「正準方程式」を含む日記 RSS

はてなキーワード: 正準方程式とは

2024-11-13

線形代数学的自由意志モデル

1. 数学的定式化

自由意志表現する n 次元ベクトル空間 V を考える。この空間において、意思決定 d は以下のように表現される:

d = Σ(i=1 to n) αi ei

ここで、

2. 基底の選択自由意志

定理任意の n 次元ベクトル空間 V に対して、無限に多くの正規直交基底が存在する。

証明グラムシュミット直交化法を用いて、任意の n 個の線形独立ベクトルから正規直交基底を構成できる。

この定理は、意思決定空間において無限表現可能性が存在することを示唆する。

3. 量子力学解釈

自由意志非決定論的側面を表現するため、量子力学概念を導入する。

意思決定を量子状態 |ψ⟩ として表現

|ψ⟩ = Σ(i=1 to n) ci |ei⟩

ここで、

測定過程意思決定の実現)は、波動関数崩壊として解釈される。

4. 位相空間軌道

意思決定過程力学系として捉え、2n 次元位相空間 Γ を導入する:

Γ = {(q1, ..., qn, p1, ..., pn) | qi, pi ∈ ℝ}

ここで、qi一般化座標、pi一般運動量を表す。

システム時間発展は、ハミルトン正準方程式に従う:

dqi/dt = ∂H/∂pi

dpi/dt = -∂H/∂qi

H はハミルトニアンで、システムの全エネルギーを表す。

5. カオス理論自由意志

決定論カオス概念を導入し、初期条件に対する敏感な依存性を自由意志表現として解釈する。

リアプノフ指数 λ を用いて、システムカオス性を定量化:

λ = lim(t→∞) (1/t) ln(|δZ(t)| / |δZ0|)

ここで、δZ(t) は位相空間における軌道の微小な摂動を表す。

6. 制約条件と最適化問題

社会的物理的制約を、ラグランジュ乗数法を用いて表現する:

L(x1, ..., xn, λ1, ..., λm) = f(x1, ..., xn) - Σ(j=1 to m) λj gj(x1, ..., xn)

ここで、

 
ログイン ユーザー登録
ようこそ ゲスト さん