「複素解析」を含む日記 RSS

はてなキーワード: 複素解析とは

2020-06-29

IUT理論宇宙タイミューラー理論ブームに沸く人たち

まず断っておくと、この投稿には望月教授およびその関係者貶める意図は全くない。また、「IUT理論が間違っている」と言っているわけでもない。この投稿の主旨は「IUT理論ブーム」の現象本質を明らかにすることである

ブームの異常性

まずIUT理論は決して数学特に整数論、数論幾何)の主要なブランチではない。「論文を読もう」というレベルの関心がある数学者でさえ全世界に数十人しかおらず、自称理解している」のは望月氏とその一派だけ、そして理解した上でさら理論を発展させようとしている研究者は恐らく数人しかいない。

もちろん、これは数学研究分野として珍しいことではないし、研究者の数が少ないと研究の「格」が下がるなどということもない。しかし、abc予想解決したというインパクトに比べれば、これはあまりにも小規模な影響でしかない。そういうものに、一般人も含めて熱狂しているのは、異常と言える。

繰り返しになるが、これはIUT理論のもの、および望月氏とその関係者貶める意図はない。

内容を理解せずに、単語に反応する人たち

数学科の学部生や、数学の非専門家で「IUT理論勉強したい」などと言っている人も多い。それは大いに結構なことである。どんどんチャレンジすればいいと思う。

しかし、専門的な数学を学ぶ際には、たとえば「可換代数複素解析が好きなので代数幾何研究したい」とか「関数解析が好きなので偏微分方程式作用素環論研究したい」というように、既存知識経験を手がかりにして専攻を決めるものではないだろうか。IUT理論に興味がある非専門家には、そういう具体的な動機があるのか。単に「話題キーワード」に反応しているだけじゃないのか。

IUT理論の具体的な内容に関心を持つには、望月氏の過去の一連の研究に通じている必要がある。そうでない人がIUT理論の「解説」などを読んでも、得られる情報

だけだろう。これに意味があるだろうか。そのような理解で「何か」が腑に落ちたとしても、それはその人にも、数学界にも何ら好影響を与えないだろう。

IUT理論よりも他に知るべきことがあるんじゃないか

こんなことを言うと、「専門的な数学を学ぶには、その前提となる知識を完全に知っていなければいけないのか」と思われるかも知れないが、もちろんそんなことはない。時には思い切りも必要である

しかし、望月氏本人が述べているように、IUT理論既存数学知識類推理解できる数学者は、自身を除いてこの世にいない。これは数論幾何専門家を含めての話である。数論幾何専門家は、一般人から見れば雲の上の存在である。そういう人たちでもゼロから勉強し直さなければ読めないのである一般人がIUT理論の分かりやす解説を求めるのは、1桁の数の足し算が分からない幼稚園児が微分積分の分かりやす解説を求めるのの1000倍くらいのギャップがあると言っても誇張ではない。要するに、難しすぎるのである

一方、数学界には既存数学伝統を多く汲んでいて、最新の数学にも大きな影響を及ぼしているような理論は数多くある。それらは、学部4年生や大学院生セミナーで扱われたり、全学部向けの開講科目で解説されたりしている。数学を知りたい、または普及させたいと思うならば、そういうものを扱う方が適切ではないだろうか。

「IUT理論ブーム」が示すもの

「IUT理論ブーム」が示すのは要するに、ほとんどの人間はある事実説明した文章なり理論なりの本質的な内容に興味がない、ということだ。

彼らは、書いてある事実関係を論理的に読み解くよりも、抽象的な内容を脳内自由解釈することを好む。むしろ理解できないからこそ、何か高尚なことが書いてあると思って有難がったり、満足感を得たりする。

この構造疑似科学新興宗教と同じなのである(IUT理論疑似科学だと言っているのではない)。彼らはあくまでも自分の中で腑に落ちる雑学知識を求めているだけであって、数学理解したいわけではない。そして、こういう人向けに数学科学知識を「布教」しても、社会への貢献にはならないと思う。

2018-09-02

anond:20180902103608

整数論専門院卒、非数学者です。

まずは

1. ガロア理論

2. 楕円曲線

の二つについて理解することを目標にされるといいと思います

この二つは19世紀以前の数学最高峰であり、また現代数学の多くの分野に関連することから、IUTを目標としない人でも学ぶ価値のある理論だと思います

またIUTでは楕円曲線ガロア理論を用いて数の加法乗法構造を調べるというようなことをしています

以下では、上の二点についてもう少し詳しく説明してみます

1. ガロア理論

ガロア理論方程式を解くということを群という対称性を用いて理解するものです。これを用いて5次方程式の解の公式の有無や作図問題などの古典的問題解決されました。これを理解するためには代数学特に群や体について基本的な事を学ぶ必要があります

さら整数論に関わるものとして、p進体などを学んだ上で類体論勉強なさるのがよいと思います。p進体では(普通対数関数と同じように)log定義することができ、これはIUTでも重要役割を果たします。類体論特別場合として円分体のガロア理論理解すると、例えばガウスなんかの整数論の話もより深く理解できると思います

2. 楕円曲線

楕円曲線は楕円関数論をある種代数的に扱うようなものです。楕円関数というのは、三次式の平方根積分でこの積分を表すために導入された関数です。19世紀数学でかなり研究されたものですが、これについては複素解析という複素数平面上で微積分をするということについて理解する必要があります

さらにその後の発展として、リーマン面や基本群、ホモロジーといった概念が考えられました。基本群やホモロジーというのはトポロジーという分野で研究されているものですが、数論幾何でも重要役割を果たします。

上の二つの話は独立したものではなく、相互に関連しあうものです。例えば、基本群とガロア群はある意味では同じものだと観ることができます。このような視点を持って整数研究をするのが数論幾何という分野です。

まとめると、まずはガロア理論目標として代数基本的なこと、楕円関数目標にして複素解析を学ぶのが良いと思います

これは同時並行に進めることをお勧めします。

上に書いたようなことは数論幾何を専門にするなら学部生ぐらいで知っている話です。これらを踏まえてIUTにより近い専門的な内容を学んでいくのが良いでしょう。私もその辺りについて詳しいことは言えないのですが、例えば京都大学の星先生の書かれたIUTのサーベイをご覧になってみるのが良いのではないでしょうか。

数学に詳しい人に聞きたい [追記あり]

宇宙際タイヒミュラー理論(IUTeich)を理解したいんだけど、どこから手を付けてよいのかさっぱりわからんのです。

自分工学系の修士卒。学生の頃、数学あんまり得意じゃなかったです。

なんでIUTeich理解したいと思ったかっていうと、ABC予想の話を読んで興味を持ったからです。

ただ数学科卒でもない自分にはどの分野からどうやって勉強したら良いのか見当もつかないのです。

最終目標はIUTeichの理解、サブ目標ABC予想証明理解ですが、お手軽にできるとは全く思っていません。

何年も勉強必要なのは覚悟しています。IUTeichに向かう道中で数学世界の奥行とか広がりを経験したいなと思っています

から手を付けたらよいのか、教えてエロい人。



[201809030125 追記]

わー、たくさんの反応ありがとうございます

まさかこんなにコメントもらえるとは。頂いたブコメトラバは全部読んでます。ありがてえ、ありがてえ。

自分現在数学知識ですが、工学部の初歩的な数学しか知りません。

解析学線形代数複素解析確率統計微分方程式くらいです。

あとは物理系、機械系、電機系、情報系のカリキュラムをほどほどに勉強しました。(大学院の専攻は情報系です。)

一応サーベイは読んだんですよ、それで「やべえ、全然からねえ……」状態になって増田投稿したのです。

私がIUTeichを完全に理解できるなんて思っていませんが、科学女王である数学世界を深く知りたいなと思っていますし、

それなりの勉強もするつもりでいます

私が当初思っていたよりもずっと長い道のりみたいなので、暫定目標として5年後までにIUTeichの論旨くらいは理解できるようになっていたいです。(これでもハードルいかな?)

京大数理解析研究所に入るのは素敵なアイデアですが、いろいろな現実の壁があり難しいですね。ただ、アカデミアの世界はいつか戻りたいと思っています。)

言葉足らずな文章に丁寧な返答をくださった方々には感謝しかありません。

特に以下のお三方にはスペシャルサンクスとして私のハグを送ります。(私をガッキー似のJKだと思ってください。)

https://anond.hatelabo.jp/20180902154717

https://anond.hatelabo.jp/20180902175737

https://anond.hatelabo.jp/20180902232707

たぶん、そのうち進捗を増田投稿するかもしれません。

見かけたら生暖かい目で見守ってやってください。

ここまで読んでいただきありがとうございました。

2011-02-09

http://anond.hatelabo.jp/20110209161026

頑張って!

複素解析リーマン面に関しては無限を取り扱うから無限基数の位相と集合もやるといいよ!

あと微分方程式や数値解析にも手を伸ばしておくといいかもね。

このパターンは僕の場合からそこは人それぞれかもしれないけどw

2009-07-02

勉強ができることは頭の良さとは無関係」というのは偉人への冒涜

勉強ができることは頭の良さとは関係ない」という主張をよく見かける。この系統の主張を見るにつけ不愉快に感じる。それはその手の主張が過去偉人の業績を否定しているからだ。勉強とは知識を吸収し、自分のものとすることである。知識とは現在正しいと認められている過去偉人たちの思考の結果である。その知識を学び吸収するということは、過去偉人と同じ水準の認識レベル・思考レベルになることと同じである。従って勉強ができることは頭の良さと関係があるのである。「頭の良さというのは何か新しいことを考え出す力だ」という反論があるかもしれない。確かにそれは一理ある。私も『頭の良さ』は『知識』と『新しいことを考え出せる力』で構成されると思っている。『頭の良さ』の定義論争にはいると終わりはないので、私の『頭の良さ』の定義についてはおいておき、ここでは仮に『頭の良さ』を『何か新しいことを考え出す力』としておこう。そう定義したとしても、勉強ができることと頭の良さには関係がある。現代では学問の水準が高くなり、知識なしにたいしたことは新たに考え出せないからだ。例えばなんの知識なしに微分積分法、複素解析フーリエ変換などを考え出せるひとがいるだろうか?よくあるジョーク貧乏学校に通えない子供自分連立方程式を考え出すというものがある。連立方程式程度ならともかくも、現在最低限必要とされる微分積分フーリエ変換などはいくら天才でも知識なしには一生かかっても考え出せないだろう。まして「なにかあたらしいことを考え出す」ことなどできないだろう。現在では過去偉人たちの積み重ねによって学問の水準が高くなったために、『何か新しいことを考え出す』ために『知識』が必要不可欠なのだ。それにもかかわらず、勉強すなわち知識を得ることと頭の良さを無関係とするのは過去偉人の業績を否定することに等しい。「勉強ができることは頭の良さとは関係ない」というのは「オイラーニュートンアインシュタインが考え出せたことは、誰でも予備知識なしに考え出せる」といっているに他ならない。

2008-10-31

http://anond.hatelabo.jp/20081031133552

し,信号処理情報伝送に関してはすっげー必要な知識だぞ?

あと学問という話では?暗号理論学問としてやるのなら数学は必須だろう。

あと情報科学でやってるのは情報伝送(情報理論符号理論)だけでなく,離散数学言語情報解析,数値解析,情報セキュリティ,数値シュミレーションアルゴリズム人工知能情報解析,計算機言語ビジュアル系,離散数学生命情報データベース金融工学など多種多様なので一概には語れない。

画像認識の分野しかあんまよくわかってないが少なくともこの分野では,相関法,オプティカルフロー,エッジ検出,特徴点抽出正弦パラメータ推定,逆問題などがあるので微積確率統計応用解析信号処理は最低限必須。使える程度に数値解析などはわかる。データベース言語解析の人たちだとマッピングなどがあるので幾何数学は必須。数値解析とかやる人たちは凸解析法とか真剣に考えてるよね。

学部のころはとりあえず代数幾何解析確率統計情報理論信号処理制御論コンピューターアーキテクチャあたりは一通りやったよ。複素解析とかめんどくさかったなぁ。ルベーグ積分とか面白いよね。

あともっと詳しく知りたいなら情報工学なり情報科学,もしくは数理情報あたりでググってみればわかるんじゃないかね。

数値解析を使ってる人たちは地球系とか機械系かもだが,その理論を作ってるのは情報系だぞ。

 
ログイン ユーザー登録
ようこそ ゲスト さん