「微分方程式」を含む日記 RSS

はてなキーワード: 微分方程式とは

2024-11-09

[] 新古典派ケインズ派の主な数理的差異

経済空間定義

経済を以下の空間表現する:

(Ω, ℱ, (ℱ_t)_t≥0, ℙ) を完備確率空間とし、ℋ = L²(Ω, ℱ, ℙ) をヒルベルト空間とする。

新古典派モデル

1. 状態空間

状態変数無限次元ヒルベルト空間 𝒳 の要素 x_t ∈ 𝒳 とする。

2. 確率微分方程式

状態変数の動学を以下の抽象的な確率微分方程式表現する:

dx_t = A(x_t)dt + B(x_t)dW_t

ここで、A: 𝒳 → 𝒳 は非線形作用素、B: 𝒳 → ℒ₂(𝒰, 𝒳) はヒルベルト空間作用素、W_t は 𝒰-値のシリンリカルウィーナー過程である

3. 価値汎関数

代表的主体価値汎関数 V: 𝒳 → ℝ を以下のように定義する:

V(x) = sup_α∈𝒜 𝔼[∫₀^∞ e⁻ᵖᵗ ⟨U(c_t, l_t), μ⟩ dt | x₀ = x]

ここで、𝒜 は許容制御の集合、ρ > 0 は割引率、U: 𝒳 × 𝒳 → 𝒳 は効用作用素、μ は 𝒳 上の測度、⟨·, ·⟩ は内積を表す。

4. 無限次元 HJB 方程式

最適性の必要条件として、以下の無限次元 HJB 方程式が成立する:

ρV(x) = sup_{c,l} {⟨U(c,l), μ⟩ + ⟨A(x), DV(x)⟩ + ½tr(B(x)B*(x)D²V(x))}

ここで、DV と D²V はそれぞれ V のフレシェ微分と二階フレシェ微分、B* は B の共役作用素である

5. 一般均衡

一般均衡は、以下の作用素方程式系の解として特徴付けられる:

ρV(x) = sup_{c,l} {⟨U(c,l), μ⟩ + ⟨A(x), DV(x)⟩ + ½tr(B(x)B*(x)D²V(x))}

Y(x) = F(K(x), L(x))

C(x) + I(x) = Y(x)

DU_c(C(x), L(x)) = DV(x)

DU_l(C(x), L(x)) = DV(x)F_L(K(x), L(x))

ここで、F, K, L, C, I はすべて 𝒳 上の非線形作用素である

ケインズ派モデル

1. 名目硬直性の導入

価格設定を以下のマーク付きポアソン過程表現する:

N(dt, dm) = ∑_i δ_{(T_i, M_i)}(dt, dm)

ここで、(T_i, M_i) は価格改定タイミングと大きさを表す二重確率点列、δ はディラックデルタ測度である

2. 無限次元ニューケインジアンフィリップス曲線

インフレ動学を以下の確率偏微分方程式表現する:

dπ_t = (𝒜π_t + 𝒦y_t)dt + 𝒮dW_t^π

ここで、𝒜 は線形作用素、𝒦 は非線形作用素、𝒮 はヒルベルト空間作用素、W_t^π は 𝒳-値のシリンリカルウィーナー過程である

3. 無限次元金融政策ルール

中央銀行政策金利を以下の確率偏微分方程式表現する:

di_t = Θ(ī - i_t)dt + Φ_π dπ_t + Φ_y dy_t + Σ dW_t^i

ここで、Θ, Φ_π, Φ_y, Σ はすべてヒルベルト空間上の線形作用素である

4. 一般均衡

ケインズ派モデル一般均衡は、以下の確率偏微分方程式系の解として特徴付けられる:

dx_t = 𝒜(x_t, π_t, i_t)dt + ℬ(x_t, π_t, i_t)dW_t

dπ_t = (𝒜π_t + 𝒦y_t)dt + 𝒮dW_t^π

di_t = Θ(ī - i_t)dt + Φ_π dπ_t + Φ_y dy_t + Σ dW_t^i

N(dt, dm) = ∑_i δ_{(T_i, M_i)}(dt, dm)

y_t = 𝒴(x_t) - 𝒴*

𝔼[dV(x_t, π_t, i_t)] = ρV(x_t, π_t, i_t)dt - ⟨U(C(x_t), L(x_t)), μ⟩dt

ここで、𝒜, ℬ, 𝒴 はすべて非線形作用素である

主要な相違点

1. 状態空間: 新古典派モデルでは実物変数のみで状態記述するが、ケインズ派モデルでは名目変数インフレ率、名目金利)も含む無限次元空間考慮する。

2. 確率過程: 新古典派モデルは主に無限次元拡散過程を用いるが、ケインズ派モデルではマーク付きポアソン過程も導入し、不連続価格調整を表現する。

3. 均衡の特徴づけ: 新古典派モデルでは無限次元HJB方程式を用いるが、ケインズ派モデルでは確率偏微分方程式系を用いる。

4. 作用素性質: 新古典派モデルでは主に非線形作用素を扱うが、ケインズ派モデルでは線形作用素非線形作用素の組み合わせを扱う。

5. トポロジー: 新古典派モデルは主にヒルベルト空間トポロジーを用いるが、ケインズ派モデルではより一般的なバナッハ空間やフレシェ空間トポロジー考慮する必要がある。

2024-11-07

anond:20241107115753

ご指摘ありがとうございますAI以下の知識しかないあなたに言われるとは、心外です。

しかし、数理モデル現実理解するための有用ツールの一つであり、適切に使用すれば洞察を得ることができます。以下、より現実に即した形で数理的な反論を試みます

1. 地方過疎化シャッター商店街問題

複雑系理論を用いて説明します。都市の活力を表す指標 V を以下のように定義します:

V = f(P, E, I, S, G)

ここで、P は人口、E は雇用機会、I はインフラ整備度、S は社会サービス、G は行政政策効果を表します。各要素は相互に影響し合い、非線形的な関係を持ちます

dV/dt = α(V) * V - β(V)

α(V) は成長率、β(V) は衰退率を表し、V の関数となります。この微分方程式は、ある閾値を下回ると急激な衰退が起こる可能性を示唆します。

例えば、RESAS地域経済分析システム)のデータを用いて、南丹市の事例を分析すると、地域経済循環率が93.4%という高い値を示しています

2. 企業内部留保問題

行動経済学の知見を取り入れ、経営者意思決定モデルを以下のように拡張します:

U(π, B) = w1 * π + w2 * B - λ * σ^2

ここで、U は経営者効用、π は企業利益、B は経営者私的便益、σ^2 はリスク、w1, w2 は重み付け係数、λ はリスク回避度を表します。

この関数形は、経営者短期利益私的便益を重視する可能性を示唆します。日本内部留保率が50%前後で推移していることは、この理論整合的です。

3. 労働市場の硬直性と非正規雇用の増加:

二重労働市場モデルを用いて説明します:

L = Lr + Ln

w = wr * Lr / L + wn * Ln / L

L は総労働力、Lr, Ln はそれぞれ正規非正規雇用者数、w は平均賃金wr, wn はそれぞれ正規非正規賃金を表します。

最低賃金制度により、wn ≥ wmin という制約があります。この制約下で企業利潤最大化を図ると、Ln / L が増加し、平均賃金 w が低下する可能性があります

 

これらのモデルは、問題構造理解し、政策立案の基礎となる洞察提供します。

例えば、地方創生には複合的なアプローチ必要であることや、企業ガバナンス改善内部留保問題解決重要であること、労働市場の二重構造解消が賃金問題改善につながる可能性があることなどが示唆されます

現実問題に取り組むには、これらの理論洞察実証データ、そして現場の声を総合的に考慮する必要があります

しかし現段階では、あなた程度の示した問題解決するにはミクロ経済学教科書程度の知識必須と言っていいでしょう。

2024-10-27

素粒子物理学の最終理論とは

素粒子物理学における最終理論存在疑問視されている。

最終理論とは、自然界のすべての相互作用を高エネルギー領域も含めて正確に記述する理論である

素粒子物理学は、原子から陽子中性子クォークレプトンへと進化してきたが、その探求はいつか終わるのだろうか。

現在研究では、ゲージ群や超対称性による統一が見られ、これらは無限に続くものではなく、打ち止めになる構造を持つと考えられている。

暫定的な答えは超弦理論であり、これが最終理論ならば一意的であることが望ましい。10次元時空における超弦理論は5種類存在し、これらは11次元時空上のM理論を通じて互いに等価である

M理論は超重力理論と関連し、M2膜とM5膜が存在することがわかっている。

しかし、このM理論は超重力理論から得られる知見以外は謎に包まれている。

N枚のM2膜やM5膜上の場の理論はそれぞれN^{3/2}やN^3に比例する自由度を持つが、その具体的な内容は不明である

最近M2膜を記述する場の理論が超対称チャーン・サイモン理論であることが発見され、この自由エネルギーもN^{3/2}に比例し、超重力理論予言再現する。

高い超対称性により経路積分行列模型帰着し、著者らの研究ではM2膜の行列モデルが詳しく調べられた。

摂動項の展開係数には無数の発散点があるが、それらは格子状に相殺されている。

この結果は、「弦理論は弦のみではなく様々な膜も含む」を実現していると解釈できる。

この行列模型位相的弦理論や可積分非線形微分方程式と同様の構造を持つことが確認されており、それに基づいてM理論の全容が解明されつつある。

2024-09-19

anond:20240919135854

例えばストーブで、煙突を長くすると燃焼効率がどうなるかとか、

紙飛行機でどういう折り方をすれば長く飛ぶとか、

デスクトップパソコンの吸気・廃棄どうすればいいかとか、

そういう物量シミュレーションもっと身近になるものだと思っていた。

物理シミュレーション」と「設計最適化」の区別が全くついていない。

物理シミュレーションは単に与えられたパラメータ境界条件微分方程式を解いているだけであって、所望の結果が得られるようにパラメータ最適化しているわけではない。

2024-09-17

テレンス・タオAI数学能力は、次か次のバージョンで有能な大学院生ぐらいのレベルに到達するだろう」

テレンス・タオ(英: Terence Tao1975年7月17日 - )は、オーストラリア数学者カリフォルニア大学ロサンゼルス教授漢名は陶 哲軒(とう てつけん)。

専門は実解析、調和解析微分方程式組合せ論、整数論表現論など多岐に亘る。

ボッチャー記念賞(2002年

クレイ研究賞(2003年

フィールズ賞2006年

キング・ファイサル国際賞(2010年

クラフォード賞2012年

ロイヤルメダル2014年

もう人類の99%は知的能力AIに勝てなくなるね

おれもブルーワーカーになるときが来たな

2024-09-15

[] 無限次元確率動的一般均衡モデル

1. 確率基底と関数空間

完備確率空間 (Ω, ℱ, ℙ) 上で、右連続増大フィルレーション {ℱₜ}ₜ≥₀ を考える。

状態空間として、実可分ヒルベルト空間 ℋ を導入し、その上のトレース作用素なす空間を 𝓛₁(ℋ) とする。

2. 無限次元確率微分方程式

システムダイナミクスを以下の無限次元確率微分方程式記述する:

dXₜ = [AXₜ + F(Xₜ, uₜ)]dt + G(Xₜ)dW

ここで、Xₜ ∈ ℋ は状態変数、A は無限次元線形作用素、F, G は非線形作用素、uₜ は制御変数、Wₜ は Q-Wiener プロセスである

3. 一般化された経済主体問題

経済主体最適化問題を、以下の抽象的な確率最適制御問題として定式化する:

max𝔼[∫₀^∞ e⁻ᵖᵗ L(Xₜ, uₜ) dt]

ここで、𝓤 は許容制御の集合、L: ℋ × 𝓤 → ℝ は汎関数である

4. 無限次元HJB方程式

価値汎関数 V: ℋ → ℝ に対する無限次元Hamilton-Jacobi-Bellman方程式

ρV(x) = sup{L(x, u) + ⟨AX + F(x, u), DV(x)⟩ℋ + ½Tr[G(x)QG*(x)D²V(x)]}

ここで、DV と D²V はそれぞれFréchet微分と2次Fréchet微分を表す。

5. 無限次元Fokker-Planck方程式

システム確率分布時間発展を記述する無限次元Fokker-Planck方程式

∂p/∂t = -divℋ[(Ax + F(x, u))p] + ½Tr[G(x)QG*(x)D²p]

ここで、p: ℋ × [0, ∞) → ℝ は確率密度汎関数、divℋ はヒルベルト空間上の発散作用素である

6. 無限次元随伴方程式

最適制御問題随伴方程式

dλₜ = -[A*λₜ + DₓF*(Xₜ, uₜ)λₜ + DₓL(Xₜ, uₜ)]dt + νₜ dW

ここで、λₜ は無限次元随伴過程、A* は A の共役作用素である

7. 無限次元マルチンゲール問題

価格過程一般的な表現を、以下の無限次元マルチンゲール問題として定式化する:

Mₜ = 𝔼[M_T | ℱₜ] = M₀ + ∫₀ᵗ Φₛ dW

ここで、Mₜ は ℋ 値マルチンゲール、Φₜ は予測可能な 𝓛₂(ℋ) 値過程である

8. 関数空間上の測度変換

Girsanovの定理無限次元拡張を用いて、以下の測度変換を考える:

dℚ/dℙ|ℱₜ = exp(∫₀ᵗ ⟨θₛ, dWₛ⟩ℋ - ½∫₀ᵗ ‖θₛ‖²ℋ ds)

ここで、θₜ は ℋ 値適合過程である

9. 無限次元確率偏微分方程式

インフレーション動学を、以下の無限次元確率偏微分方程式記述する:

dπₜ = [Δπₜ + f(πₜ, iₜ, Yₜ)]dt + σ(πₜ)dW

ここで、Δ はラプラシアン、f と σ は非線形作用素、iₜ は金利、Yₜ は総産出である

10. 関数空間上の漸近展開

さなパラメータ ε に関して、解を以下のように関数空間上で展開する:

Xₜ = X₀ + εX₁ + ε²X₂ + O(ε³)

ここで、各 Xᵢ は ℋ 値確率過程である

11. 実質賃金への影響分析

実質賃金過程無限次元確率微分方程式として定式化する:

dwₜ = [Bwₜ + H(wₜ, πₜ, iₜ, Yₜ)]dt + K(wₜ)dW

ここで、B は線形作用素、H と K は非線形作用素である

金利上昇の実質賃金への影響は、以下の汎関数微分評価できる:

δ𝔼[wₜ]/δiₜ = lim(ε→0) (𝔼[wₜ(iₜ + εh) - wₜ(iₜ)]/ε)

ここで、h は ℋ の任意の要素である

12. 抽象考察

1. 非可換確率論:

量子確率論の枠組みを導入し、不確実性のより一般的な記述を行う。

2. 圏論アプローチ

経済モデルを圏として捉え、関手自然変換を用いて分析する。

3. ホモトピー型理論

経済均衡の位相構造分析し、均衡の安定性を高次ホモトピー群で特徴付ける。

4. 超準解析:

無限小解析を用いて、極限的な経済現象を厳密に扱う。

結論

無限次元確率動的一般均衡モデルは、金利インフレーション実質賃金相互作用一般的な形で記述している。

モデルの複雑性により、具体的な解を得ることは不可能に近いが、この理論的枠組みは経済現象本質的構造を捉えることを目指している。

このアプローチは、金利上昇がインフレ抑制を通じて実質賃金に与える影響を、無限次元確率過程観点から分析することを可能にする。

しかし、モデル抽象性と現実経済の複雑性を考慮すると、具体的な政策提言への直接的な適用不適切である

このモデルは、経済学の理論的基礎を数学的に提供するものであり、実際の経済分析政策決定には、この抽象的枠組みから導かれる洞察を、より具体的なモデル実証研究と慎重に組み合わせて解釈する必要がある。

このレベル抽象化は、現代経済研究最前線はるかに超えており、純粋理論的な探求としての意義を持つものであることを付記する。

2024-08-31

AdS/CFT対応について

AdS/CFT対応数学抽象化を以下に示すのだ。

基本的定義

AdS/CFT対応は、以下の二つの理論間の同型を主張するのだ:

1. d次元共形場理論 (CFT)

2. (d+1)次元反ド・ジッター空間 (AdS) 上の重力理論

数学構造

AdS空間

(d+1)次元AdS空間は以下の計量で特徴付けられるのだ:

ds² = R²/z²(-dt² + d𝐱² + dz²)

ここで、R はAdS空間の曲率半径、z は動径座標なのだ

CFTの共形群

d次元CFTは SO(d,2) 共形群の下で不変なのだ。この群はAdSd+1の等長変換群と同型なのだ

対応関係数学表現

場と演算子対応

AdS側の場φとCFT側の演算子Oの間に以下の対応があるのだ:

⟨e^(-∫d^dx J(x)O(x))⟩CFT = e^(-Sgrav[φ])

ここで、J(x)は源、Sgrav[φ]はAdS側の重力作用なのだ

スケーリング次元質量関係

m²R² = Δ(Δ-d)

ここで、mはAdS側のスカラー場の質量、ΔはCFT側の対応する演算子のスケーリング次元なのだ

ログラフィック繰り込み

AdS/CFT対応は、CFT繰り込み群の流れをAdS空間内の幾何学的流れとして表現するのだ。これは以下の微分方程式記述されるのだ:

dgi/d log z = βi(g)

ここで、giは結合定数、βiはベータ関数、zはAdS空間の動径座標なのだ

相関関数対応

n点相関関数は以下のように対応するのだ:

⟨O1(x1)...On(xn)⟩CFT = lim(z→0) z^(-Δ1)...z^(-Δn) ⟨φ1(x1,z)...φn(xn,z)⟩AdS

ここで、OiCFT側の演算子、φiはAdS側の対応する場なのだ

エントロピー対応

CFT側のエントロピーSとAdS側の極小曲面の面積Aの間に以下の関係があるのだ:

S = A/(4GN)

ここで、GNは(d+1)次元ニュートン定数なのだ

ウィルソンループ対応

CFT側のウィルソンループWとAdS側の極小曲面の面積Aの間に以下の関係があるのだ:

⟨W⟩CFT = e^(-A/(2πα'))

ここで、α'は弦の張力の逆数なのだ

2024-08-23

忙しい人のための物理学

1. 古典力学 (Classical Mechanics):

古典力学では、粒子の運動時間 t の関数 q(t) で表され、ニュートン運動方程式を満たすのだ:

q̈ = -U'(q)

ここで、U(q) はポテンシャルエネルギーである運動方程式は、ラグランジアン L(q) = 1/2q̇² - U(q) に基づく変分問題として再定義でき、作用積分 S(q) = ∫ₐᵇ L(q)dt極値点として運動記述するのだ。これは、最小作用の原理とも呼ばれるぞ。

2. 古典場の理論 (Classical Field Theory):

古典理論では、粒子ではなく、連続的な場 φ(x,t) を考えるのだ。この場は部分微分方程式に従い、例えば波動方程式

□φ = 0

記述されるぞ。ラグランジアン L(φ) は微分多項式であり、作用積分 S(φ) = ∫_D L(φ)dx dt を極小化することによって運動方程式(オイラー-ラグランジュ方程式)が導かれるのだ。

3. ブラウン運動 (Brownian Motion):

古典力学と異なり、量子力学では粒子は古典的な軌道を持たず、確率的に動くのだ。ブラウン運動モデルにして、粒子の位置 q(t) は確率密度

P(q) ∝ e^(-S(q)/κ)

に従い、ここで S(q) = ∫ₐᵇ (1/2q̇² - U(q)) dt作用、κ は拡散係数である。このような確率動力学の期待値は、経路積分を用いて計算されるぞ。

4. 量子力学 (Quantum Mechanics):

量子力学ではブラウン運動モデルを基にしつつ、拡散係数 κ を虚数 iℏ に置き換えるのだ(ℏ はプランク定数)。したがって、量子力学の相関関数は次のように表されるぞ:

⟨q_j₁(t₁) ··· q_jₙ(tₙ)⟩ = ∫ q_j₁(t₁) ··· q_jₙ(tₙ) e^(iS(q)/ℏ) Dq

5. 量子場理論 (Quantum Field Theory):

量子場理論でも、場の相関関数は次のように表されるのだ:

⟨φ_j₁(x₁, t₁) ··· φ_jₙ(xₙ, tₙ)⟩ = ∫ φ_j₁(x₁, t₁) ··· φ_jₙ(xₙ, tₙ) e^(iS(φ)/ℏ) Dφ

ただし、この積分は複素測度に基づくため、数学的に厳密に定義するのが困難であり、理論物理学における重要課題となっているのだ。

2024-08-16

[] 円安物価高のデメリット

円安物価高のデメリット分析するために、経済理論を使ったアプローチを示す。

以下では、動学的確率一般均衡(DSGE)モデル確率微分方程式を用いて、円安物価高が経済に与える影響を数理的に抽象化する。

1. 動学的確率一般均衡(DSGE)モデル

DSGEモデルは、経済全体の動学的な相互作用考慮したモデルである。ここでは、消費者企業政府、および外部経済考慮し、円安物価高の影響を分析する。

消費者最適化問題

消費者は、無限時間にわたる効用を最大化する。効用関数を U(C_t, L_t) とし、割引因子を β とする。消費者の動学的最適化問題は次のように表される。

max E_0 [ ∑_{t=0}^{∞} β^t U(C_t, L_t) ]

subject to

P_{C,t} C_t + B_{t+1} = W_t L_t + (1 + r_t) B_t + Π_t - T_t

ここで、C_t は時点 t の消費、L_t は労働供給、P_{C,t} は消費財価格、B_t は債券保有量、W_t は賃金、Π_t は企業から配当、T_t は税金である

企業最適化問題

企業生産関数 Y_t = A_t ・ F(K_t, L_t, M_t) に基づき、利潤を最大化する。

max E_t [ ∑_{t=0}^{∞} β^t ( P_{Y,t} F(K_t, L_t, M_t) - W_t L_t - r_t K_t ) ]

subject to

K_{t+1} = (1-δ)K_t + I_t

ここで、δ は資本の減耗率、I_t は投資である

2. 為替レートと輸入物価関係

円安が進行すると、輸入品価格が上昇する。これを数理的に表現するために、為替レート E_t と輸入品価格 P_{import,t} の関係を以下のようにモデル化する。

P_{import,t} = E_t ・ P_{foreign,t}

ここで、P_{foreign,t} は外国通貨での輸入品価格である

3. 確率微分方程式によるモデリング

為替レートや輸入物価の変動は、確率微分方程式を用いてモデル化される。例えば、為替レートの変動は次のように表される。

dE_t = μ E_t dt + σ E_t dW_t

ここで、μ はドリフト項、σ はボラティリティ、dW_t はウィーナー過程である。このモデルを用いることで、為替レートのランダムな変動が輸入物価実質賃金に与える影響を分析できる。

4. インプリケーション

2024-07-22

[] 動的一般均衡理論抽象拡張

1. 基本設定

経済表現する空間を E とし、これを局所位相線形空間とする。価格空間 P を E の双対空間 E* の部分集合とし、商品空間 X を E の部分集合とする。

2. 一般化された超過需要関数

Z: P × Ω → X を一般化された超過需要関数とする。ここで Ω は外生パラメータ空間である。Z は以下の性質を満たす:

(a) 連続性:Z は P × Ω 上で連続

(b) 一般化された同次性:任意の λ > 0 に対して Z(λp, ω) ≈ Z(p, ω)

ここで ≈ は適切に定義された同値関係

(c) 一般化されたワルラス法則:<p, Z(p, ω)> = 0

ここで <・,・> は E* と E の間の双対性を表す

(d) 境界条件:p が P の境界に近づくとき、||Z(p, ω)|| は無限大に発散

3. 価格調整メカニズム

価格の動的調整を表現するために、以下の無限次元力学系を導入する:

dp/dt = F(Z(p, ω))

ここで F: X → TP は C^1 級写像であり、TP は P の接束を表す。

4. 均衡の存在と安定性

定理1(均衡の存在):適切な位相的条件下で、Z(p*, ω) = 0 を満たす p* ∈ P が存在する。

証明の概略:KKM(Knaster-Kuratowski-Mazurkiewicz)の定理一般化した不動点定理を応用する。

 

定理2(局所安定性):p* の近傍 U が存在し、初期値 p(0) ∈ U に対して、解軌道 p(t) は t → ∞ のとき p* に収束する。

証明の概略:リャプノフ関数 V(p) = ||Z(p, ω)||^2 / 2 を構成し、V の時間微分が負定値となることを示す。

5. 不均衡動学

不均衡状態における経済主体の行動を記述するために、以下の最適化問題を導入する:

 

経済主体 i に対して、

最大化 U_i(x_i)

制約条件 <p, x_i> ≤ w_i + Σ_j p_j min{z_ij, 0}

 

ここで U_i は効用汎関数、w_i は初期富、z_ij は財 j に対する主体 i の超過需要である

6. 確率拡張

確率空間 (Ω, F, P) 上で、以下の確率微分方程式を考察する:

dp(t) = F(Z(p(t), ω))dt + σ(p(t), ω)dW(t)

ここで W(t) は適切な次元のウィーナー過程、σ はボラティリティ作用素である

7. 漸近解析

ε → 0 のとき、以下の特異摂動問題考察する:

ε dp/dt = F(Z(p, ω))

この解析により、短期的な価格調整と長期的な均衡の関係を明らかにする。

8. 一般化された不動点定理

定理3(一般化された不動点定理):P が局所位相線形空間 E の非空、凸、コンパクト部分集合であり、F: P → P が連続写像であるとき、F は不動点を持つ。

この定理を用いて、より一般的な経済モデルにおける均衡の存在証明できる。

 

定理 4: 漸近挙動定理

ε → 0 のとき、特異摂動問題 ε dp/dt = F(Z(p, ω)) の解の漸近挙動は、元の動的システムの長期的均衡と一致する。

2024-07-07

anond:20240707110430

リメディアル教育に力を入れる大学がいま求められているというのはある。

九九の復習から始めて、4年間で微分方程式複素関数くらいまできっちり終わらせてくれる大学が増えたら凄くいいんだよな。

卒論とかなくても、そうのでいいんだよ、って採用からも言いたくなる。

2024-06-27

anond:20240626103929

言いたいことはわかるけど、だったらお前らプログラマー数学や数理統計学や各種ドメイン電磁気学機械工学制御理論やいろいろ)を理解して目の前の課題は一体どういう理屈なのか分析して解決するためのアイデア妥協点を捻り出して具体的なアルゴリズムシステムを考えるところまでやってくれたらいいんだぞ。

プログラマープログラミングのことしか分かりませんって言って線形代数微分方程式すら怪しい感じだからこっちが頑張って考えてるんですよ。こっちはプログラマーじゃないからな。

2024-06-23

anond:20240619234252

しか大学では

微分方程式バリバリ解くのが好き」なタイプ

デデキント切断で実数定義をするのが好き」なタイプ

はっきり分かれるよな

2024-06-19

また算数燃えてんのか

18÷0=0って教えてる小学校教師がいるんですって!


私は大学卒業するぐらいまで数学を誤解していた。

数学というのは草むらをかき分けたらダンゴムシいるかのように、我々の今暮らしている世界をつきつめるとおのずと数学が現れるみたいなことだと思っていた。

から数学問題を解くとき現実世界から発見を得るかのように頑張って解いていた。それで微分方程式完璧に進めなくなった。

あれって「この式はこの解き方で解けそうだからあてはめてやってみて解けたらそのままいくけどそうじゃないなら撤退して別の解き方を当てはめて~」みたいなやりかたするじゃん。納得がいかなかった。

違うんだよなー。数学をそれは誤解してんだよなー。

数学カードゲーム発明して遊ぶようなもんなんだ。まず1種類のルール作ってみて、そっからすごくプレイが発展させられるのおもしろい、みてみて1ターンキルコンボできた!みたいなやつなんだ。

そこでだよ、ゼロで割るの大抵の数学で「やっちゃいけない」とか「定義しない」とかする。

なんでかっていうとそれ許すと何もかもつまんない発展しかさせられないルールしかなんないんだよね。

まり18÷0がゼロですって教えた先生は「せんせー、じゃあそうすると1+1は2でありつつもゼロでもあることにできます!」みたいな証明を持ち込まれてキレない度量持ってないといけないんだよ。

持ってるわけねえな。燃えろ燃えろ

2024-06-06

anond:20240606125742

とりあえず微分方程式にできれば、あとは解くだけでシステマチックに行けるからいいよな

2024-02-29

anond:20240229155500

三角関数は角度と長さの比率なんだから斜めを使うなら絶対必要になる

直角以外のDIY家具の配置から微分方程式を解くのにも必要だよ

2024-02-25

理系って読解力低いなあ!

それともわざとやってるの?↓

微分方程式の重ね合わせの原理物理波動分野に出てくる重ね合わせの原理は何か関連があるんですか

というより、波動で起こる重ね合わせの原理による現象を定式化したとき微分方程式の重ね合わせの原理の形が出てくるのかなと勝手に思ってるんですが。調べても出てこないので…

微分方程式原理ではなく、重ね合わせができる線形微分方程式とそうではない方程式があります方程式性格による区別です。

波の場合記述する波動方程式線形なら重ね合わせができるのは原理でも何でもなく必然ですが、波動方程式が具体的に与えられていない段階でも波なら重ね合わせが成立する、と考えるのが波動の重ね合わせの原理です。

ちなみにですが、誰も微分方程式原理だなとと言ってはいません。

微分方程式の重ね合わせの原理と~」と書くと、そう読む人もいるということなのでしょうか…

かといって「微分方程式の、重ね合わせの原理と~」って書くのはあまりにも露骨で逆に読み手の読解力を疑ってバカにしてるように見えませんかね。

あなたたならどう書きます

難しい証明をきちんと理解できるのにこんな程度の普通とはずれた読み方をするの見てるとわざとじゃないかと思えてくる

2024-02-13

数学を使って生きていきたかった

微分方程式とかナビエストークスとか固有値解析とかそういう世界で生きていきたいと思って新卒で入った会社

結局エクセルで出た数値とシステムで出た数値をにらめっこしてバグ報告を書くだけの仕事

院卒どころか高卒でもできるよ

2023-11-01

anond:20231101232726

微分方程式もまともに解けなさそうなバカには難しそうだな

線形ODEを演算子法かなんかで解けるって程度の癖に偉そうに

2023-10-28

今のインターネット面白いと言う奴はつまらない

インターネットがつまらなくなった、と言う人がちらほらいることに気がついている人もいるかもしれない。皮肉を言いたがる鬱陶しい人は、すぐに「それはお前がつまらなくなったからだ」と言うが、それは物事のほんの一つの側面でしかない。

長文を読むことが苦手な人のために、結論から述べようと思う。インターネットがつまらないのは、人々がタイパと刺激を求めた結果である。限りある人生有効に使いたい。ここまではよかったはずだ。だが世の中を見渡せば、「簡単理解できるコンテンツ」「刺激的なコンテンツ」「感情を煽るコンテンツ」で溢れている。マスターベーションを覚えた猿が繰り返すように、インターネットから刺激性を学習した猿は狂ったようにスクロールする。

私がソフトウェアブログを書いていた時、あることに気がついた。難解でユニークアルゴリズムを公開するよりも、「○○のインストール方法」といった初心者コンテンツのほうがアクセスが多いのである。何かをインストールする方法など、ドキュメントを見れば一発でわかるのに、ブログアクセスしてくる。いや、検索エンジンドキュメントではなく私のブログTop誘導するのがそもそもおかしいだろう。悲しいことに、ドキュメントちゃんと読める人が少数派であり、平易な言葉で書かれたブログの方を好む人が多いということだ。

個人的価値観を述べれば、インターネットに私が求めるのは「深遠」であるゲーム理論確率微分方程式を組み合わせたらどうなるのかとか、プラグマティズムソフトウェア工学に適用するAndy Huntの最新の哲学的考察を知りたいとか、そういうことだ。

深淵理解には時間がかかる。タイパと刺激の発想とは逆だ。一見退屈に見える無刺激な長文を、ゆっくりと地道に隅々まで理解しなければならない。深淵は真面目でストイックで、人生を共に歩むように接する。コンテンツを書いた人間個人として尊重し、友達と語り合うような気分で読み解くのである

コンテンツは見て射精して賢者タイム。それで終わり」というのが現代人がやっていることだ。インターネットは元々学術的な(つまり深淵的な)情報交換のために作られたが、今では娯楽(つまりオナニー)が大半を占めている。そういう消費者に合わせて作られたものは、簡単理解できて、極端で、やたらに感情煽りたがる。コンテンツだけではなく、検索エンジンや推薦システムなどありとあらゆるものが、刺激性の猿回しになっている。

逆説的だが、今のインターネット面白いと思っている人間がつまらないのである。猿がオナニーして、それが楽しいというのなら文化的ではないだろう。インターネットがつまらなくなったという人は、意識的努力しなければ深淵にたどり着くことが難しくなったことを嘆いているかもしれない。私が高校生の時は、「ハッカーになる方法」と調べたとき、Eric S. Raymondの深淵文章トップに出てきたのだ。現代では、なぜかコンピュータセキュリティについてトップに出てきて、まさに中二病患者が求めるものをそのまま出してきていると言える。

といっても、いきなりarxivを読むのも、またそれはそれで時間がかかりすぎてしまうこともある。具体的数式ではなく、個人の持つ哲学を知りたいと思うこともあるかもしれない。哲学にも概ね2種類あり、本質を平易に説明するものと、無意味ものを難解に説明するものだ。後者ポストモダニズム的で忌み嫌われる。

ポストモダニズムに陥ることなく、本質深淵にたどり着くためにはどうすればよいのか。検索エンジンだけでは、そのコンテンツが深遠なのか浅知恵なのか区別する能力に欠けている。おそらく、我々が本当に必要としているのは「ブックマーク」であり、場当たり的な検索ではないのかもしれない。本質的な深淵を語る人をブックマークし、その人の哲学を友人のように尊重したいのだ。大量の刺激的情報を消費してオナニーするよりは、少数の人の長文に触れたほうが充実するに違いない。

2023-10-22

気象大学校学生頭よすぎ

俺は気象予報士試験一般は通って専門は15問中一問分ボーダーに届かなくて落ちた経験がある人間だが、そんな人間気象大学校学生が教材として使ってる気象庁ホームページで公開されてるテキスト理解を試みてみたところ、さっぱり分からないという始末になった。

https://www.jma.go.jp/jma/kishou/know/expert/pdf/textbook_meso_v2.1.pdf

これの14ページ(資料下に印字されてるページ番号としては8ページ) なのだ

dVc/dt=αVsという式が成り立ってて、この式は気圧傾度力考慮されてるとも書いてあるが、まず一体どういう力の作用の構図を想定してるのかが分からない。

左辺はただの時間変化を微分として表現したもので、右辺もまた中層風と下層風の単なる速度差だから、これが気圧傾度力考慮されてる式だとしたら、αの一文字気圧傾度力を表してるって自動的解釈されるというか、それ以外に解釈余地が見当たらない。

一方、傾度風や地衡風について立式するとき速度(ベクトル)にコリオリパラメータを掛けそれに気圧傾度力(と遠心力)を足し引きしたような方程式になるわけで、そうなる理由も予報士試験参考書に力の作用関係の図示付きで書いてあったし理解してるつもりなのだが、だからこそなぜベクトルに「掛けてる」のが気圧傾度力でそれが速度の時間変化に等しくなるのか全くぴんと来ない。

そもそも左辺が速度の微分なのに右辺も速度の定数倍になってるのも理解が追いつかない。なぜ加速度でないのか?

Vc=aVl+bVmについて大気密度が小さくなると速度が大きくなるのでa+b>1となるとも書いてるが速度が大きくなることからうその不等式が成立することが導かれるのかもわからない。もっといえばなぜ密度が小さくなると速度が大きくなるのか…ときりがない。

おそらくこちらにとっては天下り式で説明が足りてないように見えるテキストも、気象大学校に入れる学生から見ればあれだけの情報から私が分からないと言った理由も十分読み取れるのだろう。

それはなんというか、少なくとも高校までの履修内容の理解の完成度が全く質的に違うことがこのような差をもたらしてるんだと思う。

たとえば逆に俺でも先に成立する理由が分からないと言った微分方程式が正しいことを前提としてなら、その下に書かれているのがそれを解いた式であることは納得できる。俺でも高校のうちに初歩的な変数分離法は身に付けてるからだが、人によっては同じ理系でも化学系の学部に入る人とかで大学入試を終えた直後の段階で大学レベル教養数学を学んだ経験が皆無な状態だとただの変数分離で解かれた式にすらぴんと来ないってことはあるかもしれない。

そして気象大学校に入る人たちはこんなのよりもさらに奥深くまで見通しよく高校までの内容を理解してるのだろう。うまいたとえかわからないが、数学の白黄チャートしかやってこなかった人間が赤チャートを見たら同じ単元でも全く別物の内容を学んでいるんじゃないかってぐらいのものに感じるような感じだろうか。気象大学校入学者も高校段階の知識でもはや私とは全く異なるような理解を持っているのだと思う。彼らから見れば私が分からないと言ってることは変数分離が分からないことが不思議になるぐらい当たり前のことなのだろう。

ただ5chの気象予報士試験対策スレ質問しても、独学で合格したけどここで聞くより予備校で聞いた方がいいぐらいさっぱり分からないと言われた。

気象予報士だって合格したら割と誇れる資格なのにそういう人でもさっぱり分からないって、もう気象大学校学生は私や予報士とは住む世界が違うような頭の良さを持ってるんだと思う。

そういう人たちでやっと気象災害対策責任持てる仕事をする資格が持てるんだなーとある種納得と途方のない挫折感。

地震が起こると毎度同程度の地震が数週間起こる可能性があるとか同じようなこと言ってるなあろか馬鹿のしてる場合じゃなかった。

2023-10-06

[] 2023-10-06

深夜の翳りに身を晒し、今やっと眼を覚ました。これは魂の夜ふかし、そう呼ぶべきでしょう。

さて、私は時折、American Mathematical Society(以下、AMS)の書籍を求める運命にある。特にStudent Mathematical Libraryというシリーズは、その薄っぺら体裁ながら、研究の奥深さを体感できるとても理想的ものであり、よく手に取ることとなる。しかし、その紙一重の薄さの背後に隠された内容は、従って、大学院学生にのみ耐えうるものとなっている。昔、あまりの熱意から何冊か買い求め、積読の山を築いたこともあるが。

その山に埋もれる中、一つの書を読み尽くしたことがある。それは、数理モデリングの書であった。数理モデリング、これは往々にして、ラグランジュの未定乗数法などのよく知られた方法論に頼る傾向がある。しかしながら、AMSの書籍はそのくだらない枠組みにとらわれず、多彩な事例を探求していた。とはいえ、フレンケル教授が言うように、数理モデリングと言っても、ついには「ペンキ塗りの数学である

私は数学最前線垣間見るようになり、調和解析と数論の奇跡的な交差、フェルマーの最終定理ガロア群、保型関数など、その深遠さに驚嘆する日々である最近は、経済学数学を結びつけることに強い興味を抱いており、mean fieldのような奥深い謎が私を惹きつける。

学びたいことが山ほどあり、私の能力時間には限りがある。何を学ぶべきか、と悩むのはやむを得ない。しかし、コスパを重視し過ぎると、ついにはペンキ塗りの典型に陥ってしまうだろう。複数数学領域を結びつけることは、即座に実用性が見えるものと、その応用が果たしてどこに行くのか見当もつかないものがある。伊藤清が指摘するように、「実用考慮しなければ、数学で遊ぶことは限りない」。この観点から見れば、私が探求すべき分野は、確率論領域にあるのは明らかだろう。確率微分方程式ゲーム理論の交わる地点は、実用性との調和によって成り立つ、その方向へと進む決意を固める。

hash: c94da2af8ee4dd6e6ead4da0676b2b97

2023-10-04

[] 経済数学

昨日はFaddeevから少し離れてダニエルフライシュという人のシュレーディンガー方程式について書かれた本を読み終えました。

またTwitterの使い方に関してですが、本当に興味のあるトピックについてつぶやく人か、あるいは自分フォローしてくれる人以外はアンフォローしたほうがよいと思いました。

というのもあらゆる政治ツイートを見ていると、ドーパミン製造機のようになってしまうのです。

政治ツイートは、特に経済的ものは間違いが散見されます。するとついついツッコみたくなるのです。

例えば、インフレというトピックがあるとします。主な要因は、原油価格財政政策金融政策賃上げによるものです。

一部の人が、「金を刷れば刷るほど無尽蔵に豊かになる」などと言っている度に、貨幣価値の話とその方法で失敗した国の話、インフレターゲットの話をしなければならなくなります

本当に経済について間違いを指摘したいなら、ちゃんとした長文でまとめておいた方がよいと思いますが、そのような情報ならインターネット上にあるでしょう。

しか問題なのは政治経済情報は玉石混合なのです。正しいことをいう人はいますが、間違ったことをいう人もたくさんいます。そして価値判断問題もあります

とりわけ、マクロ経済と呼ばれる分野において混乱が生じているように思えます

ミクロ経済であれば、すでに数学手法確立されており、今後100年経っても教科書数学手法自体は変わらないでしょう。

しかマクロ経済に至っては、経済現象因果推論が雑に行われており、理論の前提に問題が生じているケースというのがあると思うのです。

経済にはポジティブな側面もあります超弦理論が新しい数学を生み出すように、経済現象ゲーム理論確率微分方程式力学系などの数学を生み出すのです。

私が経済インチキを見る時、そこから政治感情を抜き去り、抽象化を施して、数学というドメインに変換すれば冷静になれると思うわけです。

2023-09-21

幼稚園落ちた

出題傾向の変化に翻弄された

例えば算数は例年、微分方程式が出題されているところ、今年は線形代数範囲轟沈

仕方ないので一旦滑り止めの保育園仮面浪人して来年編入試験チャレンジしま

2023-09-07

数学面白

変数微積分の問題に没頭していく中で、数学の魅力と深遠さを再び見つけました。

関数と曲線の振る舞いを探求し、微小な変動が全体に及ぼす影響を追求する過程で、数学は私にとってまるで美術館の中の至宝を鑑賞しているかのように感じられました。

数学問題はその複雑性から挑戦的でありながら、それを解明する喜びと充実感は何よりも素晴らしいものです。

数学は単なる計算公式の羅列ではなく、知の探求の旅でもあります

微積分を通じて、数学宇宙自然法則を解き明かす手段であり、知識の宝庫であることを改めて理解しました。

関数微分方程式の背後にある論理的構造や、微小な変化が物理現象経済の動向にどのように影響を及ぼすかという洞察力は、数学の美しい魅力の一部です。

数学世界無限大であり、それを探求することは知的好奇心を満たすための果てしない冒険です。

新しい概念を学び、新しい問題に挑むたびに、私の思考能力が高まり知識の深化が加速します。

数学は私にとって知的な挑戦の場であり、同時にクリエイティブ問題解決プレイグラウンドでもあります

その魔法に取り組むことは、私にとって単なる趣味以上の、情熱と熱意の源泉です。

ログイン ユーザー登録
ようこそ ゲスト さん