経済主体の集合 I と財の集合 L を考える。各主体 i ∈ I は以下を持つ:
市場価格ベクトル p ∈ ℝ₊ᴸ が与えられると、各主体は以下の予算集合を持つ:
Bᵢ(p) = { x ∈ Xᵢ | p · x ≤ p · ωᵢ }
競争均衡 (p*, x*) を考える。ここで、x* = (xᵢ*)ᵢ∈I は各主体の最適選択であり、市場均衡条件を満たす:
1. 最適性条件:
xᵢ* ∈ arg max{x∈Bᵢ(p*)} { x | x ≽ᵢ xᵢ }
2. 市場均衡条件:
Σᵢ∈I xᵢ* = Σᵢ∈I ωᵢ
仮に x* がパレート効率的でないとすると、ある実現可能な配分 y = (yᵢ)ᵢ∈I が存在して:
zᵢ = yᵢ - xᵢ* と定義すると:
Σᵢ∈I zᵢ ≤ 0
各主体の最適性より:
p* · yᵢ ≥ p* · xᵢ*
従って:
p* · zᵢ ≥ 0
しかし、少なくとも一人について p* · zᵢ > 0。すると:
Σᵢ∈I p* · zᵢ > 0
しかし:
Σᵢ∈I p* · zᵢ = p* · Σᵢ∈I zᵢ ≤ 0
仮定の下で、任意のパレート効率的配分は、適切な初期保有の再分配後、競争均衡として実現可能である。
任意のパレート効率的配分 x* = (xᵢ*)ᵢ∈I を考える。社会的に望ましい配分として、適切な価格ベクトル p* ∈ ℝ₊ᴸ を構築する。
パレート効率性より、以下の集合は交わらない:
これらの凸集合を分離するハイパープレーンが存在し、その法線ベクトルとして価格 p* を得る。
再分配された初期保有 ω̃ᵢ を考える(Σᵢ∈I ω̃ᵢ = Σᵢ∈I ωᵢ)。各主体は以下を最大化する:
max{x∈Xᵢ} { x | x ≽ᵢ xᵢ, p* · x ≤ p* · ω̃ᵢ }
適切な ω̃ᵢ を選ぶことで、xᵢ* が各主体の最適解となる。
ある政策変更により得られる利得者の利得が、損失者の損失を完全に補償できる場合、その政策は潜在的なパレート改善である。
経済内の二つの状態 A と B を考える。状態 B への移行で利得者と損失者が存在する。
1. カルドア基準:
利得者の余剰 G と損失者の損失 L を計測し、G > L であれば、利得者から損失者への補償が可能である。
損失者が利得者に支払ってでも状態 A を維持したい額を W とすると、G > W であれば、状態 B への移行が望ましい。