ジョン・ホイーラーの "it from bit" 仮説の数学的定式化を行う。
まず、圏論的基礎として量子情報圏 Q を定義する。Q の対象は完備von Neumann代数であり、射は完全正写像である。次に、古典情報圏 C を定義する。C の対象は可測空間であり、射は確率核である。
量子-古典対応を表現するために、量子-古典関手 F: Q → C を導入する。この関手は量子系の観測過程を表現する。
情報理論的構造を捉えるために、エントロピー関手 S: Q → Vec を定義する。ここで Vec は実ベクトル空間の圏である。S(A) = (S_von(A), S_linear(A), S_max(A)) と定義し、S_von はvon Neumannエントロピー、S_linear は線形エントロピー、S_max は最大エントロピーを表す。
トポス理論的解釈として、量子論理トポス T を構築する。T の対象は量子命題の束であり、部分対象分類子 Ω は量子確率値を取る。
"It from Bit" の数学的定式化として、以下の定理を提示する:
定理 1 (It from Bit): 任意の量子系 A ∈ Ob(Q) に対して、以下が成り立つ:
∃ {Bi}i∈I ⊂ Ob(C), ∃ {φi: F(A) → Bi}i∈I :
A ≅ lim←(Bi, φi)
ここで、≅ は Q における同型を、lim← は逆極限を表す。
証明は以下の手順で行う:
2. 各 p ∈ P(A) に対して、射影測定 Mp: A → C({0,1}) を定義する。
3. {Mp}p∈P(A) から誘導される射 φ: A → ∏p∈P(A) C({0,1}) を構築する。
4. 普遍性により、A ≅ lim←(C({0,1}), πp∘φ) が成り立つ。
系 1 として、S(A) = lim→ S(F(Bi)) が成り立つ。
この定理と系は、任意の量子系が古典的な二値観測の無限の組み合わせとして再構成可能であり、そのエントロピーが古典的観測のエントロピーの極限として表現できることを示している。
一般化として、n-圏 Qn を導入し、高次元の量子相関を捉える。予想として、Qn の対象も同様に古典的観測の極限として表現可能であると考えられる。