1. 完備性: ∀x,y ∈ X, x ≿ y ∨ y ≿ x
2. 推移性: ∀x,y,z ∈ X, (x ≿ y ∧ y ≿ z) ⇒ x ≿ z
3. 連続性: ∀x ∈ X, {y ∈ X | y ≿ x} と {y ∈ X | x ≿ y} は閉集合
定理: 上記の公理を満たす選好関係 ≿ に対して、連続効用関数 u: X → ℝ が存在し、∀x,y ∈ X, x ≿ y ⇔ u(x) ≥ u(y)
ワルラス需要対応 x: ℝ_++^n × ℝ_+ ⇒ ℝ_+^n を以下で定義:
x(p,w) = {x ∈ X | p·x ≤ w ∧ ∀y ∈ X, p·y ≤ w ⇒ x ≿ y}
選好関係が連続かつ局所非飽和であれば、ワルラス需要対応は上半連続
1. 閉凸性: Y は閉凸集合
3. 非reversibility: Y ∩ (-Y) ⊆ {0} (無償の生産は不可能)
4. 無限の利潤機会の不在: Y ∩ ℝ_+^n = {0}
多重生産技術を表現する変換関数 T: ℝ_+^m × ℝ_+^n → ℝ を導入:
T(y,x) ≤ 0 ⇔ 投入 x で産出 y が技術的に可能
仮定:
証明の概略:
1. 超過需要関数 z: Δ → ℝ^n を定義 (Δは価格単体)
2. z の連続性を示す
3. Walras' law: p·z(p) = 0 を証明
4. Kakutani の不動点定理を適用: ∃p* ∈ Δ s.t. z(p*) ≤ 0
von Neumann-Morgenstern 効用関数の公理:
1. 完備性
2. 推移性
3. 連続性
4. 独立性: ∀L,M,N ∈ L, ∀α ∈ (0,1], L ≿ M ⇔ αL + (1-α)N ≿ αM + (1-α)N
定理: 上記の公理を満たす選好関係に対して、期待効用表現 V(L) = ∑_s π_s u(x_s) が存在
Choquet 期待効用:
V(f) = ∫ u(f(s)) dν(s)
定義 (相関均衡):
確率分布 μ ∈ Δ(A) が相関均衡であるとは、∀i, ∀a_i, a'_i ∈ A_i,
∑_{a_{-i}} μ(a_i, a_{-i})[u_i(a_i, a_{-i}) - u_i(a'_i, a_{-i})] ≥ 0
おい、引きこもり‼️