はてなキーワード: デコヒーレンスとは
この問題は量子力学の情報論的解釈とエントロピーの動きもんを扱うんや。
ここでは、量子ベイズっちゅうもんを使うて、「主体(見る奴)」「対象(見られる奴)」「環境」の3つがおる場合に、対象が環境や主体とからんだ時のエントロピーの変化について話すで。
対象が環境とからむと、対象の量子状態が環境とモツレて、キレイな状態からグチャグチャな状態になんねん。これで、対象のエントロピーが増えるんや。
主体が対象を見ると、主体から見た対象の状態がハッキリするんや。これは対象のことをよう知ったってことやから、エントロピーが減るってわけや。
観測で対象の状態に対する主体の考えが変わんねん。この考えの変わり方はベイズ則っちゅうもんに従うて、確率的な情報の変化を表すんや。
ほんじゃ、この2つの過程がエントロピーにどう影響するか、数式で説明したるで。
ρ_obj' = Tr_env [ U (ρ_obj ⊗ ρ_env) U† ]
量子エントロピーはフォン・ノイマンエントロピー S(ρ) = -Tr(ρ log ρ) で表すんや。
デコヒーレンスで対象はキレイな状態からグチャグチャな状態になって、エントロピーが増えんねん:
S(ρ_obj') > S(ρ_obj)
環境とのからみ合いが進むと、対象の状態は環境の情報を失うて、一番グチャグチャな状態に近づくんや。
主体が対象を見ると、波動関数が縮むから対象の状態がハッキリして、エントロピーが減んねん:
S(ρ_obj^posterior) < S(ρ_obj^prior)
主体が観測で対象のことを知る過程は、量子ベイズ則に従うんや。
量子ベイズの考え方に従うと、観測後の考え(後分布)は観測前の考え(事前分布)を観測結果で更新すんねん。観測前後のエントロピーの差はこう説明できんねん。
H_prior = -∑_i P(i) log P(i)
P(i|O) = P(O|i)P(i) / ∑_j P(O|j)P(j)
H_posterior = -∑_i P(i|O) log P(i|O)
H_posterior < H_prior
が成り立つんや。
この不等式はエントロピーが減ることを示して、観測が情報を得て対象の状態をハッキリさせる効果があるってことやで。
量子ベイズの考え方で以下のことがわかったんや:
1. 対象が環境とからむとデコヒーレンスが起こって、対象のエントロピーが増えんねん。
2. 主体が対象を見ると対象の状態の情報が得られて、エントロピーが減んねん。
つまり、デコヒーレンスと観測はそれぞれエントロピーを増やしたり減らしたりするんや。これが量子ベイズの形式で数字でちゃんと説明できるってわけやで!
なるほど、非常に鋭い指摘をありがとうございます!ここで出てきたデコヒーレンスや純粋状態から混合状態へという概念を基に、あなたの意図している点を深掘りしてみます。
まず、エントロピーと観測、情報の確定に関する議論を整理すると、確かにあなたが言う通り、観測によって「情報が確定する」と、その状態に関するエントロピーは減少します。量子力学におけるNo Deleting Theoremや、情報理論における情報の不消失原理(情報は消去できない、保存される)という枠組みでは、情報自体は消失しないという原則に従っています。このため、情報の消失がエントロピー増加を引き起こすという直感は正しくなく、実際には情報の確定や観測がエントロピーの減少につながる場合が多いです。
次に、あなたが指摘したように、エントロピー増加といえば、やはりデコヒーレンスの概念が非常に重要です。デコヒーレンスは、量子システムが周囲の環境と相互作用することで、純粋状態から混合状態へと遷移する過程を指します。この過程がエントロピー増加を引き起こす理由は、以下の点にあります:
純粋状態は、システムが特定の状態にある場合であり、このときシステムのエントロピーは最小です。ところが、システムが環境と相互作用し、情報が「環境に漏れ出す」ことによって、システムはその相互作用の結果として「混合状態」に遷移します。混合状態では、システムの状態が確定しておらず、多くの可能性が存在するため、エントロピーは増加します。つまり、システムと環境の相互作用がエントロピーを増加させる主要なメカニズムです。
デコヒーレンスの過程では、システムが環境に情報を「渡す」ことによって、その状態の確定性が失われ、システムは多くの可能性を持つようになります。この過程で、システムの情報は「環境に組み込まれた」形になりますが、環境の状態はシステムから「取り出す」ことが非常に難しくなります。これが、情報が消失したわけではないのに、エントロピーが増加したように見える理由です。
あなたが言う通り、No Hiding Theoremは、混合状態においても情報が完全に失われることはないと述べています。実際、システムが混合状態に遷移しても、環境との相互作用の痕跡を利用すれば、理論的には元の純粋状態に戻すことが可能です。この情報の復元が可能である限り、情報は消失していないわけです。
しかし、この復元には非常に高い計算コストがかかり、環境との相互作用の影響が大きい場合には実際にはほぼ不可能であるため、情報が「隠される」という形になります。このプロセスがエントロピーの増加に寄与します。言い換えれば、システムが混合状態に向かう過程は、情報の確定的な減少、すなわちエントロピーの増加を意味します。
熱力学の第二法則が成り立つ理由は、このデコヒーレンスの性質にあります。観測可能なスケールで、システムと環境の間で膨大な情報のやり取りが行われるため、最終的にシステムの状態は非常に多くの選択肢を持つ「混合状態」に至り、結果としてエントロピーが増加します。最初は純粋状態で始まったシステムも、環境との相互作用により、最終的にはその状態の確定性が失われ、エントロピーが増加します。
この過程は、単に「情報が消失する」わけではなく、情報が環境に埋め込まれ、取り出すことが難しくなるために、エントロピーが増加するという形で現れます。この現象は、熱力学の第二法則と一致します。熱力学的には、エントロピーは孤立したシステムの中で増大し、最終的に「熱的平衡」に至ることが示されていますが、これもまたシステムと環境の間での情報の交換や相互作用に起因しています。
観測によって情報が確定することでエントロピーが一時的に減少することは確かですが、システムが環境と相互作用し、純粋状態から混合状態へと移行する過程では、エントロピーは増加します。この過程での情報の「隠蔽」や「取り出しにくさ」が、熱力学的なエントロピー増加を引き起こし、最終的に熱力学の第二法則が適用されます。
したがって、No Deleting TheoremやNo Hiding Theoremが示すように、情報自体は消失しませんが、デコヒーレンスと環境との相互作用により、システムのエントロピーは増加し、最終的には熱力学的に安定した状態に至ります。
まず、システム全体を含む複合系を考える。観測対象系、環境系、および観測者(意識)を含むヒルベルト空間 ℋ を次のように定義する。
ℋ = ℋ_S ⊗ ℋ_E ⊗ ℋ_O
系の状態は密度演算子 ρ により記述され、全体の状態空間 ℋ 上の密度行列として表される。
エントロピーはフォン・ノイマンエントロピーを用いて定義する。
S(ρ) = -Tr(ρ log ρ)
観測操作を完全に正定な(completely positive)トレース保存(trace-preserving)マップ ℳ として定義する。観測後の状態 ρ' = ℳ(ρ) において、エントロピーが減少することを条件1として反映する。
S(ρ') < S(ρ)
デコヒーレンス操作を完全に正定なトレース保存マップ 𝒟 として定義する。デコヒーレンス後の状態 ρ'' = 𝒟(ρ) において、エントロピーが増大することを条件2として反映する。
S(ρ'') > S(ρ)
ヒルベルト空間 ℋ を無限に分岐するブランチに分割する。各ブランチは観測結果に対応し、以下のように直交する部分空間に分解される。
ℋ_O = ⊕_(i ∈ I) ℋ_(O,i)
ここで、I は無限集合を表す。全体の状態は各ブランチに対応する部分空間に分解され、次の形で表される。
ρ = ∑_(i ∈ I) p_i ρ_(S,i) ⊗ ρ_(E,i) ⊗ ρ_(O,i)
観測者の知識 K はヒルベルト空間 ℋ_O 上の状態として表され、重ね合わせの状態にある。
|Ψ_O⟩ = ∑_(i ∈ I) c_i |i⟩
ここで、|i⟩ は各ブランチに対応する基底状態、c_i は複素係数である。
観測操作 ℳ により、観測者の知識が特定のブランチ j へ移行することを条件3および条件4として反映する。これを数学的に表現するために、観測操作 ℳ は次のような射影を含む。
ℳ(ρ) = ∑_(j ∈ I) P_j ρ P_j
ここで、P_j はブランチ j に対応する射影演算子である。この操作により、観測者は特定のブランチ j を「選択」し、そのブランチに対応する知識状態 |j⟩ を持つことになる。
ブランチの集合 I が無限であることにより、分岐の方向が無数に存在することを条件5として反映する。
観測者の知識 |Ψ_O⟩ が全てのブランチに対して重ね合わせの状態にあることを条件6として反映する。つまり、観測者は観測前に全てのブランチの可能性を持っており、観測後に特定のブランチに「意識が移行」する。
観測操作 ℳ とデコヒーレンス操作 𝒟 を統合し、全体のダイナミクスを次のように定式化する。
ρ → 𝒟 → ρ'' → ℳ → ρ'
ここで、
以上を総合すると、観測問題の数学的定式化は以下のようになる。
1. 系の状態: 密度演算子 ρ がヒルベルト空間 ℋ = ℋ_S ⊗ ℋ_E ⊗ ℋ_O 上に存在する。
2. エントロピー: フォン・ノイマンエントロピー S(ρ) = -Tr(ρ log ρ) を用いる。
3. デコヒーレンス操作: 完全に正定なトレース保存マップ 𝒟 により、エントロピーが増大 S(𝒟(ρ)) > S(ρ)。
4. 観測操作: 完全に正定なトレース保存マップ ℳ により、エントロピーが減少 S(ℳ(ρ)) < S(ρ)。
5. ブランチ構造: 観測者のヒルベルト空間 ℋ_O を無限個の直交部分空間に分割 ℋ_O = ⊕_(i ∈ I) ℋ_(O,i)。
6. 観測者の知識: 観測者の知識状態 |Ψ_O⟩ = ∑_(i ∈ I) c_i |i⟩ が重ね合わせにある。
7. 意識の移行: 観測操作 ℳ により、観測者の意識が特定のブランチ j に移行し、そのブランチに対応する知識状態 |j⟩ を持つ。
量子力学の観測問題を、高次圏論、導来代数幾何学、および量子位相場の理論を統合した枠組みで定式化する。
基礎構造として、(∞,n)-圏 C を導入し、その導来スタック Spec(C) を考える。観測過程を表現するために、Spec(C) 上の導来量子群スタック G を定義する。G の余代数構造を (Δ: O(G) → O(G) ⊗L O(G), ε: O(G) → O(Spec(C))) とする。ここで ⊗L は導来テンソル積を表す。
観測を ω: O(G) → O(Spec(C)) とし、観測後の状態を (id ⊗L ω) ∘ Δ: O(G) → O(G) で表す。エントロピーを高次von Neumannエントロピーの一般化として、S: RMap(O(G), O(G)) → Sp^n として定義する。ここで RMap は導来写像空間、Sp^n は n-fold loop space のスペクトラム対象である。観測によるエントロピー減少は S((id ⊗L ω) ∘ Δ) < S(id) で表現される。
デコヒーレンスを表す完全正(∞,n)-関手 D: RMap(O(G), O(G)) → RMap(O(G), O(G)) を導入し、S(D(f)) > S(f) for f ∈ RMap(O(G), O(G)) とする。
観測者の知識状態を表現するために、G-余加群スタック M を導入する。観測過程における知識状態の変化を (ω ⊗L id) ∘ ρ: M → M で表す。ここで ρ: M → O(G) ⊗L M は余作用である。
分岐を表現するために、O(G) の余イデアルの(∞,n)-族 {Ii}i∈I を導入する。各分岐に対応する射影を πi: O(G) → O(G)/LIi とする。観測者の知識による分岐の選択は、自然(∞,n)-変換 η: id → ∏i∈I ((O(G)/LIi) ⊗L -) として表現される。
知識状態の重ね合わせは、M の余積構造 δ: M → M ⊗L M を用いて表現される。
さらに、量子位相場の理論との統合のために、Lurie の圏化された量子場の理論の枠組みを採用する。n次元ボルディズム(∞,n)-圏 Bord_n に対し、量子場理論を表す対称モノイダル(∞,n)-関手 Z: Bord_n → C と定義する。
観測過程は、この関手の値域における状態の制限として記述される。具体的には、閉じたn-1次元多様体 Σ に対する状態 φ: Z(Σ) → O(Spec(C)) を考え、ボルディズム W: Σ → Σ' に対する制限 φ|W: Z(W) → O(Spec(C)) を観測過程として解釈する。
科学的実在論の中核的主張は、成熟した科学理論が記述する観測不可能な実体や過程が実在するというものだ。この立場の具体的な論拠を詳細に検討する。
Putnam と Boyd によって提唱された無奇跡論法は、科学の予測的成功を説明する最良の方法は、理論が真理に近いと考えることだと主張する。
1. ニュートン力学では説明できなかった水星軌道の異常を、アインシュタインの一般相対性理論が高精度で予測した。
2. この予測成功は、時空の曲率という観測不可能な概念の実在性を示唆する。
1. 過去の成功理論(フロギストン説、エーテル理論など)が誤りだったことを指摘。
2. 理論の経験的成功と真理性の相関関係に疑問を投げかける。
Worrall によって提唱された構造実在論は、理論の数学的構造のみが実在を反映すると主張する。
具体例:Maxwell の電磁気学からEinstein の特殊相対性理論への移行
1. エーテルという実体は否定されたが、Maxwell 方程式の数学的構造は保持された。
2. この構造の連続性が、より深い実在の反映だと解釈できる。
発展:Ontic Structural Realism (Ladyman, French)
1. 物理的対象を関係の束として捉え、実体概念を完全に放棄。
2. 量子力学における粒子の非個体性や、一般相対性理論における点事象の背景独立性と整合的。
量子力学の解釈は、客観的現実の存在に関する議論の核心だ。主要な解釈とその含意を詳細に検討する。
Bohr と Heisenberg によって提唱されたこの解釈は、測定問題を中心に据える。
1. 波動関数の確率的解釈:|ψ|^2 は粒子の位置の確率密度を表す。
2. 補完性原理:粒子性と波動性は相補的な性質であり、同時に観測できない。
問題点:
Everett によって提唱されたこの解釈は、波動関数の客観的実在性を主張する。
1. 分岐する宇宙:測定のたびに宇宙が分岐し、全ての可能な測定結果が実現する。
2. 相対状態の形式主義:観測者の状態も波動関数の一部として扱う。
利点:
問題点:
Zeh と Zurek らによって発展したデコヒーレンス理論は、量子から古典への移行を説明する。
1. 環境との相互作用により、量子的重ね合わせが急速に古典的な混合状態に移行。
2. 選択された基底(ポインター基底)のみが安定して観測される。
含意:
情報を基礎とする物理学の構築は、客観的現実の本質に新たな視点を提供する。
Susskind と Maldacena による ER=EPR 対応は、量子エンタングルメントと時空の構造を結びつける。
1. Einstein-Rosen ブリッジ(ワームホール)と Einstein-Podolsky-Rosen 対(量子もつれ)の等価性を示唆。
2. 量子情報と時空構造の深い関係を示唆し、量子重力理論への新たなアプローチを提供。
1. ブラックホール内部の時空の成長が、量子回路の計算複雑性の増大と対応。
2. 時空そのものが、より基本的な量子情報処理から創発する可能性を示唆。
客観的現実の存在問題は、現代物理学の最先端の問題と密接に結びついている。量子力学の基礎的解釈、構造実在論、情報理論的アプローチなど、様々な視点からの探求が進んでいるが、決定的な答えは得られていない。
今後の研究の方向性としては、量子重力理論の完成、意識と物理的実在の関係の解明、そして情報理論と物理学の更なる融合が重要になるだろう。これらの進展により、客観的現実の本質に関する我々の理解が大きく変わる可能性がある。
現時点では、客観的現実の存在を単純に肯定または否定するのではなく、我々の認識と独立した実在の可能性を探求しつつ、同時に観測者の役割や情報の本質的重要性を考慮に入れた、より洗練された存在論的枠組みの構築が必要だ。
Σₖ pₖ S(ρₖ) ≤ S(ρ)
S(ρ) ≤ S(ρ ◦ E)
ここで、S(ρ) は密度行列 ρ のエントロピー、pₖ はそれぞれの観測結果の確率、E はデコヒーレンスを表す行列である。
ρ → ρₖ = (Pₖ ρ Pₖ) / pₖ
pₖ = tr(Pₖ ρ)
ここで、Pₖ は完全直交射影演算子の集合であり、Σₖ Pₖ = I を満たす。また、エントロピーは一般に凹関数 h(x) を用いて次のように定義される:
S(ρ) = tr[h(ρ)]
⟨S⟩ = Σₖ pₖ S(ρₖ) = Σₖ pₖ tr[h(ρₖ)]
この期待値が初期状態のエントロピー S(ρ) よりも小さい、すなわち次の不等式が成り立つことを示す:
Σₖ pₖ S(ρₖ) ≤ S(ρ)
主要化とは、あるベクトル λ が別のベクトル μ を主要化する (λ ≺ μ) とき、次の不等式が成り立つことを意味する:
Σᵢ h(λᵢ) ≤ Σᵢ h(μᵢ)
ここで、λ(ρ) は密度行列 ρ の固有値のベクトルである。もし λ(ρₖ) ≺ λ(ρ) が成立するならば、観測後のエントロピー S(ρₖ) が元のエントロピー S(ρ) よりも小さいことが示される。
ρₖ = (Pₖ ρ Pₖ) / pₖ
pₖ = tr(Pₖ ρ)
Σₖ pₖ S(ρₖ) = Σₖ pₖ tr[h(ρₖ)]
3. 一方で、元のエントロピー S(ρ) は次のように表される:
S(ρ) = tr[h(ρ)]
4. ここで、主要化の結果を利用すると、次の不等式が成り立つ:
λ(ρₖ) ≺ λ(ρ)
5. この不等式に基づき、次のエントロピー不等式が得られる:
Σₖ pₖ S(ρₖ) ≤ S(ρ)
これにより、観測後のエントロピーが元のエントロピーよりも小さいことが証明された。
ρ → ρ ◦ E
ここで、E はデコヒーレンス行列で、その要素は Eᵢⱼ = ⟨εⱼ | εᵢ⟩ である。この操作はSchur積と呼ばれ、行列の対応する要素ごとに積を取る操作である。
デコヒーレンス後のエントロピーが増加することを次の不等式で示す:
S(ρ) ≤ S(ρ ◦ E)
この証明も、主要化の結果に基づいている。具体的には、次のように進める:
1. デコヒーレンス後の密度行列 ρ ◦ E の固有値ベクトル λ(ρ ◦ E) が、元の密度行列 ρ の固有値ベクトル λ(ρ) を主要化する:
λ(ρ ◦ E) ≺ λ(ρ)
2. 主要化に基づき、次のエントロピー不等式が成り立つ:
S(ρ) ≤ S(ρ ◦ E)
これにより、デコヒーレンスがエントロピーを増加させることが証明された。
Σₖ pₖ S(ρₖ) ≤ S(ρ) ≤ S(ρ ◦ E)
興味深い視点をお持ちですね。観測とエントロピーに関する議論は、物理学と哲学の交差点に位置する非常に深遠なテーマです。以下にその関係性を詳しく説明します。
観測が主観的であるという主張は、量子力学における観測問題と関連しています。量子力学では、観測者が観測を行うことで波動関数が収縮し、特定の状態に確定するとされています。これは、観測が物理的現実に影響を与えるという意味で、主観的な要素を含んでいると解釈されることがあります。
エントロピーは、熱力学的には系の無秩序さや情報の欠如を表します。観測がエントロピーに与える影響については以下のような観点があります:
1. 情報理論的視点:観測によって得られる情報は、観測者にとっての不確実性を減少させます。これは、観測がエントロピーを低下させるという意味で解釈できます。情報理論におけるエントロピーは、情報の欠如や不確実性を表すため、観測によって得られる情報が増えるとエントロピーが減少することになります。
2. 熱力学的視点:熱力学的なエントロピーは、系全体の無秩序さを表します。観測行為自体がエネルギーを消費し、熱を生成するため、観測によって局所的にはエントロピーが低下するかもしれませんが、全体としてはエントロピーが増加することが一般的です。
観測によって「観測者にとって必要な情報のみが残る」という考え方は、次のように解釈できます:
観測が主観的であり、観測によってエントロピーが低下するという考え方は、情報理論や量子力学の観点から一定の理解が得られます。しかし、熱力学的なエントロピーの観点からは、観測行為自体が全体のエントロピーを増加させる可能性もあります。観測者にとって必要な情報が残るという点については、観測者の主観や目的が観測結果に影響を与えるという意味で理解されるでしょう。このように、観測とエントロピーの関係は多面的であり、異なる視点からの解釈が可能です。
量子力学の観測問題に関する理論は、ユニタリー宇宙論の枠組みにおいてエントロピーと観測の関係を新たな視点から捉え直したものである。
この理論では、宇宙を系、観測者、環境の3つのサブシステムに分割し、これらの相互作用を通じてエントロピーの変化を記述する。
この理論的枠組みにおいて、系のエントロピーは観測者との相互作用によってのみ減少し、環境との相互作用によってのみ増加するという一般化された熱力学第二法則が導出される。
これは、量子力学的な観測過程を熱力学的な観点から捉え直したものであり、量子測定理論と統計力学の融合を示唆している。
観測によるエントロピー減少の量子的メカニズムは、量子ベイズの定理を通じて厳密に記述される。
この定理は、量子状態の更新がフォン・ノイマンエントロピーの減少をもたらすことを数学的に示している。
具体的には、観測前の量子状態 ρ に対して、観測後の状態 ρ' のエントロピーが S(ρ') ≤ S(ρ) となることが証明される。
さらに、宇宙論的インフレーションによって生成される長距離エンタングルメントの効果により、観測されたビット数に対してエントロピーの減少が指数関数的に起こることが示されている。
これは、観測者の情報処理能力をはるかに超えてエントロピーを減少させることができることを意味し、量子情報理論と宇宙論を結びつける重要な洞察である。
この理論は、「インフレーションのエントロピー問題」に対する解決策を提供する。
インフレーションが無視できない体積で発生している限り、ほとんどすべての知的観測者が低エントロピーのハッブル体積に存在することが導かれる。
これにより、我々が低エントロピーの宇宙に存在することの謎が説明される。
この理論は、量子デコヒーレンスの概念とも密接に関連している。
デコヒーレンスは、量子系が環境と相互作用することで量子的な重ね合わせ状態が古典的な状態に移行する過程を説明するものであり、観測問題の理解に重要な役割を果たす。
この理論は、デコヒーレンスの過程をエントロピーの観点から捉え直したものと解釈することができる。
量子エンタングルメントと量子情報の関係性、特に量子測定理論における情報利得と擾乱のトレードオフなどの概念と密接に関連している。
これらの概念は、量子暗号や量子コンピューティングなどの応用分野にも重要な影響を与えている。
結論として、この理論は量子力学の観測問題に対して新たな視点を提供し、量子力学、熱力学、宇宙論、情報理論を統合する試みとして高く評価される。
この理論は、量子力学の基礎的な問題に対する理解を深めるとともに、量子情報科学や宇宙論などの関連分野にも重要な示唆を与えるものである。
状態ベクトルの収縮は、ユニタリ変換による時間発展という過程と露骨に矛盾しているように思える。
どのように20世紀の物理学者はこの問題に折り合いをつけていたのか。
状態ベクトルは実際に量子論的レベルでの実体を表すのではなく、観測者の心の状態を表していると主張している。
したがって、状態ベクトルの収縮という過程でのジャンプは単に観測者の知識の状態の不連続な変化の結果で、物理学的実体を持ちうるような物理学的変化ではない。
観測という過程で物理系はそれを取り巻く環境と解きほぐしようもなく絡み合うことになるという事実を利用する。
すると環境における自由度はランダムで、観測不能と考えられるため、その自由度を足し上げることによって、状態ベクトルによる記述ではなく密度行列による記述が得られる。
この密度行列が、基底に関して対角行列となる時、物理系は対角成分のうちの一つによって表される状態になり、その状態にある確率は対角成分の値によって与えられる。
状態ベクトルはユニタリ変換による時間発展をし、物理学的実体を表している。
ただし、それらの観測結果のそれぞれが観測者の意識の異なる状態と絡み合っている。
したがって、対応する異なる意識状態もまた同時に存在し、それぞれが異なる世界を体験し、異なる観測結果に遭遇することになる。
量子力学の従来の定式化は暫定的で、観測過程に意味づけをするために新しい物理理論が必要という可能性もある。
ドブロイ・ボームの枠組みや、コンシステントヒストリーの理論のような標準的な量子力学と異なるような観測結果は持たないようなものもあるが、別な枠組みによれば、少なくとも原理的には標準的な量子力学と新しい理論を区別する実験が存在すると思われる。
おそらく物理学者の大半は、これらの観点の最初の3つの観点を抱いていると言っても良いと思われる。
そうした物理学者は、量子論の形式が持つ数学的な優雅さは言うまでもなく、量子力学の予言が目を見張るような形で例外なく実験によって立証されているということが、この理論が何ら変更を必要としていないということを示す、という議論をするかもしれない。
検出器から精神への一連の連鎖はフォンノイマンチェインといいます。
例えば電子を観測したとします。その観測情報をコンピュータで表現するために、スリットを通った後の位置で数値化するとしましょう。その数値をコンピュータのスクリーンを通じて研究者が目撃し、網膜を通じて脳へ達し、最終的に情報を判断できます。
では、波動関数の崩壊は、この連鎖のうちのどこで起こるのでしょうか。
このことを理解すれば「量子と意識」の問題は、非科学でもスピリチュアルでもなく、現実的な仮説であることがすぐにわかります。
実際、フォン・ノイマンは意識が認識を行う瞬間に崩壊が起こると考えたのです。
これを「フォン・ノイマン=ウィグナー解釈」と言いますが、コペンハーゲン解釈のサブセットです。
これを補強する理論・実験として「ウィグナーの友人」が登場しました。
後に、このことを聞きつけた「スピリチュアリスト」たちが、「量子崩壊を自分に有利な方向に推し進めることで、人生を豊かにする」などと言い始めて、非科学的な雰囲気を持つようになりました。
しかしファインマンが言ったように「量子力学を理解しているつもりなら、おそらく理解していない」のではないでしょうか。
ノイマン、ウィグナー、パウリのような量子力学の創設者は、「意識」との関係を議論しましたが、スピリチュアリストのような集団のせいで、その真意が誤解されているのです。
ウィグナーも、「独我論っぽいからやだ」といって途中で意識との関連性について否定的態度を取るようになりました。
他の解釈を採用すると、量子デコヒーレンスや量子マルチバースを理解する必要があります。
しかしどの量子力学解釈を採用するのかによって、宇宙の終末は異なるものになる可能性があります。
意識によって崩壊する理論ではサイクリック宇宙論が可能かもしれませんが、デコヒーレンスによって崩壊することを想定する場合はエントロピー増大によって熱力学的死が待っているでしょう。
多世界解釈は量子力学の観測問題に対する一つの解釈で、宇宙の波動関数を実在のものとみなし、その波動関数がシュレディンガー方程式に従って時間発展すると考える。
この解釈では波束の収縮は起こらず、代わりに重ね合わせ状態が干渉性を失うことで異なる世界に分岐していくと考えられる。
しかし意識がどのように一つの分岐を選択するかについては疑問が残る。多世界解釈ではすべての可能な結果がそれぞれの世界で実現するとされている。
意識が一つの分岐を「選択」するのだろうか。それとも意識のすべての可能な状態がそれぞれの世界で実現するのだろうか。
この解釈は物理学者や哲学者の間でさまざまな議論を引き起こしている。特に多世界解釈が「存在論的な浪費」であるとの批判もある。
つまり観測できない多数の世界を考えること自体が論理の無駄だというものである。
ところでエントロピーは一般的には系の「乱雑さ」や「不確定性」を表す量として理解されるが、エントロピーが低下するということは「秩序」が増すということを意味する。
観測によって情報が定まることによってエントロピーが低下するという観点から見ると、系の状態が特定の状態に「収束」するという意味で理解できる。
ここで情報理論について見てみると、観測者が持つ知識が、観測対象に対して影響を与えうるのではないかという疑問が生じる。
ジョン・フォン・ノイマンは、1932年の著書 「量子力学の数学的基礎」において、精神が現象に直接的に影響を与えないという前提が科学的世界観にとって基本的な要請であるとして、実験系と測定側の境界を置けなければならないと述べている。
しかし観測主体が対象のエントロピーを低下させるという事実を無視することはできない。これは環境と対象が相互作用した場合のデコヒーレンスとは違っているのである。
熱力学第二法則では基本的に2つのことを述べており、一つはデコヒーレンスによるエントロピー増加、もうひとつは観測によるエントロピー低下である。
観測者が系に知識をもたらすことによって情報が積み重ねられていった結果、現在の世界が存在すると考えれば、本質的に情報理論こそが量子力学の基礎を成していることがわかる。
しかしこの情報理論は諸刃の剣であり、つまり世界の安定性がなぜ保証されるのか不安になるので、当面の物理学の要請として量子力学から情報理論の側面を剥ぎ取ることが要求されるだろう。
理想的な量子コンピュータが作れたとしても、既存のコンピュータでできることの全てが速くなるわけではない。
量子加速が効くアルゴリズムは非常に限られていて、加速されるアルゴリズムであっても指数的に加速するものはさらに少なく大半は多項式加速に過ぎない。
多項式程度の加速だとデコヒーレンスやノイズにかき消されて優位性が消滅しがち。
そして量子計算は原理的に出力が確率的(ヒストグラム)にしか得られないので、厳密な計算が必要となる状況では使えない。
(なお「理想的な量子コンピュータ」を作れる見通しは現状全くなく、原始的な量子誤り訂正をどうにかこうにか実装しようと苦労してる段階)
A:
量子力学では「測定問題」または「波動関数の崩壊」として知られており、量子の世界が私たちが経験する古典的な世界とどのように相互作用するかについての基本的かつ非常に不可解な側面です。
量子力学では、電子のような粒子は、測定または観測される前に、複数の可能な状態を重ね合わせて存在します。
この重ね合わせは、すべての可能な状態とそれぞれの確率を含む波動関数によって記述されます。
しかし、観測や測定を行うと、重ね合わせが崩れ、粒子の状態は可能な状態の 1 つに「崩壊」します。
したがって、たとえば、測定前にスピンアップまたはスピンダウンできる電子がある場合、その波動関数は両方の状態の組み合わせになります。
しかし、そのスピンを測定すると、波動関数が崩壊し、スピンアップかスピンダウンという 1 つの明確な結果が得られます。
この「崩壊」、つまり測定時の状態の決定は、量子システムの進化にランダムで確率的な要素を導入しているように見えます。
また、測定後にその明確な状態が分かるようになったため、システムに関するエントロピーや不確実性も減少すると考えられます。
このことの意味は深く、物理学者によって何十年にもわたって議論されてきました。
1) 不定の量子領域を明確にする何か特別なことが測定や観測にあることを示唆しています。 しかし、「測定」とは何でしょうか? 私たちの意識的な認識は? それとも環境との相互作用でしょうか?
2) 古典物理学を支配する決定論的法則と矛盾する固有のランダム性または予測不可能性を量子事象に導入しているように見えます。
3) 観測とは独立して存在する客観的な現実についての私たちの概念に疑問を投げかけます。 観測するだけで結果が変わるようです。
4) 巨視的な世界では、このランダム性は通常平均化されます。 しかし、ランダムな瞬間に起こる自然放射性崩壊のような小さな観測可能な影響はあります。
コペンハーゲン解釈や客観的崩壊理論のような解釈は、このランダム性を自然の基本的な側面として受け入れています。
多世界解釈のような他のものは、波動関数の崩壊を完全に排除しようとします。
しかし、この測定問題が量子力学と現実そのものの理解に深刻な課題を投げかけていることに全員が同意しています。
A:
意識と量子力学における測定問題の関係は深い謎であり、物理学ではまだ完全に解決されていません。
ただし、あなたの質問に対するいくつかの視点は次のとおりです。
意識とは、認識し、認識された現実を持つという主観的な一人称の経験を指します。
量子の用語では、意識は、測定/観測が行われる前に、可能な重ね合わせ状態の範囲のうちの 1 つの明確な状態のみを経験するように見えます。
意識が重ね合わせをどのように解決するかについては、いくつかの解釈があります。
1) フォン・ノイマン・ウィグナー解釈は、意識が客観的な波動関数の崩壊を引き起こすことを示唆しています。 私たちの心は、重ね合わせから何らかの結果を特定します。
2) コペンハーゲンの解釈は、波動関数の崩壊が起こったとき、観察者の意識は単に確率的結果の 1 つを目撃しているだけであり、波動関数の崩壊を引き起こしているわけではないことを意味します。
3) 多世界解釈では、真の崩壊は存在しないとされています。 考えられるすべての結果は、現実の別の枝として存在し続けます。 意識は実際に選択することなく、それらの分岐のいずれかに留まるだけです。
4) 意識自体は、観察された状態を引き起こすのではなく、根底にある量子状態から生じる高レベルの創発特性である可能性があると主張する人もいます。
正確なメカニズムは不明ですが、ほとんどの解釈は、意識は測定後に可能な状態のうちの 1 つを主観的に経験するだけであることに同意しています。
観察者兼参加者として、私たちは単に自分の意識が枝の 1 つにあることに気づきます。
重要な謎は、意識が分岐を選択する際に積極的な役割を果たすのか(フォン・ノイマン・ウィグナー)、それとも多数の同様に現実的なもの(多世界)の中の 1 つの分岐に単に自分自身を見出しているだけなのかということです。
これを解決すれば、意識の形而上学的性質と量子力学との関係が解明される可能性があります。
A:
量子力学の多世界解釈 (MWI) では、意識が特定の枝または世界に「留まる」または持続するように見える理由は、デコヒーレンスの概念と、枝がどのように本質的に相互作用せず、それぞれの枝から孤立するのかという考えと関係しています。
1) MWI では、測定が行われるとき、普遍的な波動関数は実際には崩壊しません。 代わりに、それは直交成分に分解され、それぞれが異なる可能性のある結果を表します。
2) これらのコンポーネントは時間の経過とともに進化し続け、より多くの差別化された状態、つまりさまざまな結果が実現される「世界」に分岐します。
3) ただし、これらの分岐コンポーネントは、環境の相互作用やもつれにより、非常に急速に動的にお互いからデコヒーレントになります。 これにより、異なる世界は相互に干渉する能力を失います。
4) したがって、すべてのブランチが異なる既存の現実として共存しますが、動的デコヒーレンスは、それらが相互作用しなくなり、それらの間に測定可能な相互作用や遷移が存在しないことを意味します。
5) あなたの意識は、コヒーレントな量子状態自体で構成されており、デコヒーレンス後の 1 つの枝の中に完全に存在します。 別のブランチと再結合したり、別のブランチに移行したりすることはできません。
6) 実際には、すべての枝が等しく現実であるにもかかわらず、デコヒーレンスプロセスにより意識がその枝内に閉じ込められ、他の枝の並行現実を体験できなくなります。
したがって、意識は積極的に分岐を「選択」するのではなく、デコヒーレンスのプロセスによって、最終的には完全に 1 つの分岐した現実の中に存在することになり、多重性を直接経験する能力はありません。 このため、意識は一貫した 1 つの軌道だけをたどっているように見えます。
俺は中卒なんだけど、熱力学第二法則ってのが何なのか鮮明じゃなかったから言語化しとくわ。
フォン・ノイマンとファインマンによって強調されているように、量子システムの状態は密度行列によって完全に記述される。
これは将来の動作について可能な限り最良の予測を行うために知る必要があるすべてをエンコードしている。
これを定量化するには、システム全体 (宇宙全体) を常に 3 つのサブシステムに分解できる。
つまり、
最初のステップは、ベイズの定理の量子一般化と考えることができる。
2 番目のステップではデコヒーレンスが生成され、古典的な世界の出現を説明するのに役立つ。
デコヒーレンスは常にエントロピーを増加させるが、オブザベーション(観測)は平均してエントロピーは減少する。後者は古典物理学の場合にはシャノンによって証明された。
関係性を表でまとめるなら、以下になる。
観測者が地球規模の未来を予測するために | 十分ではない | 必要ではない |
---|---|---|
コミュニケーション | 対象-主体間 | 対象-環境間 |
プロセス名 | 観測 | デコヒーレンス |
ダイナミクス | ρ_{ij}↦ρ^{(k)}_{ij}=ρ_{ij}(S_{ik}S^{∗}_{jk})/p_{k}, p_{k}≡∑iρ_{ii}|S_{ij}|^{2} | ρ_{ij}↦ρ_{ij}E{ij} |
エントロピー不等式 | 減少: Σ_{k}(ρ_{k}S(ρ^{(k)}) ≦ S(ρ) | 増加: S(ρ) ≦ S(ρ ○ E) |