「アインシュタイン方程式」を含む日記 RSS

はてなキーワード: アインシュタイン方程式とは

2024-09-18

超弦理論の7つの観点からの定式化

1. 多様体: 座標系、つまり局所的にモデル空間と関連付けることにより記述

超弦理論では、時空は10次元の滑らかな微分多様体 M^{10} としてモデル化されます。各点の近傍 U ⊆ M^{10} に局所座標 x^{μ}: U → ℝ^{10} を導入します(μ = 0,1,…,9)。

弦の運動は、パラメータ σ^{α}(α = 0,1)で記述される2次元世界面(ワールドシート) Σ 上の埋め込み写像 X^{μ}(σ^{α}) を用いて表されます

作用はポリャコフ作用で与えられます

S = -T/2 ∫_{Σ} d²σ √(-h) h^{αβ} ∂_{α} X^{μ} ∂_{β} X^{ν} g_{μν}(X),

ここで:

- T は弦の張力(T = 1/(2πα'))、

- h_{αβ} は世界面の計量、

- g_{μν}(X) は時空の計量テンソル

- α' は逆張力で、弦の長さの二乗に比例。

M理論では、時空は11次元微分多様体 M^{11} となり、M2ブレーンやM5ブレーンのダイナミクスが中心となりますM2ブレーンの世界体積は3次元で、埋め込み写像 X^{μ}(σ^{a})(a = 0,1,2)で記述されます作用は次のように与えられます

S = -T_{2} ∫ d³σ √(-det(G_{ab})) + T_{2} ∫ C_{μνρ} ∂_{a} X^{μ} ∂_{b} X^{ν} ∂_{c} X^{ρ} ε^{abc},

ここで:

- T_{2} はM2ブレーンの張力

- G_{ab} = ∂_{a} X^{μ} ∂_{b} X^{ν} g_{μν} は誘導計量、

- C_{μνρ} は11次元重力の三形式ポテンシャル

2. スキーム: 局所関数を通じて記述。点は関数空間での極大イデアル対応する。

ラビ–ヤウ多様体は、超弦理論コンパクト化において重要役割を果たす複素代数多様体であり、スキーム言葉記述されます

例えば、3次元ラビ–ヤウ多様体は、射影空間 ℙ^{4} 内で次の斉次多項式方程式の零点として定義されます

f(z_{0}, z_{1}, z_{2}, z_{3}, z_{4}) = 0,

ここで [z_{0} : z_{1} : z_{2} : z_{3} : z_{4}] は射影座標です。

各点 x は、局所環 ℴ_{X,x} の極大イデアル ℳ_{x} に対応します。これにより、特異点やその解消、モジュライ空間構造を厳密に解析できます

3. 与えられた空間を他の空間からの射、すなわち構造を保つ写像(の全体)Hom(-,S)を通じて記述

理論では、世界面 Σ から時空多様体 M への写像空間 Map(Σ, M) を考えます。この空間の元 X: Σ → M は、物理的には弦の配置を表します。

特に、開弦の場合、端点はDブレーン上に固定されます。これは、境界条件として写像 X がDブレーンのワールドボリューム W への射 ∂Σ → W を満たすことを意味します。

この設定では、開弦のモジュライ空間は、境界条件考慮した写像空間 Hom(Σ, M; ∂Σ → W) となります

4. コホモロジー論におけるように不変量を通じて特徴づける。

理論物理量は、しばしば背景多様体コホモロジー群の要素として表現されます

- ラマンド–ラマンド(RR)場は、時空のコホモロジー群の要素 F^{(n)} ∈ H^{n}(M, ℝ) として扱われます

- Dブレーンのチャージは、K理論の元として分類されます。具体的には、Dブレーンの分類は時空多様体 M のK群 K(M) の元として与えられます

- グロモフ–ウィッテン不変量は、弦のワールドシート上のホモロジー類 [Σ] ∈ H_{2}(M, ℤ) に対応し、弦の瞬間子効果計算するために使用されます

例えば、グロモフ–ウィッテン不変量は、モジュライ空間 ℤ̄{M}_{g,n}(M, β) 上のコホモロジー類の積分として計算されます

⟨∏_{i=1}^{n} γ_{i}⟩_{g,β} = ∫_{[ℤ̄{M}_{g,n}(M, β)]^{vir}} ∏_{i=1}^{n} ev_{i}^{*}(γ_{i}),

ここで:

- g はワールドシートの種数、

- β ∈ H_{2}(M, ℤ) は曲面のホモロジー類、

- γ_{i} ∈ H^{*}(M, ℝ) は挿入するコホモロジー類、

- ev_{i} は評価写像 ev_{i}: ℤ̄{M}_{g,n}(M, β) → M。

5. 局所的断片(単体、胞体)から空間を再構築して、空間性質がその構築のパターン組合せ論に帰着されるようにする。

理論摂動論的計算では、世界面をパンツ分解などの方法で細分化し、それらの組み合わせを考慮します。

- パンツ分解: リーマン面基本的ペアオブパンツ(3つの境界を持つ曲面)に分割し、それらを組み合わせて高次の曲面を構築します。

- 世界面のトポロジー組合せ論的に扱い、弦の散乱振幅を計算します。

弦の散乱振幅は、各トポロジーに対して次のようなパス積分として与えられます

A = ∑_{g=0}^{∞} g_{s}^{2g-2} ∫_{ℳ_{g}} D[h] ∫ D[X] e^{-S[X,h]},

ここで:

- g_{s} は弦の結合定数、

- ℳ_{g} は種数 g のリーマン面のモジュライ空間

- D[h] は計量に関する積分(ファデエフポポフ法で適切に定義)、

- S[X,h] はポリャコフ作用

6. 構造を保つ変換の成す群の言葉空間を特徴づける。

対称性の群は、弦理論M理論基本的性質を決定します。

- 共形対称性: ワールドシート上の共形変換は、ビラソロ代数

[L_{m}, L_{n}] = (m - n) L_{m+n} + c/12 m (m^{2} - 1) δ_{m+n,0}

に従います。ここで c は中心電荷

- 超対称性: ℕ = 1 の超共形代数は、

{G_{r}, G_{s}} = 2 L_{r+s} + c/3 (r^{2} - 1/4) δ_{r+s,0},

[L_{n}, G_{r}] = (n/2 - r) G_{n+r}

を満たします。

- T-双対性: 円状にコンパクト化された次元において、半径 R と α'/R の理論等価である。このとき運動量 p と巻き数 w が交換されます

p = n/R, w = m R → p' = m/R', w' = n R',

ここで R' = α'/R。

- S-双対性: 強結合と弱結合の理論等価であるという双対性。弦の結合定数 g_{s} が変換されます

g_{s} → 1/g_{s}。

7. 距離空間: その元の間の距離関係を通じて空間定義

時空の計量 g_{μν} は、弦の運動を決定する基本的な要素です。背景時空がリッチ平坦(例えばカラビ–ヤウ多様体)の場合、以下を満たします:

R_{μν} = 0。

β関数消失条件から、背景場は次のような場の方程式を満たす必要があります(一次順序):

- 重力場:

R_{μν} - 1/4 H_{μλρ} H_{ν}^{\ λρ} + 2 ∇_{μ} ∇_{ν} Φ = 0、

- B-フィールド

∇^{λ} H_{λμν} - 2 (∂^{λ} Φ) H_{λμν} = 0、

- ディラトン場:

4 (∇Φ)^{2} - 4 ∇^{2} Φ + R - 1/12 H_{μνρ} H^{μνρ} = 0。

M理論では、三形式場 C_{μνρ} とその場の強度 F_{μνρσ} = ∂_{[μ} C_{νρσ]} が存在し、11次元重力の場の方程式を満たします:

- 場の強度の方程式

d * F = 1/2 F ∧ F、

- アインシュタイン方程式

R_{μν} = 1/12 (F_{μλρσ} F_{ν}^{\ λρσ} - 1/12 g_{μν} F_{λρσδ} F^{λρσδ})。

2022-05-12

anond:20220512230750

シュワルツシルト半径(シュワルツシルトはんけい、英語: Schwarzschild radius)とは、ドイツ天文学者カール・シュヴァルツシルトアインシュタイン方程式から導出した、シュワルツシルト解を特徴づける半径であるシュヴァルツシルト半径やシュバルツシルト半径とも表記される。

概要[編集]

1916年カール・シュヴァルツシルトアインシュタイン重力場方程式の解を求め、非常に小さく重い星があったとすると、その星の中心からのある半径の球面内では曲率が無限大になり(下記にあるように、現在はこの考えは誤りとされている)、光も脱出できなくなるほど曲がった時空領域が出現することに気づいた。その半径をシュワルツシルト半径 (英語: Schwarzschild radius) または重力半径と呼び、シュワルツシルト半径よりも小さいサイズに収縮した天体ブラックホールと呼ばれる


シュヴァルツシルト(Schwarzschild)は、ドイツ語圏の姓。 「黒い盾」を意味する。 シュワルツシルト、シュバルツシルトとも。 カール・シュヴァルツシルト - ドイツ天文学者

2020-07-12

東大工学大学院出たけど、数学物理もできない

東大修士工学大学院を出たんだけど。

心残りがある。

  

数学物理全然勉強できなかったことだ。

全然というのは、工学必要もの以外は全然くらいの意味

  

ホッジ作用素とか、アインシュタイン方程式、群環体、微分幾何、集合と位相くらいは理解した(つまりe-MANや物理のかぎしっぽくらいのサイトを眺めるレベル

でも、

場の理論って何?繰り込み群って何?超対称性って何?

代数幾何って何?ルベーグ積分って何?幾何学の不変量って何?

って感じの、学部中級レベルしか物理数学理解できていない。

東大まで行って、これかよっていう。

ってか、工学系でも、これらの知識使ってるところは使ってる研究室あって、普通に研究してるわけで。

  

自分がいた研究室は、そんなに高度な数学物理も使わなかった。せいぜい、微分幾何学とかチョロっとだけルベーグもあったかなーくらい。ほとんど何もまともな頭を使う議論はなかった。ルベーグってのも、別にルベーグじゃなくて、ノルムがどうこうでちょろっと。

  

物性系なら、超電導とか相転移とか。あるいは、核物理とかなら、普通に素粒子とかで数学バリバリできたんかなあ。

もう就職しちゃったけど、博士やれるなら、純粋数学か、素粒子物理やりたいなあ。。。

  

人生、こんなにレベル低いところで終わるのいやだ。

2020-07-03

東大理系院に行って、救われた話

Fラン私立大卒業後、しばらく資格職で働いたのちに、30歳目の前で東大理系院に潜り込んだ。

  

学部はド文系だったため、入試に受かるか不安だったが、あっさり受かった。

研究にはあまりついていけず微妙な結果しか出せなかった。

  

しかし、自分東大に行って救われたと思う。

大学院に進学した理由は、世界に対する絶望があったから。

働いていて、こんなもの世界なのかと、人付き合い含めて嫌になっていた。

  

理系に関して憧れがあった。技術人間は救われるんじゃないかと思った。

研究分野に関していえば、さら絶望が深まった感があるんだけど。

自分研究分野以外の方面での技術を学びまくった。

  

まず、入学当初に期待していた数学理論物理に関しては、少しガッカリだった。

東大数学科や理論物理科(数理科学院)の研究を眺めたが、これらが直接世界をよくするイメージイマイチわかなかった。

もちろん、カラビヤウだの、ヤンミルズだの、M理論だのはあまりからなかったニワカで語っている。

しかし、代数幾何や数え上げ幾何ルベーグ関数解析アインシュタイン方程式くらいは理解した。

もう少し勉強すれば深い感動はあったのかな?

  

一方で、予想していなかった分野では感動がたくさんあった。

情報幾何学、材料物性、光学計算化学といった、実学ちょっと先の分野が大変面白いと思った。

そのような研究を見聞きするのは大変楽しい

数ヶ月ごとに、これまでの人類刷新される成果がガンガン出てくる。

パワー半導体や、レアアース採掘電池エネルギー技術は、本当に2、3年でドンドン人類根本的に変わる発明実用化がガンガン出る。

このような分野を普通に理解できるようになったのは本当に楽しい。(別にこのくらいを楽しむ程度なら、東大行かなくても、youtube勉強とかでも最近はいいのかもしれないけど正直)

  

予想していなかった感動として、学内ベンチャーも凄かった。

こんなに東大生というのはチャンスがあるのだなと感動しっぱなしだったし。

当然それに答える技術ゴロゴロ東大研究室にはある。

  

正直、自分研究はうまくいかなかったが。

それなりに高価なパソコンシミュレーションしたり、

いわゆる最先端というか、未来を変えうる技術を少しできるようにしたくらいの成果はできた。

また、この分野の研究や成果をどうやって作るのかの知見も得られた。

  

自分は、社会人に戻ったが、あの日々の経験自分にとっては、「生きててよかった、世界は間違いなく変わる」ことを実感させてくれた。

普通に技術系のニュースを見ると、人類絶望せずにいられる。

技術が作る未来を見たいし、そこに、自分のようなブサイクで生きる価値のないキモい人間も生きていられる世界ができる気がするし、自分でも世界を作れると感じられるから

2015-10-08

掛け算の順序と一般相対性理論

ネットではもう水伝とか江戸しぐさと同レベルトンデモ扱いされている「掛け算の順序」について思うこと。

前置き。中学時代の話。学校の図書室で、物理学の本を読んだ。

子供向けに分かりやすおもしろ解説したようなやつね。

その中に登場したアインシュタイン一般相対性理論

いわく、小学校で習った「みちのり・はやさ・じかん」などのシンプル公式

光速に近いようなメッチャ速い速度の中では通用せず、

かわりになにかアルファベットだらけの難しい式を使わなければならないのだと。

たとえば小学校算数では、時速200kmで走る新幹線の中で進行方向に時速150kmの野球ボールを投げたら、

新幹線の外にいる人から見ればボールは時速350kmであり、

行方向の逆に投げれば、外から見れば時速50kmのボール、というように

速度と速度は単純に足したり引いたり出来ると教わったが、

光速の数パーセントというオーダーの世界では、それは正しい答えにならないのだ。

幼い俺は「ん?」と思った。

だけど、新幹線だってボールだって、どんなに遅いと言っても光速の0.00000000...

とにかく「光速の何パーセントかの速度」には違いないではないか?

そうだとすれば、その速度同士を足し引きするのも、厳密には間違いということになるのでは?

解説を参考にしながらボール新幹線を代入して、自分計算してみた。

結果は……普通に足し引きするのとほぼ変わらない答え。俺は感動した。

同じひとつ方程式が、人間日常レベルから光速までカバーできるなんてすごい。アインシュタイン天才

ここから本題。

小学生に速度の計算を教えるとき光速付近不正確になってしま古典物理学のやり方ではなく、

最初から相対性理論を教えるべきか?

いずれ形而上的な「数」そのものを扱わねばならない学年になったとき足枷になったら困るからと、

「3つの袋それぞれに飴が5つずつ」式の、物理実体と紐付けた説明は、最初から一切禁じるべきか?

これを使わず数字数字の間にあるバッテンの意味を教えられる自信ある? 小学生にだよ?

そして、これを使って教える限り、3×5 と 5×3 は、

たとえ計算結果は同じでも「式の”意味”が違う」と言わざるをえなくなる。

はっきり言って掛け算順序否定派は、人間理解能力には発達段階があること、

子供相手に最初から全部を教えるのは無理だし、そうする必要もないこと、

前はこう教えたが実はちょっと違うんだ、と説明を覆して拡張していくのは

やり方次第であってべつにタブーではないこと、をわかっていないと思う。

実際俺は、くだんの本を読んだあとも「先生は不完全な計算法を教えていた!」なんて思わなかったし、

算数テストでみんなが足し算している中で一人だけアインシュタイン方程式を使ってたらマルもらえなくてもしょうがないと思う。

終わり。

2009-03-12

テッサたんが6歳で解いたアインシュタイン方程式

フルメタル・パニックのテレサ・テスタロッサ。16歳で大佐天才少女。6歳でアインシュタインの十元連立非線形偏微分方程式の厳密解を解いたという設定。

で、「アインシュタインの十元連立非線形偏微分方程式の厳密解」って本当にあるんかいな?と、思ったのだが・・・ちゃんとあるんですね。普通は、10元連立非線形方程式、なんて長ったらしくは言わず、単に「アインシュタイン方程式」というらしいが。

アインシュタイン方程式

http://ja.wikipedia.org/wiki/一般相対性理論#.E4.B8.80.E8.88.AC.E7.9B.B8.E5.AF.BE.E6.80.A7.E7.90.86.E8.AB.96.E3.81.AE.E5.86.85.E5.AE.B9

で、「10元連立」って書いてあるぐらいだから、10本式があるのかと思ったら、テンソル表記で1つしか書いてない。「4次元空間を考えれば、テンソルは対称なので、アインシュタイン方程式は、10本の方程式からなる。」とのことですが・・・このテンソル表記の式が10元連立方程式であることを納得するので10分くらい考えてしまった。物理専門じゃないので、テンソルはちょろっとかじった程度なんだけど、次のような理解でOKなのかな?

要するに、テンソルが対称ということは、添え字μ,νを入れ替えても同じ式ということだよね。4次元空間とあるが、要するにμ, νには、(t,x,y,z)の4種類のうち、どれかが入る。というわけで、添え字の入れ替えを区別せずに列挙すると:

(t,t), (x,x), (y,y), (z,z)

(t,x), (t,y), (t,z)

(x,y), (x,z), (y,z)

の10通り。式で書くなら、4C2+4=6+4=10。で、10通り。

テッサたんすげぇ~。俺は10元連立方程式だって分かっただけでいいや。

 
ログイン ユーザー登録
ようこそ ゲスト さん