「局所」を含む日記 RSS

はてなキーワード: 局所とは

2024-09-18

超弦理論の7つの観点からの定式化

1. 多様体: 座標系、つまり局所的にモデル空間と関連付けることにより記述

超弦理論では、時空は10次元の滑らかな微分多様体 M^{10} としてモデル化されます。各点の近傍 U ⊆ M^{10} に局所座標 x^{μ}: U → ℝ^{10} を導入します(μ = 0,1,…,9)。

弦の運動は、パラメータ σ^{α}(α = 0,1)で記述される2次元世界面(ワールドシート) Σ 上の埋め込み写像 X^{μ}(σ^{α}) を用いて表されます

作用はポリャコフ作用で与えられます

S = -T/2 ∫_{Σ} d²σ √(-h) h^{αβ} ∂_{α} X^{μ} ∂_{β} X^{ν} g_{μν}(X),

ここで:

- T は弦の張力(T = 1/(2πα'))、

- h_{αβ} は世界面の計量、

- g_{μν}(X) は時空の計量テンソル

- α' は逆張力で、弦の長さの二乗に比例。

M理論では、時空は11次元微分多様体 M^{11} となり、M2ブレーンやM5ブレーンのダイナミクスが中心となりますM2ブレーンの世界体積は3次元で、埋め込み写像 X^{μ}(σ^{a})(a = 0,1,2)で記述されます作用は次のように与えられます

S = -T_{2} ∫ d³σ √(-det(G_{ab})) + T_{2} ∫ C_{μνρ} ∂_{a} X^{μ} ∂_{b} X^{ν} ∂_{c} X^{ρ} ε^{abc},

ここで:

- T_{2} はM2ブレーンの張力

- G_{ab} = ∂_{a} X^{μ} ∂_{b} X^{ν} g_{μν} は誘導計量、

- C_{μνρ} は11次元重力の三形式ポテンシャル

2. スキーム: 局所関数を通じて記述。点は関数空間での極大イデアル対応する。

ラビ–ヤウ多様体は、超弦理論コンパクト化において重要役割を果たす複素代数多様体であり、スキーム言葉記述されます

例えば、3次元ラビ–ヤウ多様体は、射影空間 ℙ^{4} 内で次の斉次多項式方程式の零点として定義されます

f(z_{0}, z_{1}, z_{2}, z_{3}, z_{4}) = 0,

ここで [z_{0} : z_{1} : z_{2} : z_{3} : z_{4}] は射影座標です。

各点 x は、局所環 ℴ_{X,x} の極大イデアル ℳ_{x} に対応します。これにより、特異点やその解消、モジュライ空間構造を厳密に解析できます

3. 与えられた空間を他の空間からの射、すなわち構造を保つ写像(の全体)Hom(-,S)を通じて記述

理論では、世界面 Σ から時空多様体 M への写像空間 Map(Σ, M) を考えます。この空間の元 X: Σ → M は、物理的には弦の配置を表します。

特に、開弦の場合、端点はDブレーン上に固定されます。これは、境界条件として写像 X がDブレーンのワールドボリューム W への射 ∂Σ → W を満たすことを意味します。

この設定では、開弦のモジュライ空間は、境界条件考慮した写像空間 Hom(Σ, M; ∂Σ → W) となります

4. コホモロジー論におけるように不変量を通じて特徴づける。

理論物理量は、しばしば背景多様体コホモロジー群の要素として表現されます

- ラマンド–ラマンド(RR)場は、時空のコホモロジー群の要素 F^{(n)} ∈ H^{n}(M, ℝ) として扱われます

- Dブレーンのチャージは、K理論の元として分類されます。具体的には、Dブレーンの分類は時空多様体 M のK群 K(M) の元として与えられます

- グロモフ–ウィッテン不変量は、弦のワールドシート上のホモロジー類 [Σ] ∈ H_{2}(M, ℤ) に対応し、弦の瞬間子効果計算するために使用されます

例えば、グロモフ–ウィッテン不変量は、モジュライ空間 ℤ̄{M}_{g,n}(M, β) 上のコホモロジー類の積分として計算されます

⟨∏_{i=1}^{n} γ_{i}⟩_{g,β} = ∫_{[ℤ̄{M}_{g,n}(M, β)]^{vir}} ∏_{i=1}^{n} ev_{i}^{*}(γ_{i}),

ここで:

- g はワールドシートの種数、

- β ∈ H_{2}(M, ℤ) は曲面のホモロジー類、

- γ_{i} ∈ H^{*}(M, ℝ) は挿入するコホモロジー類、

- ev_{i} は評価写像 ev_{i}: ℤ̄{M}_{g,n}(M, β) → M。

5. 局所的断片(単体、胞体)から空間を再構築して、空間性質がその構築のパターン組合せ論に帰着されるようにする。

理論摂動論的計算では、世界面をパンツ分解などの方法で細分化し、それらの組み合わせを考慮します。

- パンツ分解: リーマン面基本的ペアオブパンツ(3つの境界を持つ曲面)に分割し、それらを組み合わせて高次の曲面を構築します。

- 世界面のトポロジー組合せ論的に扱い、弦の散乱振幅を計算します。

弦の散乱振幅は、各トポロジーに対して次のようなパス積分として与えられます

A = ∑_{g=0}^{∞} g_{s}^{2g-2} ∫_{ℳ_{g}} D[h] ∫ D[X] e^{-S[X,h]},

ここで:

- g_{s} は弦の結合定数、

- ℳ_{g} は種数 g のリーマン面のモジュライ空間

- D[h] は計量に関する積分(ファデエフポポフ法で適切に定義)、

- S[X,h] はポリャコフ作用

6. 構造を保つ変換の成す群の言葉空間を特徴づける。

対称性の群は、弦理論M理論基本的性質を決定します。

- 共形対称性: ワールドシート上の共形変換は、ビラソロ代数

[L_{m}, L_{n}] = (m - n) L_{m+n} + c/12 m (m^{2} - 1) δ_{m+n,0}

に従います。ここで c は中心電荷

- 超対称性: ℕ = 1 の超共形代数は、

{G_{r}, G_{s}} = 2 L_{r+s} + c/3 (r^{2} - 1/4) δ_{r+s,0},

[L_{n}, G_{r}] = (n/2 - r) G_{n+r}

を満たします。

- T-双対性: 円状にコンパクト化された次元において、半径 R と α'/R の理論等価である。このとき運動量 p と巻き数 w が交換されます

p = n/R, w = m R → p' = m/R', w' = n R',

ここで R' = α'/R。

- S-双対性: 強結合と弱結合の理論等価であるという双対性。弦の結合定数 g_{s} が変換されます

g_{s} → 1/g_{s}。

7. 距離空間: その元の間の距離関係を通じて空間定義

時空の計量 g_{μν} は、弦の運動を決定する基本的な要素です。背景時空がリッチ平坦(例えばカラビ–ヤウ多様体)の場合、以下を満たします:

R_{μν} = 0。

β関数消失条件から、背景場は次のような場の方程式を満たす必要があります(一次順序):

- 重力場:

R_{μν} - 1/4 H_{μλρ} H_{ν}^{\ λρ} + 2 ∇_{μ} ∇_{ν} Φ = 0、

- B-フィールド

∇^{λ} H_{λμν} - 2 (∂^{λ} Φ) H_{λμν} = 0、

- ディラトン場:

4 (∇Φ)^{2} - 4 ∇^{2} Φ + R - 1/12 H_{μνρ} H^{μνρ} = 0。

M理論では、三形式場 C_{μνρ} とその場の強度 F_{μνρσ} = ∂_{[μ} C_{νρσ]} が存在し、11次元重力の場の方程式を満たします:

- 場の強度の方程式

d * F = 1/2 F ∧ F、

- アインシュタイン方程式

R_{μν} = 1/12 (F_{μλρσ} F_{ν}^{\ λρσ} - 1/12 g_{μν} F_{λρσδ} F^{λρσδ})。

エレメンタリートポスによるモデル

エレメンタリートポスの枠組みを用いることで、情報存在関係数学的にモデル化できる。このモデルでは、存在トポス対象として、情報をその間の射や、内部論理における命題として表現する。

定義1(圏)

- 対象クラスOb(𝓔)。

- 射の集合:任意対象 A, B ∈ Ob(𝓔) に対し、射の集合 Hom𝓔(A, B)。

- 合成写像:∘ : Hom𝓔(B, C) × Hom𝓔(A, B) → Hom𝓔(A, C)。

- 恒等射:各対象 A に対し、idA ∈ Hom𝓔(A, A)。

- 合成の結合律:f ∘ (g ∘ h) = (f ∘ g) ∘ h。

- 恒等射の単位性:idB ∘ f = f、f ∘ idA = f。

定義2(エレメンタリートポス)

  • 圏 𝓔 がエレメンタリートポスであるとは、以下の条件を満たすことを指す。

1. 有限極限の存在:𝓔 は有限極限(特に、積と等化子)を持つ完備な圏である

2. 指数対象存在任意対象 A, B ∈ 𝓔 に対し、指数対象 BA存在し、以下の自然同型が成り立つ。

Hom𝓔(C × A, B) ≅ Hom𝓔(C, BA)

3. 部分対象分類子の存在特別対象 Ω ∈ 𝓔 と単射 true: 1 → Ω が存在し、任意のモノ射(単射) m: U ↪ A に対し、一意的な射(特性射) χU: A → Ω が存在して以下の可換図式を満たす。

U ↪ A

↓ ↓

1 → Ω

ここで、! は終対象 1 から U への唯一の射である

存在モデル

情報モデル

1. 射としての情報存在間の関係や変換を表す射 f: A → B は、存在 A から存在 B への情報の伝達や変換をモデル化する。

2. 部分対象としての情報対象 A の部分対象 m: U ↪ A は、存在 A の特定性質や部分構造情報)を表す。これはモノ射として表現される。

3. 特性射と命題:部分対象 m: U ↪ A に対応する特性射 χU: A → Ω は、存在 A の要素が部分対象 U に属するかどうかを示す情報提供する。

内部論理による情報論理構造

トポス 𝓔 の内部では、高階直観主義論理が展開される。ここで、以下の対応が成立する。

- 論理積(AND):P ∧ Q は積対象を用いて、χP∧Q = ⟨χP, χQ⟩ : A → Ω × Ω → Ω。

- 論理和(OR):P ∨ Q は余積(和)を用いて表現される。

- 含意(IMPLIES):P ⇒ Q は指数対象を用いて、χP⇒Q: A → ΩΩ。

- 否定(NOT):¬P は、χ¬P = χP⇒⊥ として表され、⊥ は偽を表す部分対象である

ヨネダの補題による存在情報の同一視

ヨネダの補題

シーブと層による情報の集約

  • シーブ(sheaf):圏 𝓔 上の前層 F: 𝓔opSet であり、貼り合わせ可能性と一致性の条件を満たすもの
  • 層の条件:

1. 一致性:開被覆 { fi: Ui → U } に対し、各 F(Ui) の要素が F(Ui ×U Uj) 上で一致するなら、それらは F(U) の要素から誘導される。

2. 貼り合わせ可能性:F(U) の要素は、その制限が各 F(Ui) の要素に一致する。

統一的なモデルの構築

以上の構造を組み合わせることで、情報存在関係統一的にモデル化できる。

- 射 f: A → B は存在間の情報の伝達や変換を示す。

- 部分対象 m: U ↪ A は存在部分的情報性質を示す。

- 特性射 χU: A → Ω は存在に関する命題情報)を表す。

[] 補償原理の導出

定義仮定:

経済主体の集合 I と財の集合 L を考える。各主体 i ∈ I は以下を持つ:

  • 消費集合 Xᵢ ⊆ ℝ₊ᴸ
  • 完備的、推移的、連続的、凸的、局所的非飽和性を満たす選好関係 ≽ᵢ
  • 初期保有 ωᵢ ∈ Xᵢ

市場価格ベクトル p ∈ ℝ₊ᴸ が与えられると、各主体は以下の予算集合を持つ:

Bᵢ(p) = { x ∈ Xᵢ | p · x ≤ p · ωᵢ }

第1基本定理(厚生経済学の第1基本定理):

仮定の下で、競争均衡はパレート効率である

証明:

競争均衡 (p*, x*) を考える。ここで、x* = (xᵢ*)ᵢ∈I は各主体の最適選択であり、市場均衡条件を満たす:

1. 最適性条件:

xᵢ* ∈ arg max{x∈Bᵢ(p*)} { x | x ≽ᵢ xᵢ }

2. 市場均衡条件:

Σᵢ∈I xᵢ* = Σᵢ∈I ωᵢ

仮に x* がパレート効率的でないとすると、ある実現可能な配分 y = (yᵢ)ᵢ∈I が存在して:

  • yᵢ ≽ᵢ xᵢ* (全員が現状以上)
  • 少なくとも一人について yᵢ ≻ᵢ xᵢ*
  • Σᵢ∈I yᵢ ≤ Σᵢ∈I ωᵢ

zᵢ = yᵢ - xᵢ* と定義すると:

Σᵢ∈I zᵢ ≤ 0

主体の最適性より:

p* · yᵢ ≥ p* · xᵢ*

従って:

p* · zᵢ ≥ 0

しかし、少なくとも一人について p* · zᵢ > 0。すると:

Σᵢ∈I p* · zᵢ > 0

しかし:

Σᵢ∈I p* · zᵢ = p* · Σᵢ∈I zᵢ ≤ 0

これは矛盾である。従って、x* はパレート効率である

第2基本定理(厚生経済学の第2基本定理):

仮定の下で、任意パレート効率的配分は、適切な初期保有の再分配後、競争均衡として実現可能である

証明:

任意パレート効率的配分 x* = (xᵢ*)ᵢ∈I を考える。社会的に望ましい配分として、適切な価格ベクトル p* ∈ ℝ₊ᴸ を構築する。

1. ハイパープレーンの分離定理適用:

パレート効率性より、以下の集合は交わらない:

これらの凸集合を分離するハイパープレーン存在し、その法線ベクトルとして価格 p* を得る。

2. 各主体最適化問題:

再分配された初期保有 ω̃ᵢ を考える(Σᵢ∈I ω̃ᵢ = Σᵢ∈I ωᵢ)。各主体は以下を最大化する:

max{x∈Xᵢ} { x | x ≽ᵢ xᵢ, p* · x ≤ p* · ω̃ᵢ }

適切な ω̃ᵢ を選ぶことで、xᵢ* が各主体の最適解となる。

補償原理:

ある政策変更により得られる利得者の利得が、損失者の損失を完全に補償できる場合、その政策潜在的パレート改善である

証明:

経済内の二つの状態 A と B を考える。状態 B への移行で利得者と損失者が存在する。

1. カルドア基準:

利得者の余剰 G と損失者の損失 L を計測し、G > L であれば、利得者から損失者への補償可能である

2. ヒックス基準:

損失者が利得者に支払ってでも状態 A を維持したい額を W とすると、G > W であれば、状態 B への移行が望ましい。

3. 潜在的パレート改善:

補償が実際に行われなくとも、理論可能であれば、社会的に望ましいと判断される。

2024-09-15

世の中の物語は、極端なファンタジーか極端なリアリティに逃げ過ぎな気がする

足が地に着いた物語が読みたいが、コンプラとか言うやつのせいで、本当のリアルは描けなくなってしまっているのだろうか?

訴えられるリスクがあるからお話ファンタジーに逃がすか、お話を超局所的な内輪話に逃がすしかないのだろうか?

だとしたら、物語はもう人間結集する力はない気がする。同じ物語に皆が集うことはない気がする。

ファンタジー現実の分断、超局所と超局所の分断のためにしか存在しない気がする。

2024-09-12

anond:20240912185149

都市部建物内以外はコストコみたいにスケールでかくて道ストレートじゃん、日本はどこ行っても混んでて網目だから

人間が徒歩で歩くスケールにおいては碁盤の目だろうと曲がってようと変わんねーよ。局所的な密度だって土日の新宿三丁目とかを除けば人間がシャキシャキ歩くのに支障があるほど人が詰まっていることはない。

anond:20240912081525

安全土地路線価公示価格ググるとわかるけど、地域的には反映されてる

ただ、局所的にはあまり反映されてないけどね…

ちなみに安く注文住宅を買いたいなら、中古を買うしかない

断熱や気密性は最新のやつに劣るけど、キッチンの使い勝手は変わらんことが多い

[] 無差別曲線分析の基礎

定義 1 (消費集合)

消費集合 X を局所位相線形空間の凸錐部分集合とする。

定義 2 (選好関係)

X 上の二項関係 ≿ を選好関係とする。

公理 1 (完備性)

∀x, y ∈ X, x ≿ y ∨ y ≿ x

公理 2 (推移性)

∀x, y, z ∈ X, (x ≿ y ∧ y ≿ z) ⇒ x ≿ z

公理 3 (連続性)

∀x ∈ X, {y ∈ X | y ≿ x} と {y ∈ X | x ≿ y} は X において閉集合

公理 4 (凸性)

∀x, y, z ∈ X, ∀α ∈ (0, 1), (x ≿ z ∧ y ≿ z) ⇒ αx + (1-α)y ≿ z

定義 3 (効用関数)

関数 u: X → ℝ が以下を満たすとき、u を選好関係 ≿ の効用関数と呼ぶ:

∀x, y ∈ X, x ≿ y ⇔ u(x) ≥ u(y)

定義 4 (無差別集合)

効用関数 u: X → ℝ に対して、任意の r ∈ ℝ に対する無差別集合 I_r を以下で定義する:

I_r = {x ∈ X | u(x) = r}

定理 1 (無差別集合の位相性質)

公理 1-4 を満たす選好関係 ≿ に対応する効用関数 u が連続であるとき任意の r ∈ ℝ に対して、I_r は X の閉集合である

証明

u の連続性より、I_r = u^(-1)({r}) は X の閉集合である

定理 2 (無差別集合の凸性)

公理 1-4 を満たす選好関係 ≿ に対応する効用関数 u が準凹であるとき任意の r ∈ ℝ に対して、I_r は凸集合である

証明

x, y ∈ I_r, α ∈ (0, 1) とする。u の準凹性より、

u(αx + (1-α)y) ≥ min{u(x), u(y)} = r

一方、u(αx + (1-α)y) > r とすると、公理 4 に矛盾する。

よって、u(αx + (1-α)y) = r となり、αx + (1-α)y ∈ I_r が示される。

定義 5 (Gâteaux 微分可能性)

X が Banach 空間とき関数 f: X → ℝ が点 x ∈ X で Gâteaux 微分可能であるとは、任意の h ∈ X に対して以下の極限が存在することをいう:

δf(x; h) = lim_{t→0} (f(x + th) - f(x)) / t

定義 6 (限界代替率)

効用関数 u: X → ℝ が Gâteaux 微分可能であるとき、点 x ∈ X における財 i と財 j の間の限界代替率 MRS_{ij}(x) を以下で定義する:

MRS_{ij}(x) = -δu(x; e_i) / δu(x; e_j)

ただし、e_i, e_j は i 番目、j 番目の基底ベクトルとする。

定理 3 (限界代替率逓減の一般化)

X が Hilbert 空間で、効用関数 u: X → ℝ が二回連続 Fréchet 微分可能かつ強凹であるとき任意の x ∈ X と任意の i ≠ j に対して、

∂MRS_{ij}(x) / ∂x_i < 0

証明

u の強凹性より、任意の h ≠ 0 に対して、

⟨D²u(x)h, h⟩ < 0

これを用いて、MRS の偏導関数符号評価することで証明完了する。

定理 4 (効用最大化問題の解の特徴付け)

X が局所位相線形空間、p ∈ X* (X の双対空間)、w ∈ ℝ とする。

効用関数 u: X → ℝ が連続かつ準凹で、以下の問題の解 x* が存在するとき

max u(x) subject to ⟨p, x⟩ ≤ w, x ∈ X

ある λ ≥ 0 が存在して、以下が成り立つ:

1. ⟨p, x*⟩ = w

2. ∀y ∈ X, u(y) > u(x*) ⇒ ⟨p, y⟩ > w

3. δu(x*; h) ≤ λ⟨p, h⟩, ∀h ∈ X

証明

超平面分離定理を用いて、{y ∈ X | u(y) > u(x*)} と {y ∈ X | ⟨p, y⟩ ≤ w} が分離可能であることを示し、そこから条件を導出する。

2024-09-11

大学2〜3年頃からだったかソナチネのたけしに憧れてマジでシャツスラックスしか着なくなった。菊次郎の夏だったかも。

春秋の98%はマジでその格好。

海沿いで腰掛けてボーッと波を眺めたり、繁華街を練り歩いたりしながら無限主人公ぶってた。

ヨウジかギャルソンが良かったけど、サイズが合わなかった。ユニクロスラックスは夏でも快適だ。

同じ格好しかしないからコーディネートの幅は磨かれなかった代わりに、シルエットや丈に異常なこだわりを持つようになった。

オタクが服に興味を持つとそうなるのかもしれない。求める先は異性や他人からのウケではなく。おれの場合きっかけの時点でもうオタクっぽい。

モサい頭のチビガリだし、たけしのとっぽさにはきっと程遠かった。日中から手ぶらでうろつく姿は変な高校生みたいだったと思う。「主人公」は鞄を持たない。

それが気に入ってたし、自分の「スタイル」だった。

と思ってた。

最近スタイルというのはもっと必然的ものなんじゃないかって思う。

炭鉱夫はデニムを。軍人迷彩を。スケーターは動きやすルーズな服を。オタク少年ママが買ってきたちょっと古いセンスの服を。

そこに演出はなく、その人を取り巻く環境が、生き様が服へと現れる。その自然体こそがスタイルなのではないか

カートバーンの真似をしてボロい服を着るのはグランジなのか?なんて語り尽くされた話だ。

スタイル自分から喧伝せずとも周りが勝手見出していく。そこには服飾というより精神性としてのかっこよさがある。

ザッカーバーグジョブズが同じ服ばかり着るのも、彼らの忙しない日々を描くスタイルだ。それをノームコアと囃し立てて、こだわってない風の服をわざわざこだわって選んでもコスプレしかない。

オタク君の服ってこういうのばっかり、的な揶揄だってベクトルは違えど本質的には賞賛と変わりないのかもしれない。

じゃあおれにとっての環境とは何か。「時代」というのは一つの環境ではないのか。

自我を持って着せ替え人形コスプレをやるよりもむしろ、服にさほどこだわりのない人が流行に巻き込まれる着る服にこそスタイルがあるのかもしれない。

Twitter(a.k.a 𝕏)で、時代ごとの流行りの比較イラスト写真みたいなのがたまに流れてくる。ファッションは巡るって言説を添えて。

古めの映画を観てても、ジーンズ履いてスタジャンのポットに手を突っ込む若者が妙にかっこよく見える。「その時代若者」というスタイルが。自分にそういう時期がなかったのがなんか寂しいし、ちょっとコンプレックスですらある。

この際スタイルとかどうでもよくて、能動的なミーハーでもなんでもその時代らしい若者の姿に染まりたいという気持ちがある。

G-shockエアマックスたまごっち

シュプのボックスロゴ。Y-3やOWのガチャベルト。

時代流行りと言うには局所的過ぎるか。

2ch脳拗らせてミーハー小馬鹿にしてた反動が来たのかも。何なら今だってサンバ履いてゆるいパンツ履いてる連中を若干小馬鹿にしてるけど。いつか自分もそれに倣わなかった悔やむ時が来るのかもしれない。

あの頃もたけしぶって場合ではなく、若者らしく時代に染まっていれば良かったかな。

と思ったけど、冷静に考えたらそれ以前は「その時代若者」であった時期もちゃんとあったな。

スラッとしたシルエットにと言われていた筈が、今や掌返し頭でっかちになるとか言われてオワコン扱いを受ける黒スキニーちゃんと履いていたではないか。1460に捩じ込んで。流行りは3ホールだったけど。チェスターコートも着てた。

げんじファッション黎明期だ。あれ下半身だけパンクスみたいで面白いな。

服にも強いこだわりは無かったし、自我がないからこその「スタイル」があった。

ミーハー心でyeezyも持ってたしな。QNTM。アレ今でも普通にかっこいいと思う。ブーム末期な上に履きおろさずに売っちゃったけど。

beatsヘッドホンとかGIATNTSのチャリもかっこいいなと思ってた。まとめサイト受け売り情弱向けのゴミ音質とかルック車とか小馬鹿にしつつ、割と欲しかった。

友達いなさすぎて当時の写真も残ってないのが悔やまれる。

まあこれからもたけしリスペクトは続けていくか。いつかそれが自然体になってるかもしれんし……

2024-09-10

[] ミクロ経済学抽象化

1. 圏論アプローチによる消費者理論

1.1 基本設定
1.2 選好の表現
1.3 一般化された効用最大化問題

sup_{x ∈ U(X)} x subject to φ(x) ≤ w

ここで、φ: U(X) → ℝ は連続線形汎関数、w ∈ ℝ は初期富である

2. 微分位相幾何学アプローチによる生産理論

2.1 基本設定
2.2 一般化された利潤最大化問題

sup_{y ∈ T_p𝓜} ω(y)

2.3 生産対応特性化

生産対応を η: T*𝓜 → 2^{T𝓜} とし、以下の条件を満たす:

∀ω ∈ T*𝓜, η(ω) = {y ∈ T_p𝓜 : dω(y) = 0}

ここで、dω は ω の外微分である

3. 作用素代数アプローチによる一般均衡理論

3.1 経済定義

経済 ℰ をC*-代数 𝒜 上の作用素の組として定義

ℰ = ((ℋ_i, π_i, Ω_i)_{i ∈ I}, (T_j)_{j ∈ J})

ここで、

3.2 均衡の定義

状態 (ψ_i*)_{i ∈ I} と価格作用素 P ∈ 𝒜 が均衡であるとは、以下を満たすことを言う:

1. ∀i ∈ I, ψ_i* = arg max_{ψ ∈ ℋ_i} ⟨ψ, π_i(P)ψ⟩ subject to ⟨ψ, π_i(P)ψ⟩ ≤ ⟨Ω_i, π_i(P)Ω_i⟩ + ∑_{j ∈ J} θ_{ij} τ(PT_j)

2. ∀j ∈ J, T_j = arg max_{T ∈ 𝒜} τ(PT)

3. ∑_{i ∈ I} (ψ_i* - Ω_i) = ∑_{j ∈ J} T_j

ここで、τ は 𝒜 上のトレース、θ_{ij} は消費者 i の生産者 j に対する利潤シェアである

4. 非可換幾何学アプローチによる市場構造

4.1 スペクトル三つ組

市場構造を非可換幾何学の枠組みでモデル化:

(𝒜, ℋ, D)

ここで、

4.2 市場均衡の特性化

市場均衡を以下の作用素方程式特性化

[D, π(a)] = 0, ∀a ∈ 𝒜_{eq}

ここで、𝒜_{eq} ⊂ 𝒜 は均衡状態を表す部分代数、π は 𝒜 の ℋ 上の表現である

5. ホモトピー理論と均衡動学

均衡への収束過程ホモトピー理論を用いて分析

H: [0,1] × X → X

ここで、X は経済状態空間、H(0,x) = x_0(初期状態)、H(1,x) = x*(均衡状態である

均衡の安定性は、ホモトピー H の特異点構造と関連付けられる。

2024-09-09

グラビア動画の新しい楽しみ方を発見してしまった

DMMTV を PCブラウザで見てる時しかできない(かつHTML/CSSリテラシ必要な)芸当なんだが、

ブラウザ開発者ツールでvideoタグスタイルを変更して拡大表示するんだ。

大画面で観るのもいいが、小画面で局所ズームするのもなかなかエロいぞ。

transform: scale(2);

倍率はまあ 2~4 くらいの好きなところでよろしい。

(ちなみにブラウザズーム機能を使っても、局所拡大はできない。動画サイズCSSで相対指定されているので、画角は画面の大きさを超えられないんだ)

まり大きくしすぎると見たいところまでフレームアウトしっぱなしになるので、3以上はおすすめしない。

次に、どのあたりを拡大するかだが、それはこのように指定する。

transform-origin: 50% 75%;

原点をXY相対座標で指定するだけだ。上の例だとヨコは中央、タテは画面下寄り4/3の点を中心に拡大する。股間に注目したい人向きの設定だ。オッパイに注目したい人はY軸を中ほどにするといいだろう。

単純拡大なので解像感が落ちてしまうのが難点だが、接写好きの人は一度試してみてほしい。

2024-09-04

[] 公共政策の基礎

Vを社会福祉とすると、V(W_1,...,W_H)と表せる。

1,...,Hは社会メンバーに割り当てられた番号であり、Wは満足度である

政府は、公共財GやインフラIの供給量を決定する。

また、それぞれのメンバーhに財貨やサービスの転換T_hを課す(e.g. 所得税)。

また、T=(T_1,...,T_H)とおく。

Tが与えられた時、実現可能ベクトルの組(G,I)の集合をK_Tと表す。

メンバー幸福度をW_h(X_h,G,I,T_h)と記す。

hの実現可能集合F_hはG,I, T_hによって定まるので、F_h(G,I,T_h,X_{-h})と記す。ただしX_hは消費ベクトルである

W_hは消費ベクトルX_hからW_h(X_h)によって決まる。

最適な公共政策を決定するために、2段階ゲームを考える。

まず政府はTを選択し、さらにK_TからG,Iを選ぶ。

メンバー政府による決定に対応して、次の行動を取る。

社会均衡X^*に到達していることとその均衡が一つしかないことを仮定する。均衡X^*はG,I,Tの関数である

政府はその均衡を予測し、V(W(X_1^*),...,W(X_H^*))の結果を最大化するようにG,I,Tを選択する。

1. 位相空間関数空間

2. 実現可能性集合

  • Kᴛ = {(G, I) ∈ ℝᵐ × ℝⁿ : A(G, I) ≤ B(T)}

ここで、A: ℝᵐ × ℝⁿ → ℝᵖ は線形写像、B: ℝᵏᴴ → ℝᵖ は凸関数

  • Fₕ(G, I, Tₕ, X₍₋ₕ₎) = {Xₕ ∈ ℝˡ : Cₕ(Xₕ, G, I, Tₕ) ≤ Dₕ(X₍₋ₕ₎)}

ここで、Cₕ: ℝˡ × ℝᵐ × ℝⁿ × ℝᵏ → ℝᵠ は凸関数、Dₕ: ℝˡ⁽ᴴ⁻¹⁾ → ℝᵠ は線形写像

3. 均衡の存在と一意性

均衡 X*: ℝᵐ × ℝⁿ × ℝᵏᴴ → ℝˡᴴ の存在証明するために:

1. Fₕ が上半連続対応であることを示す

2. Wₕ が Xₕ に関して強凹であることを仮定

3. Kakutaniの不動点定理適用

一意性の証明

1. Wₕ の Xₕ に関する Hessian 行列が負定値であることを示す

2. 陰関数定理を用いて、均衡が一意に定まることを証明

4. 政府最適化問題

max[G∈ℝᵐ, I∈ℝⁿ, T∈ℝᵏᴴ] V(W₁(X₁*(G, I, T), G, I, T₁), ..., Wᴴ(Xᴴ*(G, I, T), G, I, Tᴴ))

制約条件:A(G, I) ≤ B(T)

5. KKT条件の導出

Lagrange関数を以下のように定義

L(G, I, T, λ) = V(...) - λᵀ(A(G, I) - B(T))

KKT条件:

1. ∇ᴳL = ∇ᴵL = ∇ᵀL = 0

2. λ ≥ 0

3. λᵀ(A(G, I) - B(T)) = 0

4. A(G, I) ≤ B(T)

6. 感度分析

均衡 X* のパラメータ (G, I, T) に関する感度を分析するために:

1. 陰関数定理適用:∂X*/∂(G, I, T) = -[∇ₓF]⁻¹ ∇₍ᴳ,ᴵ,ᵀ₎F

ここで、F は均衡条件を表す関数

2. 得られた感度を用いて、社会福祉関数 V の変化を評価

7. 動的拡張

時間連続変数 t ∈ [0, ∞) として導入し、動的システムを以下のように定義

dX/dt = f(X, G, I, T)

ここで、f: ℝˡᴴ × ℝᵐ × ℝⁿ × ℝᵏᴴ → ℝˡᴴ は Lipschitz 連続

定常状態の安定性分析

1. Jacobian 行列 J = ∂f/∂X を計算

2. J の固有値分析し、局所安定性を判定

8. 確率的要素の導入

確率空間 (Ω, ℱ, P) を導入し、確率変数 ξ: Ω → ℝʳ を用いて不確実性をモデル化:

max[G,I,T] 𝔼ξ[V(W₁(X₁*(G, I, T, ξ), G, I, T₁, ξ), ..., Wᴴ(Xᴴ*(G, I, T, ξ), G, I, Tᴴ, ξ))]

制約条件:P(A(G, I) ≤ B(T, ξ)) ≥ 1 - α

ここで、α ∈ (0, 1) は信頼水準

この確率問題に対して:

1. サンプル平均近似法を適用

2. 確率的勾配降下法を用いて数値的に解を求める

2024-09-02

[] 実現可能集合から全体の効用を最大化

定式化

1. (X, 𝒯) を局所ハウスドル位相線形空間とする。

2. ℱ ⊂ X を弱コンパクト凸集合とする。

3. 各 i ∈ I (ここで I は可算または非可算の指標集合) に対して、効用汎関数 Uᵢ: X → ℝ を定義する。Uᵢ は弱連続かつ擬凹とする。

4. 社会厚生汎関数 W: ℝᴵ → ℝ を定義する。W は弱連続かつ単調増加とする。

最適化問題

sup[y∈ℱ] W((Uᵢ(y))ᵢ∈I)

理論分析

1. 存在定理:

定理: ℱ が弱コンパクトで、全ての Uᵢ が弱上半連続、W が上半連続ならば、最適解が存在する。

証明: Ky Fan の不動点定理を応用する。

2. 双対性理論:

プリマ問題を以下のように定義する:

P: sup[y∈ℱ] W((Uᵢ(y))ᵢ∈I)

対応する双対問題

D: inf[λ∈Λ] sup[y∈X] {W((Uᵢ(y))ᵢ∈I) - ⟨λ, y⟩}

ここで、Λ は適切に定義された双対空間である

定理 (強双対性): 適切な制約想定のもとで、sup P = inf D が成立する。

3. 変分解析アプローチ:

∂W を W の劣微分とし、∂Uᵢ を各 Uᵢ の劣微分とする。

定理: y* ∈ ℱ が最適解であるための必要十分条件は、

0 ∈ ∂(W ∘ (Uᵢ)ᵢ∈I)(y*) + Nℱ(y*)

ここで、Nℱ(y*) は y* における ℱ の法錐である

4. 函数解析的特性付け:

T: X → X* を以下のように定義する:

Ty, h⟩ = Σ[i∈I] wᵢ ⟨∂Uᵢ(y), h⟩

ここで、wᵢ ∈ ∂W((Uᵢ(y))ᵢ∈I) である

定理: y* ∈ ℱ が最適解であるための必要十分条件は、

Ty*, y - y*⟩ ≤ 0, ∀y ∈ ℱ

5. 非線形スペクトル理論:

L: X → X を L = T ∘ Pℱ と定義する。ここで Pℱ は ℱ 上への射影作用素である

定理: L のスペクトル半径 r(L) が1未満であれば、最適解は一意に存在し、反復法 y[n+1] = Ly[n] は最適解に収束する。

6. 測度論的アプローチ:

(Ω, 𝒜, μ) を確率空間とし、U: Ω × X → ℝ を可測な効用関数とする。

定理: 適切な条件下で、以下が成立する:

sup[y∈ℱ] ∫[Ω] U(ω, y) dμ(ω) = ∫[Ω] sup[y∈ℱ] U(ω, y) dμ(ω)

7. カテゴリー論的解釈:

効用関数の族 (Uᵢ)ᵢ∈I を圏 𝐓𝐨𝐩 における関手 U: I → 𝐓𝐨𝐩 と見なす。ここで I は離散圏である

定理: 適切な条件下で、最適化問題の解は U の余極限として特徴付けられる。

[] 多様体を用いた厚生経済学の基本定理

ファースト・ウェルフェア定理

ファースト・ウェルフェア定理は、競争均衡がパレート最適であることを主張する定理である多様体を用いて定式化する。

定義:

多様体 M 上の消費集合 X_i ⊆ M と生産集合 Y_i ⊆ M を持つエージェント i の集合 I があるとする。エージェント i の効用関数 u_i : X_i → ℝ は上半連続(上半連続多様体意味で)であり、全ての x ∈ X_i に対して局所非飽和性が成り立つと仮定する。

消費可能集合と生産可能集合は以下のように定義される連結多様体の部分集合とする:

X = ∏_{i ∈ I} X_i, Y = ∏_{i ∈ I} Y_i

局所座標系を用いて、これらは連結な実多様体として考えられる。

定理 (ファースト・ウェルフェア定理):

競争均衡 (p*, x*) が与えられると、全てのエージェント i に対して次が成り立つ場合、その点 (p*, x*) はパレート最適である

∇u_i(x_i*) · p* = 0

ここで、p* は価格ベクトルであり、∇u_i は多様体上の勾配ベクトルである

セカンド・ウェルフェア定理

セカンド・ウェルフェア定理は、任意パレート最適な配分が適切な初期財産の再配分のもとで競争均衡経済に達成可能であることを主張する。

定義:

多様体 M 上の消費集合 X_i ⊆ M と生産集合 Y_i ⊆ M を持つエージェント i の集合 I があるとする。エージェント i の効用関数 u_i : X_i → ℝ は全ての x ∈ X_i に対して上半連続であり、局所非飽和性が成り立つとする。

定理 (セカンド・ウェルフェア定理):

任意パレート最適配分 (x_i*)_{i ∈ I} に対して、ある価格ベクトル p* が存在し、そのもとで (p*, x_i*) が競争均衡である

∃ p* ∈ ℝⁿ \ {0} such that ∇u_i(x_i*) · p* = 0

ここで、再配分は適切に選ばれた初期財産の設定によって行われる。

この定理証明には、エージェントの一次資源制約と市場クリアリング条件に関する詳細な解析が必要である。それらは複雑な多様体幾何学性質を用いて示される。

まとめ

厚生経済学の基本定理多様体フレームワーク抽象化したが、具体的な応用や証明にはさらに専門的な知識数学技術が求められる。これにより、経済理論の理解抽象代数微分幾何視点からも深まる。

2024-08-29

現代の子育てはかなりしんどい

子育て品質が上がりすぎてる

江戸時代、というか明治大正くらいまで?は赤ちゃんというのは基本放置だった

生き物扱いしてなかった、簡単死ぬから

今の先進国でも、中世の頃は成人できる確率は50%くらいだったと言われている

日本で言えば、1900年くらいには24%くらいが5歳までに死んだ

1950年でも10%が死んでいる

それが、1980年に1%まで落ちた

100人の赤ちゃんのうち死ぬのが1人だから、そりゃもう大失敗事例だ

赤ちゃん放置しなくなった、コストめっちゃかかる

失敗したら袋叩きにされる

認識として、「赤ちゃん簡単死ぬもの」というものがない

 

1980年台は死亡率は下がったものの、親の認識としてはまだ「簡単死ぬもの」だったと思う

1960年は死亡率3%くらいだから

今の親というのは1980年台、1990年台生まれが多いだろう

そりゃもうしんどい

失敗できない

 

2010年、5歳未満の死亡率は0.3%だ

300人の赤ちゃんのうち1人しか死なない

死ぬほうが難しいというレベル

なのに実際はすごく脆弱存在

ってことは皆がんばりすぎてんのよ

 

数や幸福度のことだけ考えたら、

100人中10人くらいは死ぬけど低コスト

100人中0.3人しか死なないけど高校スト

だと、前者のほうが良いんだと思う

でも現代人にとって人の命というのがあまりにも重すぎるため

局所最適するしかないんだ

しかしそうしてるうちに見えないコストがひたすら積み上がっていく

2024-08-25

なんか音がするので

外みたらやっぱり雨。

tenki.jp雨雲レーダーみたらめっちゃ局所的に赤くなっててワロタ

昔、趣味で作った1次元セル・オートマトンについてChatGPT分析させたら面白かった

 

以下GPTの回答

ーーー

この現象には社会科学特に社会的相互作用集団行動に関するモデルとの興味深い類似性がある。

具体的には、個人の行動が周囲との相互作用に基づいて変化し、その集まり社会全体のパターン形成するという点で、社会現象創発説明するメカニズムに通じている。

社会科学との類似性

1. ローカル相互作用グローバルなパターン:

2. 創発現象自己組織化:

3. 社会的影響の強度:

4. 情報伝播とネットワーク構造:

結論

このコードで見られるパターンは、社会科学における集団行動や相互作用モデル類似性を持っており、特に創発現象自己組織化関係している。個々のエージェント相互作用が全体の行動にどのように影響を与えるかを理解するために、このようなモデル社会科学で頻繁に利用されている。

2024-08-24

創発時空概要

1. 基本的な設定

(H, ⟨·|·⟩)を可分なヒルベルト空間とし、B(H)をH上の有界線形作用素の集合とする。

2. 量子状態観測

S(H) = {ρ ∈ B(H) : ρ ≥ 0, Tr(ρ) = 1}を密度作用素の集合とする。A ⊂ B(H)を自己共役作用素部分代数とし、これを観測量の集合とする。

3. 時間発展

ユニタリ群{Ut}t∈ℝを考え、シュレーディンガー方程式を以下のように表現する:

iħd/dtUt = HUt

ここでH ∈ Aはハミルトニアンである

4. 状態空間位相

S(H)上にトレース距離を導入し、位相空間(S(H), τ)を定義する。

5. 観測量の局所性

A上にC*-代数構造を導入し、局所的な部分代数の族{A(O)}O⊂ℝ⁴を定義する。ここでOは時空の開集合である

6. 因果構造の導出

A(O1)とA(O2)が可換であるとき、O1とO2は因果的に独立である定義する。これにより、ℝ⁴上に因果構造を導入する。

7. 計量の再構成

状態ρ ∈ S(H)に対し、関数dρ : A × A → ℝ+を以下のように定義する:

dρ(A, B) = √Tr(ρ[A-B]²)

この関数から、ℝ⁴上の擬リーマン計量gμνを再構成する手続き定義する。

8. 時空多様体創発

(ℝ⁴, gμν)を基底時空とし、これに対して商位相を導入することで、等価類の空間M = ℝ⁴/∼を定義する。Mを創発した時空多様体とみなす

9. 量子状態と時空の対応

写像Φ : S(H) → Mを構成し、量子状態と時空点の対応定義する。

10. 動力学の整合性

シュレーディンガー方程式による時間発展ρ(t) = Ut ρ Ut*が、M上の滑らかな曲線γ(t) = Φ(ρ(t))に対応することを示す。

2024-08-21

情報幾何概要

情報理論幾何学的に定式化するには、微分幾何学特にリーマン幾何学とアフィン接続理論を使う。

統計多様体リーマン計量

1. 統計多様体: 統計多様体𝓜は、パラメータ空間Θ上の確率分布p(x|θ)の集合として定義され、滑らかな多様体構造を持つ。ここで、θ = (θ¹, θ², ..., θⁿ)は局所座標系である

2. フィッシャー情報計量: 統計多様体𝓜上のリーマン計量gは、フィッシャー情報計量として与えられる。これは、次のように定義される二次形式である

gᵢⱼ(θ) = ∫ (∂ log p(x|θ)/∂θⁱ)(∂ log p(x|θ)/∂θʲ) p(x|θ) dx

ここで、gᵢⱼは接空間Tθ𝓜上の内積定義する。

アフィン接続双対性

1. アフィン接続: 統計多様体には、双対のアフィン接続∇と∇*が定義される。これらは、次の条件を満たす:

- 接続∇は、∇g = 0を満たし、統計多様体の平行移動を定義する。

- 双対接続∇*は、∇*g = 0を満たし、∇に対する双対接続である

2. 双対平坦性: 統計多様体双対平坦であるとは、∇と∇*の両方の曲率テンソルゼロであることを意味する。これにより、𝓜は双対平坦な多様体となる。

エントロピーダイバージェンス、測地線

1. エントロピー: 確率分布p(x|θ)のエントロピーH(θ)は、次のように定義される:

H(θ) = -∫ p(x|θ) log p(x|θ) dx

エントロピーは、統計多様体上のスカラー場として解釈される。

2. KLダイバージェンス: 二つの確率分布p(x|θ)とq(x|θ')の間のKLダイバージェンスは、次のように定義される:

Dₖₗ(p ∥ q) = ∫ p(x|θ) log (p(x|θ)/q(x|θ')) dx

KLダイバージェンスは、統計多様体上の測地距離として解釈されることがある。

3. 測地線: フィッシャー情報計量に基づく測地線は、統計多様体上で最小のKLダイバージェンスを持つ経路を表す。測地線γ(t)は、次の変分問題の解として得られる:

δ ∫₀¹ √(gᵧ(t)(ẏ(t), ẏ(t))) dt = 0

ここで、ẏ(t)はtに関するγ(t)の微分を表す。

統計多様体幾何学性質

2024-08-19

物理学形式化についての概要

都市伝説によれば、かつてアインシュタイン古典的重力理論一般相対性理論」を理解していたのは3人だけだったと言われている。

それが真実かどうかは別として、その3人のうちの1人がダフィッド・ヒルベルトである。彼は、今日の初学者でも一般相対性理論理解できるように、それを数学で明確かつ正確(すなわち厳密)に形式化した。

古典的アインシュタイン重力は、時空上の擬リーマン計量のモジュライ空間上のスカラー曲率密度汎関数積分臨界点の研究にすぎない。

物理学基本的理論数学での基本的な定式化を持つべきだと信じたことで、ヒルベルト本質的アインシュタインを先取りすることができた。そのため、この汎関数現在アインシュタインヒルベルト作用汎関数と呼ばれている。

ヒルベルトは、1900年の有名なヒルベルト問題の一環として、この一般的アイデアを以前から提唱していた。ここでヒルベルトの第6問題は、物理学理論公理を見つけることを数学者に求めている。

それ以来、そのような公理化のリストが見つかっている。例えば、

物理学数学
力学シンプレクティック幾何学
重力リーマン幾何学
ゲージ理論チェルン・ヴェイユ理論
量子力学作用代数
ポロジカル局所量子場理論モノイダル(∞,n)-カテゴリ理論

このリストには注目すべき2つの側面がある。一方で、数学の最高の成果が含まれており、他方で、項目が無関係で断片的に見えることだ。

学生時代ウィリアム・ローヴィアは「合理的熱力学」と呼ばれる熱力学公理化の提案に触れた。彼は、そのような連続物理学基本的な基盤は、まず微分幾何学自体の良い基盤を必要とすることに気づいた。彼の生涯の出版記録を見てみると、彼が次の壮大な計画を追求していたことがわかる。

ローヴィアは、最初の2つの項目(圏論論理、初等トポス理論代数理論SDG)への画期的な貢献で有名になった。なぜか、このすべての動機である3番目の項目は広く認識されていないが、ローヴィアはこの3番目の点を継続的に強調していた。

この計画は壮大だが、現代基準では各項目において不十分である

現代数学自然トポス理論/型理論ではなく、高次トポス理論/ホモトピー型理論に基づいている。

現代幾何学は「変数集合」(層)だけでなく、「変数ホモトピー型」、「幾何学ホモトピー型」、「高次スタック」に関する高次幾何学である

現代物理学古典的連続物理学を超えている。高エネルギー(小さな距離)では、古典物理学は量子物理学特に量子場理論によって精緻化される。

したがって、高次トポス理論で定式化された高次微分幾何学における高エネルギー物理学の基礎が必要である

anond:20240819140536

まり、(モデル理論における)「数学構造」の形式的定義と同型性の形式的定義があり、そして実際、これは新しい主張でもなければ、洞察でもないのだが、この意味での数学構造のすべてのタイプは、形式論理学意味での理論である

物理学いかなる形式化された理論も、この意味での理論である(あるいはそうなるであろう)。これは数理論理学の基本中の基本である

ここで主張されているように、数理論理学意味でのすべての理論物理学理論と呼ぶべきかどうかは別の問題である

より興味深いのは、形式論理学理論物理学理論として適格であるかどうかの特徴付けであろう。この種の問題に生涯を通じて取り組んできた一人に、ウィリアム・ローヴィア(William Lawvere)がいる。

http://ncatlab.org/nlab/show/William+Lawvere#MotivationFromFoundationsOfPhysics

Lawvereは、例えば、連続力学で遭遇するような運動方程式の定式化を認めるある種の無限理論運動法則トポスhttp://ncatlab.org/nlab/show/Toposes+of+laws+of+motionについて述べている。これは少し改良して、局所的な場の量子論 http://ncatlab.org/nlab/show/Higher+toposes+of+laws+of+motion も捉えることができる。

いずれにせよ、これらは形式理論、つまり数学構造」の一種であり、現代物理学の大部分を形式化することができる。ここでの同型性の概念は明確であり、議論余地はない。問題は、物理学のどの部分が形式化されるかである

数学宇宙仮説についての考察

数学宇宙仮説を説明するには、宇宙をどのようにモデル化するかを考え、各理論役割を明確にする必要がある。

以下に、各概念説明し、物理宇宙数学的にどのように捉えるかを示す。

数学構造

数学宇宙仮説の中心にあるのは、宇宙数学構造のものであるという考え方である数学構造は、集合とその上で定義される関係演算の組み合わせである

具体例として、微分多様体を考える。微分多様体は、局所的にユークリッド空間に似た構造を持ち、滑らかな関数定義できる空間である物理学では、時空を微分多様体としてモデル化し、一般相対性理論の基盤としている。このように、宇宙全体を一つの巨大な数学構造として捉え、その性質研究する。

集合論

集合論は、数学の基礎を形成する理論であり、すべての数学対象を集合として扱う。特に、Zermelo-Fraenkel集合論(ZFC)は、集合の存在とその性質定義する公理である数学宇宙仮説では、宇宙を集合として捉え、その集合上の関係演算物理法則表現していると考える。

モデル理論

モデル理論は、形式的論理体系が具体的な構造としてどのように実現されるかを研究する。数学宇宙仮説では、物理宇宙がある論理体系のモデルである仮定する。具体的には、物理法則公理とする論理体系のモデルとして宇宙を捉える。これは、ペア算術公理系のモデルとして自然数存在するのと類似している。

カテゴリ理論

カテゴリ理論は、対象オブジェクト)とそれらの間の射(モルフィズム)を扱う理論であるカテゴリ 𝒞 は次のように定義される:

  • 対象の集合 Ob(𝒞)
  • 射の集合 Hom(A, B) (対象 A, B ∈ Ob(𝒞) 間の射)

射は合成可能であり、合成は結合的であるさらに、各対象に対して恒等射が存在する。

数学宇宙仮説では、宇宙を一つのカテゴリとして捉えることができる。カテゴリ対象は異なる数学構造であり、射はそれらの間の変換や関係を表す。これにより、異なる「宇宙」間の関係性を数学的に探求することが可能になる。

トポス理論

トポス理論は、集合論一般化であり、論理空間概念統一する枠組みであるトポスは、論理体系のモデルとして機能し、異なる数学構造統一的に扱うことができる。

数学宇宙仮説では、宇宙トポスとして捉えることができる。トポスは、論理体系のモデルであり、異なる物理現実表現するための柔軟な枠組みを提供する。トポス理論を用いることで、宇宙数学性質をより深く理解することが可能になる。

まとめ

数学宇宙仮説を抽象数学説明するためには、数学構造公理系、集合論モデル理論カテゴリ理論トポス理論といった数学概念を用いることが必要である

これにより、物理現実数学的に厳密に記述し、数学物理の深い関係を探求することができる。

この仮説は、数学対象物理実体として存在するという新しい視点提供するが、現時点では哲学的命題としての性格が強く、数学的に証明可能定理ではない。

ヒルベルト空間分析

1. 多様体としてのヒルベルト空間

ヒルベルト空間無限次元線形空間だが、射影ヒルベルト空間として有限次元多様体のように扱うことができる。射影ヒルベルト空間 P(H) は、ヒルベルト空間 H の単位球面上のベクトルスカラー倍による同値類で割った空間であり、量子状態の集合を位相的に解析するための空間だ。局所座標系は、例えば、正規直交基底を用いてチャートとして定義され、局所的にユークリッド空間に似た構造を持つ。この構造により、量子状態位相特性を解析することが可能となる。

2. スキームとしてのヒルベルト空間

スキーム理論代数幾何学概念であり、ヒルベルト空間においては作用素環を通じて状態空間を解析するために用いる。特に自己共役作用素スペクトル分解を考慮し、各点を極大イデアル対応させる。このアプローチにより、量子状態観測可能量を代数的にモデル化することができる。例えば、観測可能量としての作用素 A のスペクトルは、A = ∫ λ dE(λ) という形で表され、ここで E(λ) は射影値測度である。これにより、量子状態代数特性を解析することが可能となる。

3. Hom(-, S)による記述

ヒルベルト空間における射は、線形作用素として表現される。特にユニタリ作用素 U: H → H は、U*U = UU* = I を満たし、量子力学における対称変換を表す。これにより、系の時間発展や対称性を解析することができる。射影作用素は、量子状態の測定を表現し、観測可能量の期待値や測定結果の確率計算する際に用いられる。これにより、量子状態の射影的性質を解析することが可能となる。

4. コホモロジー

ヒルベルト空間コホモロジーは、量子系のトポロジカル不変量を解析するための手段提供する。例えば、ベリー接続 A = ⟨ψ(R) | ∇ | ψ(R)⟩ やベリー曲率 F = ∇ × A は、量子状態パラメータ空間における幾何学位相性質記述する。チャーン数は、∫ F により計算され、トポロジカル不変量として系のトポロジカル相を特徴付ける。これにより、量子系のトポロジカル特性を解析することが可能となる。

5. 局所的断片からの再構築

ヒルベルト空間の基底を用いて、空間を再構築する。直交基底 { |e_i⟩ } は、量子状態の展開に用いられ、|ψ⟩ = Σ_i c_i |e_i⟩ と表現される。これにより、状態表現簡素化し、特定物理的状況に応じた解析を行う際に有用である。例えば、フーリエ変換は、状態を異なる基底で表現するための手法であり、量子状態の解析において重要役割を果たす。

6. 構造を保つ変換の群

ヒルベルト空間における構造を保つ変換は、ユニタリ群 U(H) として表現される。これらの群は、量子系の対称性記述し、保存量や選択則の解析に利用される。例えば、回転対称性角運動量保存に対応し、ユニタリ変換は系の時間発展や対称性変換を記述する。これにより、量子系の対称性特性を解析することが可能となる。

7. 距離空間としてのヒルベルト空間

ヒルベルト空間は、内積により誘導される距離を持つ完備距離空間である。具体的には、任意状態ベクトル |ψ⟩ と |φ⟩ の間の距離は、||ψ - φ|| = √⟨ψ - φ, ψ - φ⟩ で定義される。この距離は、量子状態類似性を測る指標として用いられ、状態間の遷移確率やフィデリティ計算に利用される。これにより、量子状態距離特性を解析することが可能となる。

2024-08-18

扇動罪

イギリスで、X上で人種差別的なデマ煽動的言辞をもちいて暴動を煽ったとして、男が禁錮三年の実刑判決を受けた。

ずいぶんスピード判決なことも含め心情的にはグッジョブといいたいが、何罪で?

イギリスのことは何も知らないし英語も苦手だ。イギリスには純粋扇動罪があるのか?

アメリカにはあるよな。トランプ扇動罪に問われた弾劾裁判はしか無罪になった。

じっさい「トランプから」慎重な判断になったのか扇動罪運用はぜひとも慎重にしたかったのか、それは知らない。

日本でこういう事態が持ち上がったら?

まあ日本にもヘイトスピーチ規制法とか額面上は使えそうなものはあるが絶対司法当局はそんな貧弱な武器で火中の栗を拾わないだろう。

そして不特定多数に対する扇動じゃなくて特定個人への中傷じゃないと警察タッチできませーんみたいなへっぴり姿勢を堅持しそう。

そりゃね?憎悪扇動逮捕有罪の先例なんかおっかなくてよう作らんよなあ。

そして左右の空中戦声闘拡散して終わるんだろうなあ。

小池都知事関東大震災での朝鮮人虐殺についてノーコメントを決め込んでいることについて小池個人を叩くより、次また似たようなこと起きそうな時にどうするのか?という話を国政レベルで本当はしなければならない。

イギリスが果断なのではなくあっちでは移民人種軋轢がもはやのっぴきならない状況なのだということだろう。

しか日本のんびりしていられるかというとそんなわけはなく、イギリスEUアメリカのようなそういう状況のミニチュア版は既に局所的に起きている。

人種憎悪火種を大きな火にしないために、早期消火と治安維持のために積極的法整備運用ができるか?

それは与党野党も右も左も真ん中も、あらゆるポジション人間に突きつけられる課題だ。

anond:20240817220243

anond:20240818001406

消費税は、消費を抑えるためにある

これちゃん経済学勉強したことないけど「ぼくのかんがえるさいきょうのけいざいがく」が好き、な人がよく言うよね。アジテーション味を強くして、消費税は消費に対する罰金だ、とかも言ったりする。

でも実際には、所得税だって所得制限する結果として消費を抑えるために働くし、

消費税だって労働によって買えるものを減らす結果として労働価値を減らし労働を抑えるために働く、

といった一般均衡での最終到達点を考えなければならないから、消費税は消費を抑えるためにあるなんて特に意味があるフレーズじゃないんだけどな。公共投資給付金といった支出側の増加を伴わないなら、消費税に限らず大概の税が消費を抑えるので。公害や不健康に対するピグー税みたいな局所的で、部分均衡で概ね近似できるもの消費税では全然話が別。

ログイン ユーザー登録
ようこそ ゲスト さん