘導される距離を持つ完備距離空間である。具体的には、任意の状態ベクトル |ψ⟩ と |φ⟩ の間の距離は、||ψ - φ|| = √⟨ψ - φ, ψ - φ⟩ で定義される。この距離は、量子状態の類似性を測る指標として用いられ、状態間の遷移確率やフィデリティの計算に利用される。これにより、量子状態の距離的特性を解析することが可能となる。
量子論の幾何学的側面は、数学的な抽象化を通じて物理現象を記述する試みである。
物理的には、SO(3)は角運動量の保存則や回転対称性に関連している。
SU(2)は、2×2の複素行列で行列式が1である特殊ユニタリ群である。
SU(2)はSO(3)の二重被覆群であり、スピン1/2の系における基本的な対称性を記述する。
SU(2)のリー代数は、パウリ行列を基底とする3次元の実ベクトル空間である。
この群は、SU(2)×SU(2)として表現され、四次元の回転が二つの独立したSU(2)の作用として記述できることを示している。
これは、特にヤン・ミルズ理論や一般相対性理論において重要な役割を果たす。
ファイバー束は、基底空間とファイバー空間の組み合わせで構成され、局所的に直積空間として表現される。
ファイバー束の構造は、場の理論におけるゲージ対称性を記述するために用いられる。
ゲージ理論は、ファイバー束の対称性を利用して物理的な場の不変性を保証する。
例えば、電磁場はU(1)ゲージ群で記述され、弱い相互作用はSU(2)ゲージ群、強い相互作用はSU(3)ゲージ群で記述される。
具体的には、SU(2)ゲージ理論では、ファイバー束のファイバーがSU(2)群であり、ゲージ場はSU(2)のリー代数に値を持つ接続形式として表現される。
幾何学的量子化は、シンプレクティック多様体を量子力学的なヒルベルト空間に関連付ける方法である。
これは、古典的な位相空間上の物理量を量子化するための枠組みを提供する。
例えば、調和振動子の位相空間を量子化する際には、シンプレクティック形式を用いてヒルベルト空間を構成し、古典的な物理量を量子演算子として具体的に表現する。
コホモロジーは、場の理論におけるトポロジー的性質を記述する。
特に、トポロジカルな場の理論では、コホモロジー群を用いて物理的な不変量を特徴づける。
例えば、チャーン・サイモンズ理論は、3次元多様体上のゲージ場のコホモロジー類を用いて記述される。
今日は朝から頭の中で魔法を数学的に抽象化することを考えてみたんやけど、これがまためちゃくちゃ深いんや。まず、魔法の呪文をバナッハ空間の作用素として考えるっちゅうのは基本やけど、これをさらに進めて、フォン・ノイマン代数の元として捉えてみたんや。ここでは、呪文を自己随伴作用素 T として、スペクトル分解を通じてその効果を解析するんや。これが無限次元空間での作用を考えると、スペクトル理論や作用素環論が絡んできて、ほんまに深遠やわ。
次に、変身術をリー群の作用として捉えるんやけど、これをさらに高次元の多様体上の微分同相群の作用として考えてみたんや。対象の集合 X 上の微分同相群 Diff(X) の滑らかな作用として、g ∙ x = y みたいに表現できるんやけど、ここでリー代数のエレメントを使って無限小変換を考えると、接束や微分形式が出てきて、微分幾何学的な視点がさらに深まるんや。ホンマに、変身術って奥が深いわ。
さらに、魔法の相互作用をホモトピー型理論と∞-カテゴリーを使って考えてみたんや。これを使うと、魔法は∞-グループイドの間の射として捉えられて、ホモトピー同値な空間の間の射として表現されるんや。例えば、呪文 f: A → B は対象 A を対象 B に変える射と見なせて、これがホモトピー同値やったら、逆射が存在するんやで。これを使って、魔法の可逆性とかを高次元のホモトピー理論の文脈で議論できるんや。
最後に、魔法のエネルギー保存をシンプレクティック幾何学の枠組みで考えると、エネルギーの変化をシンプレクティック多様体上のハミルトニアン力学系として解析できるんや。シンプレクティック形式 ω を使って、エネルギー E の時間変化を考慮すると、ハミルトンの方程式が出てきて、これが魔法の持続時間や効果を決定するんや。ほんまに、魔法って物理的にも数学的にも奥が深いわ。
今日はこんなことを考えながら、また一日が過ぎていったわ。魔法のことを考えると、なんや心が落ち着くんや。ほんまに不思議なもんやなぁ。
今日はな、記憶っちゅうもんについて考えてみたんやけど、ほんま大した話やで、ほんまに。
まずな、エントロピーっちゅうのは、情報幾何学っちゅう視点で見ると、確率分布の集合における距離の概念と関連があるんやわ。
ほんで、確率分布間の距離を測るのに使われるんが、情報利得っちゅうやつやねん。
これ使うとやな、ある状態から別の状態への情報の「距離」っちゅうもんを測れるんやで。
ほんで、記憶の形成っちゅうのは、脳内の神経ネットワークでのトポロジカルな変化として捉えられるんや。
トポロジーではな、空間の連結性やら穴の数を考えることで、系の安定性を評価できるっちゅうわけや。
記憶が安定してる状態は、トポロジカルに「閉じた」状態としてモデル化できるんやで。
脳の構造はな、微分幾何学っちゅうのを使って、曲率や接続性を考えることで、情報の流れを表せるんやわ。
リーマン多様体の概念を使うとやな、脳内の情報の流れを曲面上の最短経路(測地線)として表現できるんやで。
これで、情報がどないに効率的に伝達されるかを理解できるっちゅう話や。
ほんで、脳が情報を処理する過程は、作用素代数っちゅうのを使えばええんちゃうかな。
ヒルベルト空間上の作用素を考えることで、情報の操作や変換がどないに行われるかを数学的に記述できるんや。
そんで、記憶の形成や情報の統合がどないに行われるかを理解できるって話やで。
要するにやな、記憶を作るっちゅうのは、エネルギーを効率的に使うて、エントロピーを下げて脳内の秩序を保つプロセスやっちゅうことや。
これを意識して、毎日楽しいことを覚えておくと、心の中のエントロピーが下がって、より豊かな人生が送れるんちゃうかな。
効用関数 U: X → ℝ が消費者の選好を定義し、効用空間 X 上のレベルセットが無差別曲線を形成する。無差別曲線 U⁻¹(c) は効用関数 U のレベルセットとして定義される。
無差別曲線は効用空間内でのプレーンに対応し、その勾配 ∇U は無差別曲線に直交する。
ゲーム理論では、プレイヤー i の戦略空間を多様体 S_i とし、全プレイヤーの戦略空間を S = ∏_i S_i とする。プレイヤーの利得関数 π_i: S → ℝ はゲームの結果として得られる。
プレイヤーの戦略の選択は戦略空間 S 上の点で表現され、ゲームの均衡は戦略空間上での最大化問題としてモデル化される。
完全ベイズ均衡では、情報の不完全性を考慮し、プレイヤーの信念と戦略を統合する。プレイヤー i のタイプ空間を Θ_i とし、信念空間を Δ(Θ_i) とする。信念 μ_i はプレイヤー i のタイプ θ_i に対する確率分布を示す。
情報理論の要素をゲーム理論に統合するために、以下のように対応させる:
1. エントロピーと不確実性:
ゲーム理論と情報理論を統合するために、以下の枠組みを考える:
1. 共通の多様体: 効用空間 X、戦略空間 S、信念空間 Δ(Θ)、情報空間 ℙ を統一的な多様体としてモデル化する。
2. ファイバーバンドル: 各理論の構造をファイバーバンドルとして表現し、効用、戦略、信念、情報を抽象的に結びつける。
3. リーマン計量: 各多様体上のリーマン計量を用いて、効用、戦略、信念、情報の変化を統一的に扱う。
digraph G { // グラフの設定 rankdir=LR; node [shape=box, color=lightgrey]; // ノードの定義 UtilitySpace [label="効用空間\n(X, U)", shape=ellipse]; StrategySpace [label="戦略空間\n(S, π)", shape=ellipse]; BeliefSpace [label="信念空間\n(Δ(Θ), μ)", shape=ellipsel]; InformationSpace [label="情報空間\n(ℙ, H)", shape=ellipse]; // ノード間の関係 UtilitySpace -> StrategySpace [label="効用関数\nU(x)"]; StrategySpace -> BeliefSpace [label="戦略の期待値\nE[π_i | θ_i]"]; BeliefSpace -> InformationSpace [label="エントロピー\nH(μ)"]; InformationSpace -> UtilitySpace [label="情報の多様体\nℙ"]; // フォーマット設定 edge [color=black, arrowhead=normal]; }
digraph G { rankdir=LR; node [shape=ellipse, style=filled, color=white, fontcolor=black, penwidth=2, fillcolor=white, color=black]; // Nodes UtilitySpace [label="Utility Space (X)"]; StrategySpace [label="Strategy Space (S)"]; BeliefSpace [label="Belief Space (Δ(Θ))"]; InformationSpace [label="Information Space (ℙ)"]; FiberBundle [label="Fiber Bundle"]; RiemannMetric [label="Riemannian Metric"]; KL_Divergence [label="Minimize D_{KL}(μ_i || ν_i)"]; ParetoOptimality [label="Pareto Optimality"]; Constraints [label="Constraints"]; Optimization [label="Optimization"]; // Edges UtilitySpace -> FiberBundle; StrategySpace -> FiberBundle; BeliefSpace -> FiberBundle; InformationSpace -> FiberBundle; FiberBundle -> RiemannMetric; RiemannMetric -> KL_Divergence [label="Measure Change"]; KL_Divergence -> Optimization; Constraints -> Optimization; Optimization -> ParetoOptimality [label="Achieve"]; // Subgraph for constraints subgraph cluster_constraints { label="Constraints"; node [style=filled, color=white, fontcolor=black, penwidth=2]; StrategyChoice [label="Strategy Choice"]; BeliefUpdate [label="Belief Update"]; StrategyChoice -> BeliefUpdate; BeliefUpdate -> Constraints; } }
厚生経済学の基本定理を多様体の言葉で定式化することにより、経済的効率性と市場均衡の概念を幾何学的に表現することができる。以下にその試みを示す。
厚生経済学の第1基本定理は、「完全競争市場において、すべての市場均衡はパレート効率的である」というものである。これを多様体の言葉で表現する。
消費者の選択空間を多様体 𝑀 とする。ここで、各点 𝑥 ∈ 𝑀 は異なる消費バンドルを表す。消費者の効用関数は、𝑈: 𝑀 → ℝ として定義され、多様体上で滑らかな関数とする。
生産者の技術集合を多様体 𝑁 とし、各点 𝑦 ∈ 𝑁 が異なる生産計画を示す。生産技術は、技術制約関数 𝑇: 𝑁 → ℝⁿ により記述される。
市場均衡は、消費者と生産者の選択が整合する点として、多様体 𝑀 × 𝑁 上の点 (𝑥*, 𝑦*) により表される。この点は、需要と供給が一致し、価格ベクトル 𝑝 により支持される。
パレート効率性は、選択空間 𝑀 と技術空間 𝑁 上の接ベクトル場により定義される。具体的には、任意の改善方向が存在しないことを意味し、接ベクトル場がゼロとなる点 (𝑥*, 𝑦*) がパレート最適である。
厚生経済学の第1基本定理を多様体の言葉で表現すると、以下のようになる:
定理: 多様体 𝑀 × 𝑁 上の市場均衡点 (𝑥*, 𝑦*) は、接ベクトル場がゼロとなる点であり、パレート効率的である。
この定式化により、厚生経済学の基本定理を幾何学的に理解することが可能になる。
市場均衡がパレート効率性を持つことは、選択空間と技術空間の接ベクトル場の観点から、改善の余地がないことを示している。
digraph WelfareEconomics { node [shape=ellipse]; // Nodes for main concepts M [label="選択空間 (M)"]; N [label="技術空間 (N)"]; Utility [label="効用関数 (U)"]; TechConstraint [label="技術制約 (T)"]; MarketEquilibrium [label="市場均衡"]; ParetoEfficiency [label="パレート効率性"]; Cohomology [label="コホモロジー条件"]; // Edges to show relationships M -> Utility [label="スカラー場"]; N -> TechConstraint [label="技術写像"]; M -> MarketEquilibrium; N -> MarketEquilibrium; MarketEquilibrium -> ParetoEfficiency [label="接ベクトル場"]; MarketEquilibrium -> Cohomology [label="整合性保証"]; ParetoEfficiency -> Cohomology [label="ホモトピー同値"]; } |<
超弦理論の基本的な空間は、10次元のローレンツ多様体 M として定義されます。
ここで、R^(1,3) は4次元ミンコフスキー時空を、X は6次元のコンパクト多様体を表します。
1. リッチ平坦
2. 複素構造を持つ
3. ケーラー計量を許容する
f(z1, z2, z3) = 0
ここで f は複素多項式です。
超弦理論の空間を、モジュライ空間 M_CY からの射として記述します:
ここで M_CY はカラビ・ヤウ多様体のモジュライ空間です。
特に、ホッジ数 h^p,q = dim H^p,q(X) が重要です。
X を単体的複体として再構築します:
ここで K は単体的複体、|K| はその幾何学的実現です。
ここで g_μν は計量テンソルです。
ここで γ は p と q を結ぶ測地線です。
これらの定義を組み合わせることで、超弦理論の幾何学をより具体的に特徴づけることができます。各アプローチは理論の異なる側面を捉え、全体として超弦理論の豊かな数学的構造を表現しています。
群と言えば対称性みたいなの、ほんとやめるべき
ほんとそれ。
物理学科で「群とは対称性です!」という言い方で講義されたけど全然意味わからんかったわ。
ベクトル場とかテンソル場に対して「座標変換に対する変換性の違いが」とか言うのも同様。
ベクトルとかテンソルは座標系に関係なく存在するもんであって、変換性が問題になるのは適当な基底で表示した場合だけ。
「座標系に関係ない」ということが多様体(当然Lie群も多様体)の本質なんだからそこを外すのは流石にダメだろって思う。
群だって対称性とは関係なく存在していて、何か別のオブジェクトに対する群作用を考えたときに初めて対称性の話が出てくるだけなのにな。
Lie群に付随する等質空間は(よく知らんが)本質的な構造であって、それを対称性と言うんだろうけど、物理で言う「対称性」とはちょっと違うと思う。
といった式について、素粒子では後者が支配し、天体では前者が支配する。
近距離における強い力のために、電子は原子核に螺旋状に落ち込むが、明らかに事実と違う。
というハイゼンベルグの関係式に従う。このため、r=0となることはなくなり、問題は回避される。
多様体上の楕円型作用素の理論全体が、この物理理論に対する数学的対応物で、群の表現論も近い関係にある。
しかし特殊相対性理論を考慮に入れるとさらに難しくなる。ハイゼンベルグの公式と同様の不確定性関係が場に対して適用される必要がある。
電磁場の場合には、光子というように、新しい種類の粒子として観測される。
電子のような粒子もどうように場の量子であると再解釈されなければならない。電磁波も、量子を生成消滅できる。
数学的には、場の量子論は無限次元空間上の積分やその上の楕円型作用素と関係する。
量子力学は1/r^2に対する問題の解消のために考え出されたが、特殊相対性理論を組み込むと、この問題を自動解決するわけではないことがわかった。
といった発展をしてきたが、場の量子論と幾何学の間の関係性が認められるようになった。
では重力を考慮するとどうなるのか。一見すれば1/r^2の別な例を重力が提供しているように見える。
しかし、例えばマクスウェルの方程式は線型方程式だが、重力場に対するアインシュタインの方程式は非線形である。
また不確定性関係は重力における1/r^2を扱うには十分ではない。
物理学者は、点粒子を「弦」に置き換えることにより、量子重力の問題が克服できるのではないかと試した。
量子論の効果はプランク定数に比例するが、弦理論の効果は、弦の大きさを定めるα'という定数に比例する。
もし弦理論が正しいなら、α'という定数は、プランク定数と同じぐらい基本的定数ということになる。
ħやα'に関する変形は幾何学における新しいアイデアに関係する。ħに関する変形はよく知られているが、α'に関する変形はまだ未発展である。
これらの理論は、それぞれが重力を予言し、非可換ゲージ対称性を持ち、超対称性を持つとされる。
α'に関する変形に関連する新しい幾何学があるが、理解のために2次元の共形場理論を使うことができる。
ひとつは、ミラー対称性である。α'がゼロでない場合に同値となるような2つの時空の間の関係を表す。
まずt→∞という極限では、幾何学における古典的アイデアが良い近似となり、Xという時空が観測される。
t→-∞という極限でも同様に時空Yが観測される。
そして大きな正の値であるtと大きな負の値であるtのどこかで、古典幾何学が良い近似とはならない領域を通って補間が行われている。
α'とħが両方0でないときに起こり得ることがなんなのかについては、5つの弦理論が一つの理論の異なる極限である、と説明ができるかもしれないというのがM理論である。
自然界の法則の探索は、一般相対性理論と量子力学の発展の中で行われてきた。
相対性理論はアインシュタインの理論だが、これによれば、重力は時空の曲率から生じることになり、リーマン幾何学の枠組みで与えられる。
相対性理論においては、時空はアインシュタインの方程式に従って力学的に発展することになる。
すなわち初期条件が入力データとして与えられていたときに、時空がどのように発展していくかを決定することが物理学の問題になるわけである。
相対性理論が天体や宇宙全体の振る舞いの理解のために使われるのに対し、量子力学は原子や分子、原子を構成する粒子の理解のために用いられる。
粒子の量子論(非相対論的量子力学)は1925年までに現在の形が整えられ、関数解析や他の分野の発展に影響を与えた。
しかし量子論の深淵は場の量子論にあり、量子力学と特殊相対性理論を組み合わせようとする試みから生まれた。
場の量子論は、重力を除き、物理学の法則について人類が知っているほどんどの事柄を網羅している。
反物質理論に始まり、原子のより精密な記述、素粒子物理学の標準模型、加速器による検証が望まれている予言に至るまで、場の量子論の画期性は疑いの余地がない。
数学の中で研究されている多くの分野について、その自然な設定が場の量子論にあるような問題が研究されている。
その例が、4次元多様体のドナルドソン理論、結び目のジョーンズ多項式やその一般化、複素多様体のミラー対称性、楕円コホモロジー、アフィン・リー環、などが挙げられる。