都市伝説によれば、かつてアインシュタインの古典的重力理論「一般相対性理論」を理解していたのは3人だけだったと言われている。
それが真実かどうかは別として、その3人のうちの1人がダフィッド・ヒルベルトである。彼は、今日の初学者でも一般相対性理論を理解できるように、それを数学で明確かつ正確(すなわち厳密)に形式化した。
古典的なアインシュタインの重力は、時空上の擬リーマン計量のモジュライ空間上のスカラー曲率密度汎関数の積分の臨界点の研究にすぎない。
物理学の基本的な理論は数学での基本的な定式化を持つべきだと信じたことで、ヒルベルトは本質的にアインシュタインを先取りすることができた。そのため、この汎関数は現在、アインシュタイン・ヒルベルト作用汎関数と呼ばれている。
ヒルベルトは、1900年の有名なヒルベルトの問題の一環として、この一般的なアイデアを以前から提唱していた。ここでヒルベルトの第6問題は、物理学の理論の公理を見つけることを数学者に求めている。
それ以来、そのような公理化のリストが見つかっている。例えば、
物理学 | 数学 |
力学 | シンプレクティック幾何学 |
重力 | リーマン幾何学 |
ゲージ理論 | チェルン・ヴェイユ理論 |
量子力学 | 作用素代数 |
トポロジカル局所量子場理論 | モノイダル(∞,n)-カテゴリ理論 |
このリストには注目すべき2つの側面がある。一方で、数学の最高の成果が含まれており、他方で、項目が無関係で断片的に見えることだ。
学生時代、ウィリアム・ローヴィアは「合理的熱力学」と呼ばれる熱力学の公理化の提案に触れた。彼は、そのような連続体物理学の基本的な基盤は、まず微分幾何学自体の良い基盤を必要とすることに気づいた。彼の生涯の出版記録を見てみると、彼が次の壮大な計画を追求していたことがわかる。
ローヴィアは、最初の2つの項目(圏論的論理、初等トポス理論、代数理論、SDG)への画期的な貢献で有名になった。なぜか、このすべての動機である3番目の項目は広く認識されていないが、ローヴィアはこの3番目の点を継続的に強調していた。
この計画は壮大だが、現代の基準では各項目において不十分である。
現代数学は自然にトポス理論/型理論ではなく、高次トポス理論/ホモトピー型理論に基づいている。
現代の幾何学は「変数集合」(層)だけでなく、「変数ホモトピー型」、「幾何学的ホモトピー型」、「高次スタック」に関する高次幾何学である。
現代物理学は古典的連続体物理学を超えている。高エネルギー(小さな距離)では、古典物理学は量子物理学、特に量子場理論によって精緻化される。