「電位差」を含む日記 RSS

はてなキーワード: 電位差とは

2024-03-08

ドラゴンボールは、地球の面積比率から計算出来ます

AmazonレビューチャットGPTで書いてもこうならんやろ。なんやこれ

https://www.amazon.co.jp/review/R90RVQQCZVDDA/ref=cm_cr_srp_d_rdp_perm?ie=UTF8&ASIN=B00A47VS5A

龍神七福神仙人も良いと思いますドラゴンボールは、地球の面積比率から計算出来ますロトボールは、たまにキャリオーバーする事で盛り上がるようになっていますが、数学確率統計重要です。

ドラゴンクエスト特集していた少年ジャンプのゆうてい、みやおう、きむこうは、ゆうていがいないと、盛り上がりにかけますロト7のロトボールを、7つそろえる為には、龍神様も重要です。

桃は、安土桃山時代桃谷商店街の活気でも重要です。桃て活気を安定させてるのが分かると思いますドラゴンボールの悪役の桃白白は、良い文字の悪キャラで、黒い服もある天津飯に負けましたが、桃と白のイメージでも、中身の心が重要という事が改めて分かります

太陽拳は、太陽神とある程度仲良くないとできませんが、キャプテン翼音速マッハシュートより上の概念の光のフラッシュシュートは、最高峰シュートですが、より上の理想宇宙の力に関係しなくても、この宇宙はつとまります

天津飯の天は天界の天、天界閻魔天閻魔大王、神と界王の考えの上は、次元の神、時間の神です。

七福神仙人の多い、ロトボールもあうドラゴンボールも良いと思いますセルセルジュニアパワーアップは、セルシードの培養STAP細胞iPS細胞と同様です。

フルーツシリーズも良いと思います

セルセルジュニアは、細胞セル進化のものです、フリーザー名前に似ているフリーズは、フリーズドライ製法のように、フリーズで、凍らせて凍結する方法ですが、瞬間的に、零下まで冷凍することは重要です。ノーベル賞ビオンテックメッセンジャーRNAワクチンは、電子顕微鏡で、医療器具で、ゲノム編集して、培養する技術ですが、副反応ないワクチンをより考慮するであれば、抽出方法検討したほうが良いと思います

役割のあるメッセンジャーRNAmRNAが単離した時に、凍結する事で、綺麗に単離させて分離できます。そして、培養も、併用培養する場合善玉菌のような安全で無害に近い内容が望ましいです。

そして、冷凍技術は、ワクチン保管で重要です。輸送でも重要です。新鮮で美味しい食べ物の為に重要です。スーパーマリオブラザーズも、ニュートン万有引力考慮するとより良いと思いますスーパーマリオブラザーズの前のマリオブラザーズフリーズと、アイスクライマーフリーズも、評価して、副反応のないワクチンと新鮮で美味しい食べ物をまとめて、IT最高峰ユビキタス化が進んだ戸越銀座のように、高圧ボルト電位差のある電線は、地下の位置にしたほうが良いと思います

スーパーサイヤ人は、スーパー野菜人も、褒めているような表現特に良いと思います野菜のベジタブルの名前のようなベジータパワーアップも、野菜を褒めているようで、特に良いと思いますかりん様も、猫を褒めている事からも、動物愛護の考えで、特に良いと思います

ダブルドラゴンドラゴンクエストパズル&ドラゴンドラゴン名称ですが、

上場企業タカラバイオも、昔は、ドラゴン名称です。エンジェルAngel名前のようなAngesのアンジェスワクチン開発で重要です。セル細胞細胞培養ワクチン培養量産につきまして、東京女子医大セルシードとSTAP細胞iPS細胞と、アンジェスタカラバイオワクチン量産培養も、改めて、まとめて、教科書にしたほうが良いと思います

七福神仙人の多い、ロトボールもあうドラゴンボールも良いと思いますセルセルジュニアパワーアップは、セルシードの培養STAP細胞iPS細胞進化と同様です。

2023-03-05

anond:20230219083008

原因が発表されました。

アンビリカルケーブル構成する5本のラインを同時にオフしたことによって発生したノイズが原因とのこと。対策は、発生する電位差(によって発生するノイズ)を平準化するために5本のライン一定間隔でオフにする、ということだそうです。

また、同様の処置を、他の系統にもほどこす必要があるとのこと。

そもそもアンビリカルケーブルオフにするテストをおこなっていなかったということなので、原因はテスト不足による考慮漏れということでしょう。さらに、なぜテストをしていなかったのか、ということまで原因をさかのぼると、予算スケジュール問題帰結しそうな感じがします。

それでも「考慮漏れ」であって「失敗」ではない、ということなんですかね。

2022-02-01

anond:20220201045246

そうだね。落差があれば必ず水圧差が生じるからね。

というわけで、学校理科教科書をはじめ多くの本では電圧電位差)を水の落差にたとえて説明している。図を描けば視覚的にもわかりやすいし。

2022-01-31

anond:20220131165347

Aは水流の速さ Wは水圧

  ← いや、水圧に相当するのは電圧電位差)V でしょう。電流A は水の流量かと。

anond:20220131172004

ボルトが流速

  という説明は疑問に思う。だって電圧電位差)は電気が流れていない状態でも存在するんだからさ。例えば電圧電位差)は100Vだけど電流は0Aとか。

2022-01-25

anond:20220125100352

よくわからんけどすごいな

身体電圧で包み込み、外界との電位差を発生させることで、目に見えない磁場による適度な電圧で全身を刺激します。

高周波の膜が身体を包むことによって、全身の皮膚表面を電子の力でくまなく刺激します(電子摩擦)。

人体を電気回路の中において、電子(e-)を身体に注入する電位療法の一種です。

https://nihondenshi.or.jp/hp/?page_id=1002

2021-09-16

安静時心拍数60切ったらアスリートってマ?

週一でHIITやってるだけだけど安静時56だわ

健診でも心臓電位差があるからスポーツ心臓かもしれない、学生時代スポーツか何かやってた?って言われた

学生時代コミュ障引きこもりで全く何もやってなかったので(就職後初めて電車通勤するようになって長時間通勤のため、太ももパンパンに膨れて痛くなるくらいには虚弱体質)

いいえスポーツとかやったことないですって言っておいたけど

HIITも高強度運動からフィットネスとは言えるけどスポーツじゃないし。そもそも学生時代じゃないし

スポーツやってた?って聞かれているのに「ブヒブヒそれがしは高強度インターバルトレーニング通称HIITを現在進行形で嗜んでおりましてコポォ

みたいに鼻息荒く口から泡を吐きつつ答えてもきもいなーって思ったから、スルーするしかなかったのです

2021-07-14

信号機倒壊原因は『犬の尿』by科捜研」の記事バカニュースの類か

鈴鹿信号機柱が折れた原因が犬のおしっこだというNHKニュースが人気だけど、この報道ちょっと短絡的なんよ。

https://www3.nhk.or.jp/news/html/20210713/k10013135901000.html

 

地中に尿素が沢山検出された→尿に含まれ塩分のせいで腐食が速く進んだって理路だが、この科捜研推理、間違いじゃね?普通こういう場合に一番に疑うのは「近くに電話線が埋設されていないか?」って事なのだ

 

この現場は「玉垣駅東」っていう交差点で折れたのはこの柱。

https://goo.gl/maps/syr4awTVenxKDcHZA

無塗装無被覆の亜鉛メッキ鉄柱だ。

信号構成要素を知って欲しい

信号を動かすには電気必要から電線が引き込まれている。最初期のリレー信号機はこれだけで良かった。

ところが最近、と言っても30年以上前からはそれだけじゃなくて通信線が必要になっている。国道などの信号機はある程度のグループにまとまって連動して動いている。バラバラだと渋滞を惹き起こし旅行時間(到達時間行政用語)をいたずらに長くする。

これは最近進んでいる歩道橋撤去にも絡んでいる。スタンドアロン信号機しかなかった昭和中期では歩行者安全の為に信号機を設置すると渋滞が酷くなってしまう。その為不便で高価な歩道橋を設置するしかない。しか年寄りなどの交通弱者には利用が困難でジェイウォークが頻発して結局事故になる。現在ネットワーク化された連携信号機なら赤と青が連続させられるのでいくら設置しても渋滞悪化しない。

 

更に最近(と言っても30年前から)では警察署中央管制が出来るようにしている。

これには多くの利点がある。まず現場まで行かなくても信号パターンプログラム出来るので柔軟に運用できる。更に大きいのがカーチェイス抑制だ。市街地パトカーの制止を聞かずに逃げるとやがて前方の信号は全て赤になる。追尾の警邏パトカー結構やる気ないような走り方をするがやがて管制室が作り出した渋滞につかまるからそれでいいのである。交差交通の方も赤の全赤にしておけば事故可能性は更に減る。カーチェイス事故警察も悪い、悪くないの論争になる事があるが、警察の肩を持つ余りカーチェイス事故責任をも全面的に免責するのはこういう理由で間違っている。責任があるから予算を組んでこういうシステムを整備するのである

矢印信号デフォルト装備にしておけば災害時に特定地区への進入を阻止する事も可能だ。

 

この為の通信線は「専用線」を使用し、アナログデジタルがある。専用線は何も交通信号だけではなく、銀行ATM企業の支社間、マスコミ企業なども使用していて警察電話などもそうだ。アナログ専用線は要するに専用の電話である

折れた信号柱の近くのこれがその終端装置だ。

https://goo.gl/maps/bdENtmii5Ck6nJ4e6

ボックスへの曲がりが緩いので光ファイバのようだが更新前はアナログだった可能性もある。

たまに電柱を見上げて欲しい

電柱に掛かる線というのは高さによって3つに分かれている。

  • 一番上は高圧線

一番上には3本の線が距離をおいて張られている。これは高圧線でそれぞれ3300Vの電圧がある。3つがそれぞれ電圧の波がずれて送電されているので電線間では6600V。触れると危なすぎるので一番上に張られている。

  • 真ん中は低圧線

柱上変圧器で家庭で使える100Vに変圧された電気は真ん中の線を流れて家に引き込まれる。これも三相で電線間の電圧は200Vだが家庭の電灯契約ではそのうちの一本100Vだけを使用する。

先ほどのストビューで見ると3つの線群に分けられているのが見えると思う。

  1. 黒い箱はメタル端子函で、これがあるのはアナログ電話線(加入者線
  2. 銀色の箱は光端子函でFTTHなど
  3. 端子函がない線群は専用線

となっている。終端装置へは専用線が中継器無しで引き込まれているのが判る。なお、終端装置柱の一番下にあるのは電力メーターだ。警察ちゃん信号機電気代を払わなきゃならない。

また、ストビューで見回すとこの交差点周囲の電柱から電話線が多数地下に引き込まれている事が判る。このアナログ電話線に流れる電気結構特殊だ。「-48Vの直流電流」なのである

中学理科ボル電池陽極酸化現象を思い出して欲しい

電話線が-48Vなんて変な電流を使う理由ボル電池とめっきの原理関係している。

異種金属を導線で繋いで電解液中に置いた場合イオン化傾向が大きい金属の方はイオン化して溶け出し電子が過剰となり、イオン化傾向が小さい方に電子が流れて水素が発生する。

逆に両極に外部から電圧を掛けるとイオン化傾向の差は無視されて陽極の方がイオン化して溶け出し陰極に析出する。これが陽極酸化現象でめっきの仕組みでもある。

アナログ電話では直流電流必要だが、この直流が+電圧だったらどうなるだろうか?土中で漏電して、その漏電箇所ていうのは要するにめっきの陽極と同じだ。電解液である土中に銅イオンを流し続けて、近くに金属があった場合はそれを銅メッキし続けてしまう。その結果電話線はやがて無くなり断線してしまう。

逆に-電圧にすると周りから金属イオンを漏電箇所に集めて析出させるという形になる。つまり断線しない。

だがこの時近くに鉄で出来た構造物が埋設されていたら?

そう、この鉄構造物はめっきの陽極となってどんどん溶け出し、電話線の漏電箇所に鉄めっきされてしまう。埋設電話線は腐食に強いが、周囲の金属犠牲にするシステムなのである

から埋設金属が早く腐食した場合電話線の埋設は真っ先に疑われるのである。この電流はほんの微量で構わない。単三電池でも簡易的なめっきは出来るのだから

犬に濡れ衣着せるには考証不足

から科捜研は折れた柱周囲を掘り返し鉄分分布を取って変な分布傾斜が無いか調べるべきだったし、土中に電位差が無いか調べるべきだった。それ以前に電話線の埋設が無いか過去無かったかNTTに聞くべきだった。何しろ信号自体電話線(専用線)を使うシステムであるし、その端末装置がある柱は折れた柱の直近なのであるから。更に近くの電柱から電話線が地中に引き込まれているのだから

2016年大阪池田市で街灯が倒れて女児の指が切断されるという事故があり、池田市が「犬の尿が原因」という調査結果を出した事があった。それに寄せる為の調査が行われたという気がしてならない。

 

一方、NHK科捜研がそれらの可能性を調べ尽くしたか確認すべきだった。その上で犬の尿という仮説しか残っていないのならニュースバリューがあった。

犬の尿で倒壊っていうのは面白ニュースからその説に飛びついてしまったのだろう。仮令誤報でも問題も起きない類のイシューだ。

しか知的好奇心を途中で放棄してしまっている。犬の尿説で笑ってお仕舞にしたら交通信号の仕組みも個人では馴染みの薄い専用線の事も電話線とめっきの関係も頭に入ってこない。電柱を見てもただの邪魔風景しか映らないままだ。路上観察動機を逃しているのだ。

 

最後散歩時の犬の放尿について愛犬家に尋ねたりして倫理問題にしてしまい、論拠が不十分である事を視聴者に忘れさせる構成だ。この構成効果メディアリテラシー問題でもあるだろう。

から今後も私は散歩最中安心して電柱を見上げながらおしっこを続けるワン。

2020-09-04

anond:20200903210509

Wikipediaによると

電流(でんりゅう、英: electric current)は、電子代表される荷電粒子の移動に伴う電荷の移動(電気伝導)のこと。

とあるので高圧電流とは電位差が大きい区間電荷が移動する現象という意味別におかしくないのでは。

2018-02-27

anond:20180227234014

昭和のころに、老人向けの健康雑誌、爽快?みたいな名前のやつとかで、

手足に アルミ1円玉 と銅=10円を貼り付けるとそこに電位差が生じて電気が流れて健康になる

みたいな怪しげな健康法が良く紹介されていたのは覚えてる。

それが視力回復だったかどうかは忘れたけど。

2017-01-08

「脳のしくみ」の読メモ

下記書籍を読んだ。今後のために、得られたことを整理して文字列化した。発信したくなったか匿名ダイアリー投稿高木 繁治 (監修),"脳のしくみ―脳の基本構造から記憶のあり方まで",主婦の友社,2010.


脳
  人間生命活動総合的に制御する重要な器官
  大きく分けて
    大脳
      人間知的活動にとって最も重要な,思考・知覚・記憶言語運動などの働きを担う
    小脳
      身体各部運動が正確に行われるよう調整するのが主な役割, 平衡感覚脳幹
      呼吸、血液循環、体温調整、代謝など、生命活動の維持
  神経細胞ニューロン)、それらをつなぐ神経線維が多数
  支持・栄養補給グリア細胞

大脳
  三層
    古皮質
    旧皮質
    新皮質
  古:爬虫類の脳, 旧:旧哺乳類の脳
    本能的な情動にかかわる大脳辺縁系
    運動にかかわる大脳基底核
  新:最も人間的な部分
  大脳辺縁系
    細かく見ていく
      短期記憶蓄積 海馬
      好き嫌いや怒りなどの感情 偏桃体
      意欲に関係深い 側坐核、透明中隔
      快・不快で行動意欲につなげる 帯状回
      各器官をつなぐ 脳弓
    食欲や性欲などの生存本能
    恐怖や好き嫌いなど人間本能的な感情
    偏桃体は「情動の中枢」、好き嫌い、快不快原始的動物感情を生む
  左脳右脳

小脳
  身体を使って覚えたことは小脳記憶
  反復練習で正確に

脳幹
  命の座
  大脳小脳、延髄をつなぐ
  器官
    間脳(視床視床下部中脳
    橋
    延髄
    など
  心拍、呼吸、血液循環、体温調整
  大脳意識的活動の中枢であるのに対し、脳幹無意識的な生命活動の中枢
  視床下部にぶらさがる脳下垂体
    視床下部の指示のもと、ホルモン分泌
    前葉
      成長ホルモン
      甲状腺刺激ホルモン
      副腎皮質刺激ホルモン
      生殖腺刺激ホルモン
      プロラクチン
    後葉
      オキシトシン
      バゾプレッシン

その他
  利き手
  男女の脳
    脳梁 女性のほうが太い
    前交連 視床間橋も
    左脳右脳両方を連携して話す, コミュ力高
    など

神経細胞, グリア細胞
  情報伝達
  神経細胞
    大脳に140億
    小脳1000億
    脳全体 千数百億
    情報ネットワーク形成
    構成
      樹状突起, 他の神経細胞から情報を受け取る
      軸索      樹状突起の一番長もの、他の神経細胞との連絡, 神経細胞同士が結びついて情報が伝達され、新たな結びつきができることで”記憶”として蓄えられる
      細胞心臓グリア細胞
    接着剤
    サポート
    最近研究では、グリア細胞情報伝達に加担?

神経細胞
  情報伝達
    電気信号
    軸索
    シナプス
    神経伝達物質
  電気信号の伝播
    細胞膜
    イオン
    チャンネル開閉
    膜内と膜外とで電位差
    電位差が隣に影響を与えそっちでも電位差
    軸索を伝搬
    軸索髄鞘が覆っているかどうかで、伝搬速度も変化
  情報伝達2
    単一神経細胞内においては電気信号で伝達
    神経細胞間のシナプス間隙では神経伝達物質で伝達

神経系
  中枢神経
    脳
    脊髄
  末梢神経
    体性神感覚神経
      運動神経
    自律神経 相反する2種の拮抗バランス ホメオスタシス
      交感神経    興奮緊張
      副交感神経  弛緩抑制人間の心はどこにあるか
    近代に入るまで:心臓
    今:脳が重要
  感情
    人間けがもつ特有のもの
      親しみ
      同情
      憎しみ
      羞恥心
    動物的なもの
      空腹が満たされたとき快感
      睡眠不足不快感
      生命を脅かすものにあったときの恐怖、不安闘争心
      人間的な感情区別して”情動”と呼ぶ
  情動
    視床下部
      生物としての欲求生存本能
        食欲
        睡眠欲
        性欲
    偏桃体
      快
      不快
      怒り
      恐れ
    視床下部×偏桃体×海馬×外部から情報情動
  怒りや恐れで生理的変化
      交感 増
    副交感 減
  情動だけでは暴走してしまう。大脳前頭連合野理性的制御
  感情情報大脳に伝える
    偏桃体が喜怒哀楽などの感情判断すると、脳内ホルモンという神経伝達物質によって、大脳皮質まで伝達
    脳内ホルモンの分泌コントロール:モノアミン系 神経細胞の集合
    モノアミン系
      A
        1-7 ノルアドレナリン
        8-12 ドーパミン
        6は怒りの中枢
        10人間しかない
      C
        アドレナリン
      B
        A,Cを抑える
    ホルモン脳内に伝わって、緊張や興奮などの生理的変化を身体にもたらす
    感情脳内ホルモンによって引き起こされるといってもよい
    役割
      ドーパミン  快感幸福感を増幅、意欲・運動調節・ホルモン調節
      ノルアドレナリン 怒り、不安、恐怖の感情覚醒記憶
      アドレナリン 恐怖
      これらにたいして抑止的に作用する神経伝達物質
        セロトニン
          睡眠、体温調節、生理的機能、過剰な興奮や衝動抑うつ感の軽減
          不足するとうつ状態
          片頭痛発症にも関与?
    幸福感の源
      本能的な欲求が満たされたとき動物全般にみられる
      ほめられる、試験合格コンテスト優勝、新しい知識獲得
      目標達成。小説が波乱万丈の末にハッピーエンド
      快の感情を追求することが、まさに人間らしい幸福感であり、ひいては人類進化につながる
      ドーパミンがその原動力
    主な神経伝達物質
      モノアミン  ドーパミン
                  ノルアドレナリン
                  セロトニン
      βエンドルフィン
      アミノ酸    γ網の酪酸ギャバグルタミン酸
      アセチルコリン
      神経ペプチド
    ストレス
      ホメオスタシス
      病気やケガ、不快環境トラブル経済的不安といった原因(ストレッサーから何らかの圧力を受けていると感じ、それに反応して心身が緊張している状態を指すのがストレス
      ストレスを感じると
        脳内ホルモン分泌  → グルコース身体エネルギー源)の生成を促進
        交感神経活性化    → 緊張が高まり、はたらきが活性化
      ストレスから抜け出せず、長期間バランスを崩していると
        睡眠障害学習能力低下、集中力低下、感染症など
        心拍数増加、血圧血糖値の上昇、気管支拡張思考力低下
      ストレスの進行度
        1. 警告期  ストレスに備えるべく活性化
        2. 抵抗期   ストレスの原因と闘う時期
        3. 疲労期  ストレスから抜け出せないと疲労期。糖質コルチコイドやアドレナリンノルアドレナリンなどが過剰に分泌されるために起こる。私たちストレスを強く意識するのはこの時が多い
      ストレス本来、外から物理的、心理的圧力に備え、克服するための脳や身体の反応
      ストレス日常的にあっても不自然ではない
      ストレスレベルが高すぎても低すぎても生産性は落ちることが証明済み
      適度なストレス必要
      定年後に燃え尽きてしまう人は、ストレスが少なすぎだからかも
      必要ストレスでも、慢性化すると心身に変調
        不安障害
        強い恐怖感
        動悸 息苦しさ めまい
        パニック障害
        強迫観念へのとらわれ
        強迫性障害
        PTSD
      人間幸福を感じるとき大脳辺縁系帯状回にあるスピンドルニューロンという神経細胞活性化し、細胞が伸長する
        いったん長くなると、不幸があっても縮まない
        長い分だけ幸福感が持続する
        幸福体験を重ねるほど伸び続ける
        ストレスに対しても強い抵抗力を持つ
        と言われている
        くよくよしないで前向きに考えることは脳を活性化し、免疫力を高め、病気悪化させない効果につながる
    恋愛
      性欲 視床下部
        第一性欲中枢  セックスを求める機能
        第二性欲中枢  セックスを行うための機能
      第一: 男 >> 女
      第二(男):摂食中枢のそば。空腹で生命危機だと性欲高
      第二(女):満腹中枢のそば。失恋でやけ食いはこのため?
      人間けがもつ感情の一つに、恋愛に関する感情
      恋愛感情を起こすのは主として性欲の情動だが、それだけではない
      恋愛対象としてふさわしいか総合的に判断するのは前頭葉にある前頭連合野

言語
  すべての民族に備わっている

記憶
  短期記憶  作業メモリ
  長期記憶  ストレージ
    陳述記憶
      意味記憶        一般的知識
      エピソード記憶  出来事
    非陳述記憶
      手続き記憶        身体習得する記憶
      プライミング記憶  無意識のうちに思い起こす記憶
  エピソード記憶は、意識すれば比較的容易に思い出せる、意味記憶きっかけがないとなかなか思い出せない
  頭の中に画像を描いたり、メロディをつけたり、音読したり、語呂合わせにしたり、物語にしたてる、五感を駆使するなどすれば、意味記憶も同様に定着が可能

睡眠
  体と脳の休息
  夢
    睡眠中に脳内で起こる仮想体験

五感
  略

脳の発達・進化・老化
  系統樹
    魚類
    両生類
    爬虫類
    鳥類
    哺乳類
    人類
  大脳神経細胞受精後四か月=成人
  誕生後に神経ネットワークを構築
  20歳ころに完成
  脳の老化は、神経細胞の変形と、脳内における密度の低下によるもの
  大脳皮質細胞数はあまり減少しない
  脳幹黒質では大きく減少、黒質運動調節・ドーパミンを分泌、運動能力・意欲の低下
  神経細胞同士をつなぐシナプスは増えることはあっても、減ることはない。記憶力や運動能力は衰えるが、思考力や判断力は衰えない
  植物状態大脳機能停止。脳幹機能

脳の病気
  略


以上

2016-04-02

わかりやすくないと意味がない

だが、複雑な事象をわかりやす説明することは

かえってわかりにくくなるだけではないだろうか。

長さ L の導線に電流 I が大きさ B の磁場下で流れているとき、導線にかかるローレンツ力の大きさは BLI に等しい。ワット天秤では、この力が標準質量 m の重さ w と正確につりあうように電流を調整する。これは電流天秤の原理と同じである。 w は質量 m に重力加速度 g を掛け合わせれば得られるので、以下の式が成り立つ。

w=mg=BLI

キブルのワット天秤では、B と L の測定に関する問題校正ステップにより解決される。同じ導線(実用上はコイル)を同じ磁場で既知の速さ v で動かす。すると、ファラデーの電磁誘導法則により、 BLv に等しい電位差 U が生じる。

U=BLv

未知の積 BL を消去すると以下を得る。

UI = mgv

U, I, g, v を正確に測定することにより、 m の正確な値が得られる。この方程式の両辺は仕事率の次元を持っており、ワット単位で測ることができるので、「ワット天秤」の名前がある。

これを3行でまとめることは出来るだろうか。

できまい

2015-03-31

今でも知的財産高裁とかには神が居るんだよな

1

平成27年3月11日判決言渡

平成26年(行ケ)第10187号 審決取消請求事件

口頭弁論終結日 平成27年2月25日

判 決

原 告 東芝ライフスタイル株式会社

訴訟代理弁護士 三 山 峻 司

同 松 田 誠 司

同 清 原 直 己

訴訟代理弁理士 蔦 田 正 人

同 中 村 哲 士

同 富 田 克 幸

同 夫 世 進

同 有 近 康 臣

同 前 澤 龍

同 蔦 田 璋 子

被 告 パ ナ ソ ニ ッ ク 株 式 会 社

訴訟代理弁護士 岩 坪 哲

同 速 見 禎 祥

主 文

1 原告の請求を棄却する。

訴訟費用は原告の負担とする。

事 実 及 び 理 由

2

第1 請求

特許庁無効2012-800008号事件について平成26年6月24日

にした審決を取り消す。

第2 事案の概要

特許庁における手続の経緯等(当事者間に争いがない。)

被告は,平成22年8月10日に出願(特願2010-179294号。

平成15年12月22日に出願された特願2003-425862号の分割

出願。優先日同年8月5日)(以下,この優先日を「本件優先日」という。)

され,平成23年12月9日に設定登録された,発明名称を「帯電微粒子

水による不活性化方法及び不活性化装置」とする特許第4877410号

(以下「本件特許」という。設定登録時の請求項の数は6である。)の特許

権者である

原告は,平成24年1月31日,特許庁に対し,本件特許の請求項全部に

ついて無効にすることを求めて審判の請求(無効2012-800008号

事件)をした。上記請求に対し,特許庁が,同年8月2日,無効審決をした

ため,被告は,同年9月10日,審決取消訴訟を提起した(知的財産高等裁

判所平成24年(行ケ)第10319号)。その後,被告が,同年12月7

日,特許庁に対し,訂正審判請求をしたことから知的財産高等裁判所は,

平成25年1月29日,平成23年法律第68号による改正前の特許法18

1条2項に基づき,上記審決を取り消す旨の決定をした。

被告は,平成25年2月18日,本件特許の請求項1及び4を削除し,請

求項2を請求項1と,請求項3を請求項2と,請求項5を請求項3と,請求

項6を請求項4とした上で各請求項につき特許請求の範囲の訂正を請求した

(以下「本件訂正」という。)。特許庁は,同年5月8日,本件訂正を認めた

上で無効審決をしたため,被告は,同年6月14日,審決取消訴訟を提起し

知的財産高等裁判所平成25年(行ケ)第10163号),知的財産高等

3

裁判所は,平成26年1月30日,上記審決を取り消す旨の判決をした。特

許庁は,同年6月24日,「訂正を認める。本件審判の請求は,成り立たな

い。」との審決をし,その謄本を,同年7月3日,原告に送達した。

原告は,同年7月31日,上記審決の取消しを求めて,本件訴えを提起し

た。

特許請求の範囲の記載

本件訂正後の本件特許特許請求の範囲の記載は,次のとおりである(甲3

4,39,40。以下,請求項1に係る発明を「本件訂正特許発明1」,請求

項2に係る発明を「本件訂正特許発明2」などといい,これらを総称して「本

件訂正特許発明」という。また,本件特許の明細書及び図面をまとめて「本件

特許明細書」という。)。

請求項1

大気中で水を静電霧化して,粒子径が3~50nmの帯電微粒子水を生成

し,花粉抗原,黴,菌,ウイルスのいずれかと反応させ,当該花粉抗原,黴,

菌,ウイルスの何れかを不活性化することを特徴とする帯電微粒子水による

活性化方法であって,前記帯電微粒子水は,室内に放出されることを特徴

とし,さらに,前記帯電微粒子水は,ヒドロキシラジカル,スーパーオキサ

イド,一酸化窒素ラジカル,酸素ラジカルのうちのいずれか1つ以上のラジ

カルを含んでいることを特徴とする帯電微粒子水による不活性化方法。」

請求項2

大気中で水を静電霧化して,粒子径が3~50nmの帯電微粒子水を生成

し,花粉抗原,黴,菌,ウイルスのいずれかと反応させ,当該花粉抗原,黴,

菌,ウイルスの何れかを不活性化することを特徴とする帯電微粒子水による

活性化方法であって,前記帯電微粒子水は,大気中に放出されることを特

徴とし,さらに,前記帯電微粒子水は,ヒドロキシラジカル,スーパーオキ

サイド,一酸化窒素ラジカル,酸素ラジカルのうちのいずれか1つ以上のラ

4

ジカルを含んでおり,前記帯電微粒子水は,粒子径3nm未満の帯電微粒子

水よりも長寿であることを特徴とする帯電微粒子水による不活性化

法。」

請求項3

「霧化部に位置する水が静電霧化を起こす高電圧を印加する電圧印加部を備

え,当該電圧印加部の高電圧の印加によって,大気中で水を静電霧化して,

粒子径が3~50nmであり,花粉抗原,黴,菌,ウイルスの何れかと反応

させて,当該花粉抗原,黴,菌,ウイルスの何れかを不活性化するための帯

電微粒子水を生成し,前記帯電微粒子水は,室内に放出されることを特徴と

する不活性化装置であって,前記帯電微粒子水は,ヒドロキシラジカル,ス

ーパーオキサイド,一酸化窒素ラジカル,酸素ラジカルのうちのいずれか1

つ以上のラジカルを含んでいることを特徴とする不活性化装置。」

請求項4

「霧化部に位置する水が静電霧化を起こす高電圧を印加する電圧印加部を備

え,当該電圧印加部の高電圧の印加によって,大気中で水を静電霧化して,

粒子径が3~50nmであり,花粉抗原,黴,菌,ウイルスの何れかと反応

させて,当該花粉抗原,黴,菌,ウイルスの何れかを不活性化するための帯

電微粒子水を生成し,前記帯電微粒子水は,大気中に放出されることを特徴

とする不活性化装置であって,前記帯電微粒子水は,ヒドロキシラジカル,

スーパーオキサイド,一酸化窒素ラジカル,酸素ラジカルのうちのいずれか

1つ以上のラジカルを含んでおり,前記帯電微粒子水は,3nm未満の帯電

微粒子水と比較して長寿であることを特徴とする不活性化装置。」

3 審決の理由

審決の理由は,別紙審決書写しのとおりである。本件訴訟の争点となる部

分の要旨は,① 本件訂正特許発明の粒子径の記載はいずれも明確である

特許法36条6項2号の要件を満たす。),② 本件訂正特許発明の粒子径

5

に関し,発明の詳細な説明に記載されていないとすることはできない(同項

1号の要件を満たす。),③ 本件訂正特許発明の静電霧化の意味は明確であ

るほか,本件訂正特許発明の静電霧化手段に関し,発明の詳細な説明に記載

されていないとすることはできないし,発明の詳細な説明には,当業者が本

件訂正特許発明実施ができる程度に明確かつ十分な記載がなされていない

とすることもできない(同項1号及び2号並びに同条4項1号の要件を満た

す。),④ 本件訂正特許発明1及び3はいずれも,I.Wuled LEN

GGOROら「静電噴霧法による液滴およびイオンの発生」粉体工学会誌V

ol.37,No.10(日本,2000年),753~760頁(甲10。

以下「甲10」という。)記載の発明(以下,審決が本件訂正特許発明1と

対比するに当たり認定した甲10記載の発明を「甲10発明1」と,本件訂

特許発明3と対比するに当たり認定した甲10記載の発明を「甲10発明

2」という。)に,特開平11-155540号公報(甲5。以下「甲5」

という。),特開平7-135945号公報(甲6。以下「甲6」という。)

及び「ラジカル反応・活性種・プラズマによる脱臭空気清浄技術マイナ

空気イオンの生体への影響と応用」(株)エヌ・ティー・エス発行,20

02年10月15日,218~231頁,363~367頁,389~39

2頁(甲7。以下「甲7」という。)に記載の技術を組み合わせても,当業

者が容易に発明できたものではない(同法29条2項の規定に反しない。),

⑤ 本件訂正特許発明1及び3はいずれも,特開2002-203657号

公報(甲11。以下「甲11」という。)記載の発明(以下,審決が本件訂

特許発明1と対比するに当たり認定した甲11記載の発明を「甲11発明

1」と,本件訂正特許発明3と対比するに当たり認定した甲11記載の発明

を「甲11発明2」という。)に,甲5ないし7記載の技術を組み合わせて

も,当業者が容易に発明できたものではない(同上),というものである

上記 ④の結論を導くに当たり,審決が認定した甲10発明1及び2の内

6

容,甲10発明1と本件訂正特許発明1及び甲10発明2と本件訂正特許

明3との一致点及び相違点は以下のとおりである

ア 甲10発明1及び2の内容

甲10発明

「液体を静電噴霧して,粒子径が数nmで幾何標準偏差が1.1程度の

イオンを含む液滴を生成する方法

甲10発明

「導電性の細管の先端に位置する液体が静電噴霧を起こす高電圧を印加

する高圧電源を備え,当該高圧電源の高電圧の印加によって,液体を静

電噴霧して,液滴径が数nmで幾何標準偏差が1.1程度のイオンを含

む液滴を生成する静電噴霧装置

イ 本件訂正特許発明1と甲10発明1について

一致点

「液体を静電霧化して,粒子径が3~50nmの帯電微粒子の液滴を生

成する工程を含む方法

相違点

a 相違点10a

「本件訂正特許発明1は,水を静電霧化して帯電微粒子水を生成し,

帯電微粒子水を花粉抗原,黴,菌,ウイルスのいずれかと反応させ,

当該花粉抗原,黴,菌,ウイルスの何れかを不活性化する不活性化

であるのに対して,甲10発明1は,帯電微粒子の液滴が,花粉

原,黴,菌,ウイルスのいずれかと反応し,それらの何れかを不活性

化するか不明である点」

b 相違点10b

「本件訂正特許発明1では,大気中で水を静電霧化し,帯電微粒子水

は,室内に放出されるのに対し,甲10発明1では,大気中で液体を

7

静電霧化するのか,また,液滴が室内に放出されるのか明らかでない

点」

c 相違点10c

「本件訂正特許発明1では,帯電微粒子水は,ヒドロキシラジカル,

スーパーオキサイド,一酸化窒素ラジカル,酸素ラジカルのうちのい

ずれか1つ以上のラジカルを含んでいるのに対して,甲10発明1で

は,帯電微粒子の液滴が,そのようなラジカルを含んでいるか不明

ある点」

ウ 本件訂正特許発明3と甲10発明2について

一致点

「霧化部に位置する液体が静電霧化を起こす高電圧を印加する電圧印加

部を備え,当該電圧印加部の高電圧の印加によって,水を静電霧化して,

粒子径が3~50nmである帯電微粒子の液滴を生成する装置

相違点

a 相違点10d

「本件訂正特許発明3は,水を静電霧化して帯電微粒子水を生成し,

花粉抗原,黴,菌,ウイルスの何れかと反応させ,当該花粉抗原,黴,

菌,ウイルスの何れかを不活性化する帯電微粒子水による不活性化

であるのに対し,甲10発明2は,帯電微粒子の液滴が,花粉抗原,

黴,菌,ウイルスのいずれかと反応し,それらの何れかを不活性化

るか不明である点」

b 相違点10e

「本件訂正特許発明3では,大気中で水を静電噴霧し,帯電微粒子水

は,室内に放出されるのに対し,甲10発明2では,大気中で液体を

静電霧化するのか,また,液滴が室内に放出されるのか明らかでない

点」

8

c 相違点10f

「本件訂正特許発明3では,帯電微粒子水は,ヒドロキシラジカル,

スーパーオキサイド,一酸化窒素ラジカル,酸素ラジカルのうちのい

ずれか1つ以上のラジカルを含んでいるのに対し,甲10発明2では,

帯電微粒子の液滴が,そのようなものであるか明らかでない点」

前記 ⑤の結論を導くに当たり,審決が認定した甲11発明1及び2の内

容,甲11発明1と本件訂正特許発明1及び甲11発明2と本件訂正特許

明3との一致点及び相違点は以下のとおりである

ア 甲11発明1及び2の内容

甲11発明

空気中で水を静電霧化して,0.001μm(1nm)程度の大きさ

である,小イオンを生成し,集塵する方法であって,前記小イオンは,

室内に供給され,さらに,前記小イオンは,水の分子に極小イオンが結

合して水分子クラスターを核としている,小イオンによる集塵方法

甲11発明

放電電極を兼ねる水管の先端から滴下する水滴がコロナ放電により微

細な水滴となって霧散する高電圧を印加する高圧電源とを備え,該高電

圧の印加によって,空気中で水を静電霧化して,0.001μm(1n

m)程度の大きさである,集塵するための小イオンを生成し,前記小イ

オンは室内に供給される装置

イ 本件訂正特許発明1と甲11発明1について

一致点

大気中で水を静電霧化して,帯電微粒子水を生成し,室内の空気を清

浄化する帯電微粒子水による方法であって,前記帯電微粒子水は,室内

放出される方法

相違点

9

a 相違点11a

「本件訂正特許発明1は,帯電微粒子水の粒子径が3~50nmであ

るのに対して,甲11発明1は,小イオンの大きさが1nm程度であ

る点」

b 相違点11b

「本件訂正特許発明1は,帯電微粒子水を花粉抗原,黴,菌,ウイル

スのいずれかと反応させ,当該花粉抗原,黴,菌,ウイルスの何れか

を不活性化する不活性化方法であるのに対して,甲11発明1は,小

イオンによって集塵する方法である点」

c 相違点11c

「本件訂正特許発明1では,帯電微粒子水は,ヒドロキシラジカル,

スーパーオキサイド,一酸化窒素ラジカル,酸素ラジカルのうちのい

ずれか1つ以上のラジカルを含んでいるのに対して,甲11発明1で

は,小イオンがそのようなラジカルを含んでいるか不明である点」

ウ 本件訂正特許発明3と甲11発明2について

一致点

「霧化部に位置する水が静電霧化を起こす高電圧を印加する電圧印加部

を備え,当該電圧印加部の高電圧の印加によって,大気中で水を静電霧

化して空気清浄化するための帯電微粒子水を生成し,前記帯電微粒子

水は,室内に放出される装置

相違点

a 相違点11d

「本件訂正特許発明3では,帯電微粒子水の粒子径が,3~50nm

であるのに対して,甲11発明2では,小イオンの大きさが1nm程

である点」

b 相違点11e

10

「本件訂正特許発明3では,帯電微粒子水が,花粉抗原,黴,菌,ウ

イルスのいずれかと反応させ,当該花粉抗原,黴,菌,ウイルスの何

れかを不活性化するためのものであるのに対して,甲11発明2は,

イオンが集塵するためのものである点」

c 相違点11f

「本件訂正特許発明3では,帯電微粒子水が,ヒドロキシラジカル,

スーパーオキサイド,一酸化窒素ラジカル,酸素ラジカルのうちのい

ずれか1つ以上のラジカルを含んでいるのに対して,甲11発明2で

は,小イオンがそのようなラジカルを含んでいるか不明である点」

第3 原告主張の取消事由

以下のとおり,審決には,粒子径に関する明確性要件判断の誤り(取消事

由1),粒子径に関するサポート要件判断の誤り(取消事由2),静電霧化手

段に関するサポート要件及び実施可能要件判断の誤り(取消事由3),甲1

0を主引例とする進歩性の判断の誤り(取消事由4)及び甲11を主引例とす

進歩性の判断の誤り(取消事由5)があり,これらの誤りは審決の結論に影

響を及ぼすものであるから,審決は取り消されるべきである

1 取消事由1(粒子径に関する明確性要件判断の誤り)

審決は,本件訂正特許発明における「粒子径が3~50nm」とは,凝集

していない個々の粒子のほぼ全てが粒子径3~50nmの範囲分布してい

ることを意味することが明確である判断した。

しかし,審決は,甲10において静電霧化により生成する液滴の粒径分布

が非常に狭く単分散性が高いことを前提としているが,本件特許特許請求

範囲には,粒子のほぼ全てが上記範囲内にあるか否かは何ら記載されてい

ない。

そして,「粒子径が3~50nm」と幅をもって表現された場合に,その

上限,下限の値が,平均粒子径の幅を示しているのか,D50(頻度の累積

11

が50%になる粒子径〔メジアン径〕)の幅を示しているのか,ピーク値

(最大ピークとなる最頻出値)の幅を示しているのか,様々な解釈があり得

るところ,本件特許明細書には,どのような幅を示しているのかの説明はさ

れておらず,本件特許明細書の記載を参酌しても,上記の幅は不明である

現に,本件特許明細書の記載を参酌した場合,粒子径の範囲解釈につい

ては,その記載箇所に応じて,ピーク値の幅と解釈したり(【0024】,粒

子のほぼ全てが範囲内にあると解釈したり(【0038】)する余地があり,

特許請求の範囲画一的に把握することができない。

そうすると,「粒子径が3~50nm」との記載については,本件特許

細書の記載を参酌しても,複数意味解釈される余地があるから,本件特

許の特許請求の範囲は明確とはいえない。

よって,審決の前記判断は誤りである

2 取消事由2(粒子径に関するサポート要件判断の誤り)

審決は,本件特許明細書【0013】,【0024】及び【0052】の記

載等から,帯電微粒子水の粒子径の上限は,粒子の空間内への拡散性や人の

肌への浸透性の観点から100nmが好ましく,抗原の不活性化の作用や空

気中の湿度に影響を与えないという観点から,50nmが好ましいこと,ま

た,粒子径の下限は,粒子の寿命と抗原の不活性化の作用の観点から3nm

が好ましいことが把握されるから,本件特許明細書に実施例として示された

ものが,20nm付近をピークとして,10~30nmに分布を持つ帯電微

粒子水のみであったとしても,粒子のほぼ全てが粒子径10~30nmの範

囲に分布している帯電微粒子水であれば,室内への拡散性が良いことや,長

寿命であること,抗原の不活性化の作用を奏しつつ,空気中の湿度調整に影

響を与えない等の作用効果を奏することは,当業者が明細書及び図面の記載

に基づいて理解できる事項である,と認定判断した。

しかし,審決の判断

12

上記判断は誤りである

そして,「粒子径が3~50nm」の意味はピーク値の幅と解釈する余地

が十分にあり,そのように解釈した場合,本件特許明細書には3~50nm

のうちの20nm付近の粒子径についてしか長寿命化と不活性化効果が示さ

れていないのであるから(【0042】,【0045】~【0048】),かか

実施例を本件訂正特許発明の全体まで拡張ないし一般化することはできな

い。

「粒子径が3~50

nm」との数値は,本件訂正特許発明課題を解決する作用効果に直結する

重要な数値であるところ,本件特許明細書の実施例には,粒子径3~10n

m未満の部分と粒子径30nm~50nmの部分のいずれについても,長寿

命化という効果裏付けデータの記載はない。また,3nm及び50nm

をそれぞれ下限値及び上限値とする不活性化効果については記載されている

ものの,それを裏付けデータも記載されていないし,帯電微粒子水の長寿

命化についても記載されていない。

したがって,本件特許明細書の具体的な実施例をもって,「粒子径が3~

50nm」の全体についてまで長寿命化と不活性化の各効果存在するもの

理解することはできない。

よって,審決の前記判断は誤りである

被告は,粒子径3~50nmという数値限定につき,帯電微粒子水の粒子

径を本件発明課題目的に沿って最適化したものであって,当該上限,下限

値が課題目的を達成し,顕著な作用効果を奏する臨界的意義を有する数値と

いうわけでないから,具体的な測定結果をもって裏付けられている必要はな

い旨主張する。

しかし,本件訂正特許発明の出願時の技術常識に照らすと,本件訂正特許

発明の特徴的な部分は,静電霧化で発生させて殺菌等に用いるラジカルとし

13

て,粒子径が3~50nmの帯電微粒子水に含まれたラジカルを用いる点に

あり,かつ,上記粒子径は,長寿命化と不活性化の双方の技術課題達成の

ために不可欠な特徴であるから,粒子径3~50nmの数値限定は,単に望

ましい数値 Permalink | 記事への反応(0) | 14:35

2014-10-07

Nobel Prize for Physiology or Medicine 2014

Physics の青色ダイオード中村・赤崎・天野の受賞や私戦予備陰謀疑いのほうがさわがしいかもしれませんが,ノーベル生理学・医学賞に関して.

John O' Keefe, May-Britt Moser, Edvard Moser の三名が 2014 年のノーベル生理学・医学賞を受賞した.受賞理由は脳の位置定位系を構成する細胞発見に対してである.“for their discoveries of cells that constitute a positioning system in the brain”. 視覚聴覚,触覚で得た物理的な環境のあるいは自己の位置に関する情報脳内でどのように処理されているだろうか.力学的に考えると,質点と空間座標と時間の成分がありそうなものであるマウス生体での神経科学的な実験で,位置特異的に神経の活動活動電位の頻度)が上昇する細胞海馬でみつかった.最近の in vivo実験で place cell特性や grid cell特性視覚系・運動系との place cell 回路の連絡等がさらに解明され始めている.少し古い神経生理学に関連する著名な科学者では,James GibsonDavid Marr が有名かもしれない.聴覚系での位相から音源位置推定視覚系での網膜および外側膝状体 LGN,一次視覚野,高次視覚野の回路等感覚認知神経科学はよく調べられてきたが,受賞対象の位置定位系は脳内感覚運動統合する上で重要な具体的な情報表現情報処理にせまった分野になっている.

ごくごく戯画化した,脳の作動機構は,神経細胞は他の細胞と同様に細胞膜をもちその内外のイオン組成ポンプチャネルとよばれる細胞膜タンパク質で糖を燃焼してえたエネルギーを元に維持する.神経細胞が同士が突起を多数のばし接触点を多数つくりそこで,膜のイオン電位差をより正にする化学分子放出したり,より負にする化学分子放出したりする.電位差が十分小さくなると多くの神経細胞では電位依存的なナトリウムイオンチャネルが活発に作動し突起を一次元的に減衰せずに伝わっていく活動電位をおこす.多くの神経系での通信と計算実体は,この化学伝達と電気伝導の組合せで,静的な記憶細胞の結合(シナプス synapses)が構成する回路に,シナプス化学伝達特性や回路水準の論理演算やより高度な情報処理の結果であると作業仮説がたっており,具体的な情報処理の神経回路の機構を解明することは重要である

位置定位系の回路を構成する要素の place cell は,脳の大脳海馬とよばれる短期記憶や長期記憶化に重要な部位にあるアンモン角 (Cornu Ammonis)の錐体(神経)細胞 pyramidal neuronである特定場所活動が上昇することが証明されている.脳内空間情報処理で他の細胞とともにどのような回路をなしているか調べるには,place cell への入力と出力,place cell 間の直接的な結合をさらに調べることになる.O'Keefe, Moser 以後も熱心に研究されている神経科学重要問題である海馬に出力する嗅内皮質 entorhinal cortex の格子細胞 grid cell環境スケールに応じた格子を表現するようなユークリッド空間中の格子のような役割を担う細胞),各所の頭方位細胞 head direction cell時間細胞 time cell発見されている.物理学的な情報表現計算必要な神経回路の構成要素がわかりその作動機構がわかってきそうな気がしてくる.21 世紀は,人体生理学のおそらく最大で最後問題である脳の作動機構の同定にかなりせまってきており,先のことはよくわからないが脳のことは今世紀中にはだいたいのことがわかり,計算機もっとよい知能が実装できそうな勢いである.

ノーベル賞は「物理学化学医学生理学文学平和経済(ただし経済分野はスウェーデン国立銀行賞)」の分野で重要な業績を残した個人に贈られる.Physiology or Medicine の分野ではカロリンスカ研究所選考にあたる.ノーベル賞は,ダイナマイトの開発生産ノーベルが残した遺産基金としはじまった.現代では,数学Fields Medal や計算機の Turing Award とならびたつような権威ある賞として,世界中科学の営みに参加する人々・興味ある人々が注目する伝統儀式を続けるお祭りになっている.医学生理学の分野では生理学的に重要機構の解明や臨床応用で人類医学的な福利向上につながる発見などにおくられる.なかなか毎年趣味がよいとおもわれる.繰り返しであるが,選考委員会が示した,今回の授賞は,脳での空間認識の回路で重要な働きをする place cell 場所細胞発見理由である

匿名ダイアリーにこんな言い訳不要かと思うのだけれど,ノーベル賞委員会公式アナウンスメントとFundamental Neuroscience か Principles of Neural Science や関連論文日本語教科書・一般書等を読めばよい.高校生物に毛が生えた教養程度の神経科学の知識しかない劣等の学部生ながら,今回受賞の対象になった O’ Keefe と Moser 夫妻の神経系における自己位置の表現の神経回路の重要細胞というテーマに興味があるので駄文を書いた.

脳科学辞典 場所細胞 http://bsd.neuroinf.jp/wiki/%E5%A0%B4%E6%89%80%E7%B4%B0%E8%83%9E

脳科学辞典 海馬 http://bsd.neuroinf.jp/wiki/%E6%B5%B7%E9%A6%AC

 
ログイン ユーザー登録
ようこそ ゲスト さん