はてなキーワード: スタックとは
俺は今俺にとってなんとなくあったら便利だなーとおもったアプリをいつメン技術スタック指定して、ほとんどコード生成してもらって
実は最近まで入門レベルのことってやることやり尽くしたと思ってた。
でも俺って本当に馬鹿で、特にアルゴリズムみたいなの頭でくるくる回す力が境界知能未満になってる。
基本情報とかのループとか追いかけるの辛いレベルといえばみんなわかってくれるかな。
だからそういったツールをひたすら作っていけば後数年はこすれる。
しかも最近本を読むことを覚えた。本を読むことによりこういうコトしたらいいよーみたいなロジックを実装していけば割と楽しめる。
でもでも、生成AIはある程度生成してしまうと今の俺の手法だとだるくなってくるので
中盤あたりから自前修正タイムになる。そこからがお楽しみタイムなんですな
俺はなぜプログラマをやれてるかわからない。零細のITになぜか席がある。
趣味とかでコード書いてない人よりも余裕でくそみたいなコード書いて、知識とか多少広いとかあっても、だいたい認識ミスってたりしてなんやこいつ?ってなる。
文章力はこれみたらわかるよね?
解雇されたりしてないから解雇するコストの方が高いんだと毎日言い聞かせながら仕事してる。
お米を食べました。美味しい!
位相的弦理論は、通常の弦理論を単純化したバージョンで、弦理論の世界面を位相的にツイストすることで得られる。
この理論は、弦理論の複雑さを減らしつつ、その本質的な構造を保持することを目的としている。
位相的弦理論では、通常の弦理論の作用を位相的にツイストする。このツイストにより、作用素は異なるスピンを与えられ、結果として局所的な自由度を持たない理論が得られる。
位相的弦理論の作用は、通常の弦理論の Polyakov 作用を変形したものとして表現できる。Polyakov 作用は以下のように与えられる:
Sₚ[X, g] = -1/(4πα') ∫ d²σ √(-g) gᵅᵝ ∂ᵅXᵘ ∂ᵝXᵛ ηᵘᵛ
ここで、Xᵘ は標的空間座標、gᵅᵝ は世界面の計量、α' はスロープパラメータである。
位相的弦理論では、この作用に対して位相的ツイストを行う。ツイストされた作用は一般的に以下の形を取る:
Sₜₒₚ = ∫Σ {Q, V}
ここで、Q は位相的対称性を生成する演算子、V は適切に選ばれた演算子、Σ は世界面を表す。
位相的弦理論には主に2つのタイプがある:A-モデルとB-モデルである。
1. A-モデル:
A-モデルは、6次元多様体 X の向きづけられたラグラジアン3次元多様体 M 上の U(N) チャーン・サイモンズ理論として現れる。
2. B-モデル:
B-モデルは、D5-ブレーンのスタックを満たす世界体積上で定義され、6次元への変形された正則チャーン・サイモンズ理論として知られている。
公助を削減して自助しろと言うのは菅義偉だったが、アレに反発していた人ってだいたい共助に協力している人であったように思うんだよな。
もちろん、中には「税金払ってるんだから公助で全部やれ」というような非現実的な人もいるけれども。
共助を頑張ってるのになぜ反発したのかというと、簡単に言えば、自助ではどうにもならないという現実を知っているからこそ共助のために自分のリソースを出している訳わけで、
そこからさらに公助は最後だから自助共助で頑張れと言う話をされたところでどうにもならないという感覚があったのだと思う。
当然、公助で100%カバーすることも無理なのも百も承知なのよ。でも、だからといってその原則を曲げられたら困る。
そんなこんなで、左派というか「大きな政府」派の人たちが「自助共助公助の順番ではない、公助が基盤にあってその上で自助と共助があるべきだ」という主張をしたのは、実感としてそうでないと無理だと言うのがあるからだよな
現実どうなっているかというと、だいたいは 公助→自助→共助→公助(保険的な)って感じで利用し、スタックされる事が多いと思われる。
で、菅義偉が自助共助公助と言ったのは、この一番最初の「公助」を最後の公助②の手間に持って来るような話だったので、共助で支える活動をしている人たちが主に反発したということになった訳だ。
事実、公助で一番金がかかっているのは公助①の方。公助②の方は、割合的にはわずかなので費用的にはたいしたことはない。
報道的にも、公助②に関わるような重度の介護が必要な人たちが矢面に立っていたけど、菅義偉や財務省系の人々が削減使用としたのは公助①の方。
ところが、いや自助、共助、公助であってるだろ、と言っていた人たちは、公助①の方を認識できていなかった、あるいは水や空気と同じで当たり前と思っている可能性が高いと思われる。
と言うのを、この増田
https://anond.hatelabo.jp/20241003150146
を読んでいて思ったので書いてみた。
定義 1: M理論の基本構造を、完全拡張可能な (∞,∞)-圏 M として定義する。
定理 1 (Lurie-Haugseng): M の完全拡張可能性は、以下の同値関係で特徴付けられる:
M ≃ Ω∞-∞TFT(Bord∞)
ここで、TFT は位相的場の理論を、Bord∞ は∞次元ボルディズム∞-圏を表す。
命題 1: 超弦理論の各タイプは、M の (∞,∞-n)-部分圏として実現され、n は各理論の臨界次元に対応する。
定義 2: 弦の標的空間を、導来 Artin ∞-超スタック X として形式化する。
定理 2 (Toën-Vezzosi): X の変形理論は、接∞-スタック TX の導来大域切断の∞-圏 RΓ(X,TX) によって完全に記述される。
定義 3: 弦場理論の代数構造を、∞-オペラッド O の代数として定式化する。
定理 3 (Kontsevich-Soibelman): 任意の∞-オペラッド O に対して、その変形量子化が存在し、Maurer-Cartan方程式
MC(O) = {x ∈ O | dx + 1/2[x,x] = 0}
の解空間として特徴付けられる。
定義 4: n次元量子場理論を、n-カテゴリ値の局所系 F: Bordn → nCat∞ として定義する。
定理 4 (Costello-Gwilliam-Lurie): 摂動的量子場理論は、因子化∞-代数の∞-圏 FactAlg∞ の対象として完全に特徴付けられる。
定理 5 (Kontsevich-Soibelman-Toën-Vezzosi): カラビ・ヤウ∞-スタック X と Y のミラー対称性は、以下の (∞,2)-圏同値として表現される:
ShvCat(X) ≃ Fuk∞(Y)
ここで、ShvCat(X) は X 上の安定∞-圏の層の (∞,2)-圏、Fuk∞(Y) は Y の深谷 (∞,2)-圏である。
定義 5: M理論のコンパクト化を、E∞-リング スペクトラム R 上の導来スペクトラルスキーム Spec(R) として定式化する。
定理 6 (Lurie-Hopkins): 位相的弦理論は、適切に定義されたスペクトラルスキーム上の擬コヒーレント∞-層の安定∞-圏 QCoh(Spec(R)) の対象として実現される。
定義 6: M理論の C-場を、∞-群対象 B∞U(1) への∞-函手 c: M → B∞U(1) として定義する。
定理 7 (Hopkins-Singer): M理論の量子化整合性条件は、一般化されたコホモロジー理論の枠組みで以下のように表現される:
[G/2π] ∈ TMF(M)
ここで、TMF は位相的モジュラー形式のスペクトラムである。
定義 7: 量子化された時空を、スペクトラル∞-三重項 (A, H, D) として定義する。ここで A は E∞-リングスペクトラム、H は A 上の導来∞-モジュール、D は H 上の自己随伴∞-作用素である。
定理 8 (Connes-Marcolli-Ševera): 量子重力の有効作用は、適切に定義されたスペクトラル∞-作用の臨界点として特徴付けられる。
定義 8: 弦理論の真空構造を、導来∞-モチーフ∞-圏 DM∞(k) の対象として定式化する。
予想 1 (∞-Motivic Mirror Symmetry): カラビ・ヤウ∞-スタック X と Y のミラー対称性は、それらの導来∞-モチーフ M∞(X) と M∞(Y) の間の∞-圏同値として表現される。
定義 9: 完全な量子重力理論を、(∞,∞)-圏値の拡張位相的量子場理論として定式化する:
Z: Bord∞ → (∞,∞)-Cat
定理 9 (Conjectural): M理論は、適切に定義された完全拡張可能な (∞,∞)-TFT として特徴付けられ、その状態空間は量子化された時空の∞-圏を与える。
超弦理論を数学的に抽象化するために、場の理論を高次圏(∞-圏)の関手として定式化する。
𝒵: 𝐵𝑜𝑟𝑑ₙᵒʳ → 𝒞ᵒᵗⁿ
ここで、𝒞ᵒᵗⁿ は対称モノイダル (∞, n)-圏(例:鎖複体の圏、導来圏など)。
超弦理論におけるフィールドのモジュライ空間を、導来代数幾何の枠組みで記述する。
BV形式はゲージ対称性と量子化を扱うためにホモトピー代数を使用する。
Δ exp(𝑖/ℏ 𝑆) = 0
ミラー対称性はシンプレクティック幾何学と複素幾何学を関連付ける。
𝓕(𝑋) ≃ 𝐷ᵇ(𝒞𝑜ʰ(𝑌))
以上の数学的構造を用いて、超弦理論における重要な定理である「ホモロジカル・ミラー対称性の定理」を証明する。
ミラー対称なカラビ・ヤウ多様体 𝑋 と 𝑌 があるとき、𝑋 のフクヤ圏 𝓕(𝑋) は 𝑌 の連接層の有界導来圏 𝐷ᵇ(𝒞𝑜ʰ(𝑌)) と三角圏として同値である。
𝓕(𝑋) ≅ 𝐷ᵇ(𝒞𝑜ʰ(𝑌))
1. フクヤ圏の構築:
- 対象:𝑋 上のラグランジアン部分多様体 𝐿 で、適切な条件(例えば、スピン構造やマスロフ指数の消失)を満たすもの。
- 射:ラグランジアン間のフロアーコホモロジー群 𝐻𝐹*(𝐿₀, 𝐿₁)。
2. 導来圏の構築:
- 射:Ext群 𝐻𝐨𝐦*(𝒜, 𝐵) = Ext*(𝒜, 𝐵)。
- 合成:連接層の射の合成。
- ファンクターの構成:ラグランジアン部分多様体から連接層への対応を定義する関手 𝐹: 𝓕(𝑋) → 𝐷ᵇ(𝒞𝑜ʰ(𝑌)) を構築する。
- 構造の保存:この関手が 𝐴∞ 構造や三角圏の構造を保存することを示す。
- 物理的対応:𝑋 上の 𝐴-モデルと 𝑌 上の 𝐵-モデルの物理的計算が一致することを利用。
- Gromov–Witten 不変量と周期:𝑋 の種数ゼロのグロモフ–ウィッテン不変量が、𝑌 上のホロモルフィック 3-形式の周期の計算と対応する。
5. 数学的厳密性:
- シンプレクティック幾何学の結果:ラグランジアン部分多様体のフロアーコホモロジーの性質を利用。
- 代数幾何学の結果:連接層の導来圏の性質、特にセール双対性やベクトル束の完全性を利用。
結論:
以上により、フクヤ圏と導来圏の間の同値性が確立され、ホモロジカル・ミラー対称性の定理が証明される。
ラグランジアン部分多様体 𝐿₀, 𝐿₁ に対し、フロアー境界演算子 ∂ を用いてコホモロジーを定義:
∂² = 0
𝐻𝐹*(𝐿₀, 𝐿₁) = ker ∂ / im ∂
∑ₖ₌₁ⁿ ∑ᵢ₌₁ⁿ₋ₖ₊₁ (-1)ᵉ 𝑚ₙ₋ₖ₊₁(𝑎₁, …, 𝑎ᵢ₋₁, 𝑚ₖ(𝑎ᵢ, …, 𝑎ᵢ₊ₖ₋₁), 𝑎ᵢ₊ₖ, …, 𝑎ₙ) = 0
Extⁱ(𝒜, 𝐵) ⊗ Extʲ(𝐵, 𝒞) → Extⁱ⁺ʲ(𝒜, 𝒞)
幾何学的ラングランズ・プログラムと M 理論・超弦理論の関係を、抽象数学を用いて厳密に数理モデル化する。
まず、以下のデータを考える。
- このスタックはアルティンスタックであり、代数幾何学的な手法で扱われる。
- 𝑋 上の ᴸ𝐺-局所系(つまり、平坦 ᴸ𝐺-束)の同型類全体のスタック。
- これは、基本群 π₁(𝑋) の表現のモジュライスタックと同一視できる。
幾何学的ラングランズ予想は、以下のような圏の同値を主張する。
𝐷ᵇ\_ℎₒₗ(𝐵𝑢𝑛\_𝐺(𝑋)) ≃ 𝐷ᵇ\_𝑐ₒₕ(𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋))
ここで、
この同値は、フーリエ–ムカイ変換に類似した核関手を用いて構成されると予想されている。
核関手 𝒫 を 𝐵𝑢𝑛\_𝐺(𝑋) × 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋) 上の適切な対象として定義し、それにより関手
Φ\_𝒫: 𝐷ᵇ\_ℎₒₗ(𝐵𝑢𝑛\_𝐺(𝑋)) → 𝐷ᵇ\_𝑐ₒₕ(𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋))
Φ\_𝒫(ℱ) = 𝑅𝑝₂ₓ(𝑝₁∗ ℱ ⊗ᴸ 𝒫)
ここで、
𝑝₁: 𝐵𝑢𝑛\_𝐺(𝑋) × 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋) → 𝐵𝑢𝑛\_𝐺(𝑋), 𝑝₂: 𝐵𝑢𝑛\_𝐺(𝑋) × 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋) → 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋)
問題点は、この核 𝒫 を具体的に構成することが難しく、これが幾何学的ラングランズ予想の核心的な課題となっている。
ヒッチン写像を導入する。
ℎ: ℳₕ(𝐺) → 𝒜 = ⨁ᵢ₌₁ʳ 𝐻⁰(𝑋, Ωₓᶦᵈⁱ)
ここで、ℳₕ(𝐺) は 𝐺-ヒッグス束のモジュライ空間、ᶦᵈⁱ は 𝐺 の基本不変式の次数。
完全可積分系: ヒッチンファイブレーション ℎ は完全可積分系を定義し、そのリウヴィル可積分性がモジュライ空間のシンプレクティック構造と関係する。
Kontsevich のホモロジカルミラー対称性予想に基づく。
𝐷ᵇ\_𝑐ₒₕ(ℳₕ(𝐺)) ≃ 𝐷ᵖⁱ 𝐹ᵘₖ(ℳₕ(ᴸ𝐺))
ここで、
- 𝐷ᵇ\_𝑐ₒₕ は連接層の有界導来圏。
- 𝐷ᵖⁱ 𝐹ᵘₖ はフカヤ圏のコンパクト対象からなる導来圏。
この同値は、ヒッチンファイブレーションを介してシンプレクティック幾何と複素幾何の間の双対性を示唆する。
𝐷ᵇ(𝐹ₗₐₜ\_𝐺(𝑋)) ≃ 𝐷ᵇ(𝐻ᵢ₉₉ₛ\_𝐺(𝑋))
ここで、
- 𝐹ₗₐₜ\_𝐺(𝑋) は 𝑋 上の平坦 𝐺-束のモジュライスタック。
- 𝐻ᵢ₉₉ₛ\_𝐺(𝑋) は 𝑋 上の 𝐺-ヒッグス束のモジュライスタック。
作用素:
M 理論におけるブレーンの配置:
- ℝ¹,³ は 4 次元の時空。
- Σ は曲線 𝑋。
Lurie の高次圏論:
幾何学的ラングランズ・プログラムと M 理論・超弦理論の関係は、以下の数学的構造を通じてモデル化される。
これらの数学的構造を組み合わせることで、幾何学的ラングランズ・プログラムと M 理論・超弦理論の関係性をモデル化できる。
消費者集合:N = {1, 2, ..., n}
消費ベクトル:各消費者 i の消費ベクトルを X_i ∈ X_i ⊆ ℝ^(k_i) とする。
個人効用は自分の消費 X_i と政府支出の使用用途 G に依存する。
税収:T ∈ ℝ_+
国債発行額:B ∈ ℝ_+
政府支出の配分:G = (G_1, G_2, ..., G_m) ∈ G ⊆ ℝ_+^m
政策空間:P = { (T, B, G) ∈ ℝ_+ × ℝ_+ × G }
予算制約:
Σ_(j=1)^m G_j = T + B
可処分所得:消費者 i の可処分所得 Y_i は、所得税 t_i によって決まる。
Y_i = Y_i^0 - t_i
T = Σ_(i=1)^n t_i
p_i · X_i ≤ Y_i
目的:政府は社会的厚生 W を最大化するために、以下の政策変数を決定する。
国債発行額 B
政府支出の配分 G = (G_1, G_2, ..., G_m)
制約:
消費者の最適化:政府の政策 (t_i, G) を所与として、各消費者 i は効用を最大化する。
最大化 U_i(X_i, G)
X_i ∈ X_i
制約条件:p_i · X_i ≤ Y_i
結果:各消費者の最適な消費選択 X_i*(G) が決定される。
W(U_1, U_2, ..., U_n) は個々の効用を社会的厚生に集約する。
合成関数:
W(U_1(X_1*(G)), ..., U_n(X_n*(G)))
最大化 W(U_1(X_1*(G)), ..., U_n(X_n*(G)))
{ t_i }, B, G
制約条件:
Σ_(j=1)^m G_j = Σ_(i=1)^n t_i + B
t_i ≥ 0 ∀i, B ≥ 0, G_j ≥ 0 ∀j
X_i*(G) = arg max { U_i(X_i, G) | p_i · X_i ≤ Y_i } ∀i
X_i ∈ X_i
政府の役割:公共財の配分 G と税制 { t_i } を決定する。
消費者の反応:消費者は政府の決定を受けて、最適な消費 X_i*(G) を選択する。
(b) 力学系の特徴
スタックルベルクゲーム:政府(リーダー)と消費者(フォロワー)の間の戦略的相互作用。
最適反応関数:消費者の最適な消費行動は政府の政策に依存する。
(c) 一階条件の導出
L = W(U_1(X_1*), ..., U_n(X_n*)) - λ ( Σ_(j=1)^m G_j - Σ_(i=1)^n t_i - B ) - Σ_(i=1)^n μ_i (p_i · X_i* - Y_i)
微分:政策変数 t_i, B, G_j に関する一階条件を計算する。
チェーンルール:消費者の最適反応 X_i* が G に依存するため、微分時に考慮する。
(a) 公共財の種類
公共財ベクトル:G = (G_1, G_2, ..., G_m)
例えば、教育 G_edu、医療 G_health、インフラ G_infra など。
U_i(X_i, G) = U_i(X_i, G_1, G_2, ..., G_m)
各公共財 G_j が個人効用にどのように影響するかをモデル化。
将来への影響:国債発行は将来の税負担に影響するため、長期的な視点が必要。
制約:債務の持続可能性に関する制約をモデルに組み込むことも可能。
(c) 公共財の最適配分
優先順位の決定:社会的厚生を最大化するための公共財への投資配分。
政府の決定問題:消費者の反応を予測しつつ、最適な { t_i }, B, G を決定。
情報の非対称性:消費者の選好や行動に関する情報を完全に知っていると仮定。
消費者の行動:政府の政策を所与として、効用最大化問題を解く。
結果のフィードバック:消費者の選択が社会的厚生に影響し、それが政府の次の政策決定に反映される可能性。
(a) モデルの意義
包括的な政策分析:政府の税制、国債発行、公共財の使用用途を統合的にモデル化。
最適な税制と支出配分:社会的厚生を最大化するための政策設計の指針。
一般性の確保:特定の経済状況やパラメータに依存しないモデル。
政府は、税制 { t_i }、国債発行額 B、そして公共財の配分 G を戦略的に決定することで、消費者の効用 U_i を最大化し、社会的厚生 W を高めることができる。
このモデルでは、政府の政策決定と消費者の消費行動という2つのステップの力学系を考慮し、公共財の使用用途も組み込んでいる。
以下は、M理論と超弦理論の幾何学を抽象化した数学的枠組みでのモデル化について述べる。
まず、物理的対象である弦や膜を高次の抽象的構造としてモデル化するために、∞-圏論を用いる。ここでは、物理的プロセスを高次の射や2-射などで表現する。
∞-圏 𝒞 は、以下を持つ:
これらの射は、合成や恒等射、そして高次の相互作用を満たす。
次に、デリーブド代数幾何学を用いて、空間や場の理論をモデル化する。ここでは、デリーブドスタックを使用する。
デリーブドスタック 𝒳 は、デリーブド環付き空間の圏 𝐝𝐀𝐟𝐟 上の関手として定義される:
𝒳 : 𝐝𝐀𝐟𝐟ᵒᵖ → 𝐒
ここで、𝐒 は∞-グルーポイドの∞-圏(例えば、単体集合のホモトピー圏)である。
物理的なフィールドやパーティクルのモジュライ空間は、これらのデリーブドスタックとして表現され、コホモロジーやデリーブドファンクターを通じてその特性を捉える。
非可換幾何学では、空間を非可換代数 𝒜 としてモデル化する。ここで、スペクトラルトリプル (𝒜, ℋ, D) は以下から構成される:
作用素 D のスペクトルは、物理的なエネルギーレベルや粒子状態に対応する。幾何学的な距離や曲率は、𝒜 と D を用いて以下のように定義される:
∞-トポス論は、∞-圏論とホモトピー論を統合する枠組みである。∞-トポス ℰ では、物理的な対象やフィールドは内部のオブジェクトとして扱われる。
フィールド φ のグローバルセクション(物理的な状態空間)は、次のように表される:
Γ(φ) = Homℰ(1, φ)
ここで、1 は終対象である。物理的な相互作用は、これらのオブジェクト間の射としてモデル化される。
ゲージ対称性やその高次構造を表現するために、L∞-代数を用いる。L∞-代数 (L, {lₖ}) は次元付きベクトル空間 L = ⊕ₙ Lₙ と多重線形写像の族 lₖ からなる:
lₖ : L⊗ᵏ → L, deg(lₖ) = 2 - k
∑ᵢ₊ⱼ₌ₙ₊₁ ∑ₛᵢgₘₐ∈Sh(i,n-i) (-1)ᵉ⁽ˢⁱᵍᵐᵃ⁾ lⱼ ( lᵢ(xₛᵢgₘₐ₍₁₎, …, xₛᵢgₘₐ₍ᵢ₎), xₛᵢgₘₐ₍ᵢ₊₁₎, …, xₛᵢgₘₐ₍ₙ₎) = 0
ここで、Sh(i,n-i) は (i, n - i)-シャッフル、ε(sigma) は符号関数である。
これにより、高次のゲージ対称性や非可換性を持つ物理理論をモデル化できる。
安定ホモトピー理論では、スペクトラムを基本的な対象として扱う。スペクトラム E は、位相空間やスペースの系列 {Eₙ} と構造写像 Σ Eₙ → Eₙ₊₁ からなる。
πₙˢ = colimₖ→∞ πₙ₊ₖ(Sᵏ)
ここで、Sᵏ は k-次元球面である。これらの群は、物理理論における安定な位相的特性を捉える。
物理的な相関関数は、コホモロジー類を用いて以下のように表現される:
⟨𝒪₁ … 𝒪ₙ⟩ = ∫ₘ ω𝒪₁ ∧ … ∧ ω𝒪ₙ
ここで、ℳ はモジュライ空間、ω𝒪ᵢ は観測量 𝒪ᵢ に対応する微分形式またはコホモロジー類である。
先に述べた抽象数学的枠組みを用いて、M理論の重要な定理であるM理論とIIA型超弦理論の双対性を導出する。この双対性は、M理論が11次元での理論であり、円 S¹ に沿ってコンパクト化するとIIA型超弦理論と等価になることを示している。
時空間の設定:
H•(ℳ₁₁, ℤ) ≅ H•(ℳ₁₀, ℤ) ⊗ H•(S¹, ℤ)
これにより、11次元のコホモロジーが10次元のコホモロジーと円のコホモロジーのテンソル積として表される。
C-場の量子化条件:
M理論の3形式ゲージ場 C の場の強度 G = dC は、整数係数のコホモロジー類に属する。
[G] ∈ H⁴(ℳ₁₁, ℤ)
デリーブド代数幾何学では、フィールド C はデリーブドスタック上のコホモロジー類として扱われる。
非可換トーラスの導入:
円 S¹ のコンパクト化を非可換トーラス 𝕋θ としてモデル化する。非可換トーラス上の座標 U, V は以下の交換関係を満たす。
UV = e²ᵖⁱθ VU
非可換トーラス上のK-理論群 K•(𝕋θ) は、Dブレーンのチャージを分類する。
K•(ℳ₁₁) ≅ K•(ℳ₁₀)
𝕊ₘ ≃ Σ𝕊ᵢᵢₐ
ここで、Σ はスペクトラムの懸垂(suspension)函手である。
デリーブド代数幾何学、非可換幾何学、および安定ホモトピー理論の枠組みを用いると、11次元のM理論を円 S¹ 上でコンパクト化した極限は、IIA型超弦理論と数学的に等価である。
(b) 非可換性の考慮
最初期宇宙の基本構造を記述するために、位相的弦理論の圏論的定式化を用いる。
定義: 位相的A模型の圏論的記述として、Fukaya圏 ℱ(X) を考える。ここで X は Calabi-Yau 多様体である。
対象: (L, E, ∇)
射: Floer コホモロジー群 HF((L₁, E₁, ∇₁), (L₂, E₂, ∇₂))
この圏の導来圏 Dᵇ(ℱ(X)) が、A模型の D-ブレーンの圏を与える。
最初期宇宙の量子構造をより精密に記述するために、導来代数幾何学を用いる。
𝔛: (cdga⁰)ᵒᵖ → sSet
ここで cdga⁰ は次数が非正の可換微分次数付き代数の圏、sSet は単体的集合の圏である。
𝔛 上の準コヒーレント層の ∞-圏を QCoh(𝔛) と表記する。
宇宙の大規模構造の位相的性質を記述するために、モチーフ理論を適用する。
定義: スキーム X に対して、モチーフ的コホモロジー Hⁱₘₒₜ(X, ℚ(j)) を定義する。
これは、Voevodsky の三角圏 DM(k, ℚ) 内での Hom として表現される:
Hⁱₘₒₜ(X, ℚ(j)) = Hom_DM(k, ℚ)(M(X), ℚ(j)[i])
最初期宇宙の高次ゲージ構造を記述するために、∞-Lie 代数を用いる。
定義: L∞ 代数 L は、次数付きベクトル空間 V と、n 項ブラケット lₙ: V⊗ⁿ → V の集合 (n ≥ 1) で構成され、一般化されたヤコビ恒等式を満たすものである。
Σₙ₌₁^∞ (1/n!) lₙ(x, ..., x) = 0
最初期宇宙の量子重力効果を記述するために、圏値場の理論を用いる。
定義: n-圏値の位相的量子場の理論 Z を、コボルディズム n-圏 Cob(n) から n-圏 𝒞 への対称モノイダル函手として定義する:
Z: Cob(n) → 𝒞
特に、完全拡張場の理論は、Lurie の分類定理によって特徴づけられる。
最初期宇宙の量子情報理論的側面を記述するために、von Neumann 代数を用いる。
定義: von Neumann 代数 M 上の状態 ω に対して、相対エントロピー S(ω || φ) を以下のように定義する:
S(ω || φ) = {
tr(ρω (log ρω - log ρφ)) if ω ≪ φ
+∞ otherwise
}
ここで ρω, ρφ はそれぞれ ω, φ に対応する密度作用素である。
最初期宇宙の量子時空構造を記述するために、非可換幾何学を用いる。
∫_X f ds = Tr_ω(f|D|⁻ᵈ)
酔っ払ったので色々吐き出そうと思う!
10年近く勤めた某SIerを辞めて、1年くらい一応無事に過ごしている。
量子力学の観測問題を、高次圏論、導来代数幾何学、および量子位相場の理論を統合した枠組みで定式化する。
基礎構造として、(∞,n)-圏 C を導入し、その導来スタック Spec(C) を考える。観測過程を表現するために、Spec(C) 上の導来量子群スタック G を定義する。G の余代数構造を (Δ: O(G) → O(G) ⊗L O(G), ε: O(G) → O(Spec(C))) とする。ここで ⊗L は導来テンソル積を表す。
観測を ω: O(G) → O(Spec(C)) とし、観測後の状態を (id ⊗L ω) ∘ Δ: O(G) → O(G) で表す。エントロピーを高次von Neumannエントロピーの一般化として、S: RMap(O(G), O(G)) → Sp^n として定義する。ここで RMap は導来写像空間、Sp^n は n-fold loop space のスペクトラム対象である。観測によるエントロピー減少は S((id ⊗L ω) ∘ Δ) < S(id) で表現される。
デコヒーレンスを表す完全正(∞,n)-関手 D: RMap(O(G), O(G)) → RMap(O(G), O(G)) を導入し、S(D(f)) > S(f) for f ∈ RMap(O(G), O(G)) とする。
観測者の知識状態を表現するために、G-余加群スタック M を導入する。観測過程における知識状態の変化を (ω ⊗L id) ∘ ρ: M → M で表す。ここで ρ: M → O(G) ⊗L M は余作用である。
分岐を表現するために、O(G) の余イデアルの(∞,n)-族 {Ii}i∈I を導入する。各分岐に対応する射影を πi: O(G) → O(G)/LIi とする。観測者の知識による分岐の選択は、自然(∞,n)-変換 η: id → ∏i∈I ((O(G)/LIi) ⊗L -) として表現される。
知識状態の重ね合わせは、M の余積構造 δ: M → M ⊗L M を用いて表現される。
さらに、量子位相場の理論との統合のために、Lurie の圏化された量子場の理論の枠組みを採用する。n次元ボルディズム(∞,n)-圏 Bord_n に対し、量子場理論を表す対称モノイダル(∞,n)-関手 Z: Bord_n → C と定義する。
観測過程は、この関手の値域における状態の制限として記述される。具体的には、閉じたn-1次元多様体 Σ に対する状態 φ: Z(Σ) → O(Spec(C)) を考え、ボルディズム W: Σ → Σ' に対する制限 φ|W: Z(W) → O(Spec(C)) を観測過程として解釈する。
M理論の幾何学を最も抽象的かつ厳密に記述するには、圏論的アプローチが不可欠でござる。
M理論の幾何学的構造は、三角圏の枠組みで捉えることができるのでござる。特に、カラビ・ヤウ多様体 X の導来圏 D⁰(Coh(X)) が中心的役割を果たすのでござる。
定義:D⁰(Coh(X)) は連接層の有界導来圏であり、以下の性質を持つのでござる:
1. 対象:連接層の複体
この圏上で、Fourier-向井変換 Φ: D⁰(Coh(X)) → D⁰(Coh(X̂)) が定義され、これがミラー対称性の数学的基礎となるのでござる。
2. 各対の対象 X,Y に対する次数付きベクトル空間 hom𝒜(X,Y)
3. 次数 2-n の演算 mₙ: hom𝒜(Xₙ₋₁,Xₙ) ⊗ ⋯ ⊗ hom𝒜(X₀,X₁) → hom𝒜(X₀,Xₙ)
これらは以下のA∞関係式を満たすのでござる:
∑ᵣ₊ₛ₊ₜ₌ₙ (-1)ʳ⁺ˢᵗ mᵣ₊₁₊ₜ(1⊗ʳ ⊗ mₛ ⊗ 1⊗ᵗ) = 0
この構造は、Fukaya圏の基礎となり、シンプレクティック幾何学とM理論を結びつけるのでござる。
M理論の完全な幾何学的記述には、高次圏論、特に(∞,1)-圏が必要でござる。
定義:(∞,1)-圏 C は以下の要素で構成されるのでござる:
2. 各対の対象 x,y に対する写像空間 MapC(x,y)(これも∞-グルーポイド)
3. 合成則 MapC(y,z) × MapC(x,y) → MapC(x,z)(これはホモトピー整合的)
この構造により、M理論における高次ゲージ変換や高次対称性を厳密に扱うことが可能になるのでござる。
M理論の幾何学は、導来代数幾何学の枠組みでより深く理解できるのでござる。
定義:導来スタック X は、以下の関手として定義されるのでござる:
X: CAlg𝔻 → sSet
ここで、CAlg𝔻 は単体的可換環の∞-圏、sSet は単体的集合の∞-圏でござる。
この枠組みにおいて、M理論のモジュライ空間は導来スタックとして記述され、その特異性や高次構造を厳密に扱うことが可能になるのでござる。
M理論の幾何学的側面は、量子コホモロジー環 QH*(X) を通じて深く理解されるのでござる。
定義:QH*(X) = H*(X) ⊗ ℂ[[q]] で、積構造は以下で与えられるのでござる:
α *q β = ∑A∈H₂(X,ℤ) (α *A β) qᴬ
ここで、*A はGromov-Witten不変量によって定義される積でござる:
α *A β = ∑γ ⟨α, β, γ∨⟩₀,₃,A γ
3つ目のプレイヤーのウィンドウを立ち上げると、数秒間ローディング発生したりカクカクしがちになり、どれかのプレイヤーが真っ黒な状態になってスタックしてしまう。ハードウェアがエロ動画に耐えれないのだろうか。エロ動画のために頑張れAppleシリコン!!!!!!
クイックルックやiPad互換のVLCで再生すると、別のウィンドウで動画が再生されているとすぐに停止してしまう。
それと、AVPのsafariで https://www.sexlikereal.com/ を開くとVRエロコンテンツがちょろっと楽しめた。今はVRのエロライブチャットもあるのだな。時代は進化している。
都市伝説によれば、かつてアインシュタインの古典的重力理論「一般相対性理論」を理解していたのは3人だけだったと言われている。
それが真実かどうかは別として、その3人のうちの1人がダフィッド・ヒルベルトである。彼は、今日の初学者でも一般相対性理論を理解できるように、それを数学で明確かつ正確(すなわち厳密)に形式化した。
古典的なアインシュタインの重力は、時空上の擬リーマン計量のモジュライ空間上のスカラー曲率密度汎関数の積分の臨界点の研究にすぎない。
物理学の基本的な理論は数学での基本的な定式化を持つべきだと信じたことで、ヒルベルトは本質的にアインシュタインを先取りすることができた。そのため、この汎関数は現在、アインシュタイン・ヒルベルト作用汎関数と呼ばれている。
ヒルベルトは、1900年の有名なヒルベルトの問題の一環として、この一般的なアイデアを以前から提唱していた。ここでヒルベルトの第6問題は、物理学の理論の公理を見つけることを数学者に求めている。
それ以来、そのような公理化のリストが見つかっている。例えば、
物理学 | 数学 |
力学 | シンプレクティック幾何学 |
重力 | リーマン幾何学 |
ゲージ理論 | チェルン・ヴェイユ理論 |
量子力学 | 作用素代数 |
トポロジカル局所量子場理論 | モノイダル(∞,n)-カテゴリ理論 |
このリストには注目すべき2つの側面がある。一方で、数学の最高の成果が含まれており、他方で、項目が無関係で断片的に見えることだ。
学生時代、ウィリアム・ローヴィアは「合理的熱力学」と呼ばれる熱力学の公理化の提案に触れた。彼は、そのような連続体物理学の基本的な基盤は、まず微分幾何学自体の良い基盤を必要とすることに気づいた。彼の生涯の出版記録を見てみると、彼が次の壮大な計画を追求していたことがわかる。
ローヴィアは、最初の2つの項目(圏論的論理、初等トポス理論、代数理論、SDG)への画期的な貢献で有名になった。なぜか、このすべての動機である3番目の項目は広く認識されていないが、ローヴィアはこの3番目の点を継続的に強調していた。
この計画は壮大だが、現代の基準では各項目において不十分である。
現代数学は自然にトポス理論/型理論ではなく、高次トポス理論/ホモトピー型理論に基づいている。
現代の幾何学は「変数集合」(層)だけでなく、「変数ホモトピー型」、「幾何学的ホモトピー型」、「高次スタック」に関する高次幾何学である。
現代物理学は古典的連続体物理学を超えている。高エネルギー(小さな距離)では、古典物理学は量子物理学、特に量子場理論によって精緻化される。
ライカンの強化スキルはエネルギー60から発動可能になるが、実際のエネルギー消費は2段構えになっている。
E短押しだと40消費して弱キック3段+回し蹴り2段で終わる。
E長押しだと弱キック3段のあと更に20消費して分岐し、中ダメ3段+蹴り上げ2段に変わる。
長押しでエネルギー消費は1.5倍になっているが、ダメージ倍率やブレイク倍率は1.47倍くらいと若干損になっている。
じゃあ短押し連打の方がいいかというと、実際にはそれは難しい。
発動可能ラインが60なので、エネルギーMAXの120からでも3連発は不可能で、2連発には100以上と、ゲージの83%ラインを目視で見極める必要がある。
60始動で使い切れる設計から分かるように、ライカンは長押し運用を基本とすべきだろう。
長押しの何がメリットかというと、モーション時間の長さだ。1.6秒が3.2秒と倍になっている。
強化スキル発動中は無敵なので、長い無敵でパリィ機会を伺いながらブレイク蓄積を狙うという設計意図に見える。
スキル中にパリィ交代してもライカンは残って最後まで撃ってくれるので効率が良い。
なので短押し連打は、エネルギー潤沢でとにかく迅速にブレイクしたい状況以外では使わないだろう。
同じ恒常S級撃破キャラであるクレタの設計はライカンとは少々異なる。
モチーフ武器やパリィ倍率から分かるとおり、クレタは基本的に裏にいてパリィ突撃で出てE撃ってすぐアタッカーにバトンタッチするスタイルが合理的な立ち回りになる。
ライカンもパリィで登場したいものの、E長押しや通常長押し、回避反撃で多少粘ってパリィ性能の高い蒼角へ繋げるために黄色十字を待つ感じになるだろう。
蒼角が既に2ゲージ溜まっていればライカン⇔エレンの交互パリィでもいい。
ちなみにライカンに装備させる人もいるであろうクレタのモチーフ武器は、強化スキルを2回発動すると武器効果のスタックがMAXになるが、ライカンの長押しEは残念ながら一度に1重しか獲得できない。
競プロと機械学習系のクソコード・クソジャークっぷりが取り立たされてるけど、クソコード・クソジャークっぷりは何も競プロerと機械学習erの専売特許ではない。