2024-08-24

創発時空概要

1. 基本的な設定

(H, ⟨·|·⟩)を可分なヒルベルト空間とし、B(H)をH上の有界線形作用素の集合とする。

2. 量子状態観測

S(H) = {ρ ∈ B(H) : ρ ≥ 0, Tr(ρ) = 1}を密度作用素の集合とする。A ⊂ B(H)を自己共役作用素部分代数とし、これを観測量の集合とする。

3. 時間発展

ユニタリ群{Ut}t∈ℝを考え、シュレーディンガー方程式を以下のように表現する:

iħd/dtUt = HUt

ここでH ∈ Aはハミルトニアンである

4. 状態空間位相

S(H)上にトレース距離を導入し、位相空間(S(H), τ)を定義する。

5. 観測量の局所性

A上にC*-代数構造を導入し、局所的な部分代数の族{A(O)}O⊂ℝ⁴を定義する。ここでOは時空の開集合である

6. 因果構造の導出

A(O1)とA(O2)が可換であるとき、O1とO2は因果的に独立である定義する。これにより、ℝ⁴上に因果構造を導入する。

7. 計量の再構成

状態ρ ∈ S(H)に対し、関数dρ : A × A → ℝ+を以下のように定義する:

dρ(A, B) = √Tr(ρ[A-B]²)

この関数から、ℝ⁴上の擬リーマン計量gμνを再構成する手続き定義する。

8. 時空多様体創発

(ℝ⁴, gμν)を基底時空とし、これに対して商位相を導入することで、等価類の空間M = ℝ⁴/∼を定義する。Mを創発した時空多様体とみなす

9. 量子状態と時空の対応

写像Φ : S(H) → Mを構成し、量子状態と時空点の対応定義する。

10. 動力学の整合性

シュレーディンガー方程式による時間発展ρ(t) = Ut ρ Ut*が、M上の滑らかな曲線γ(t) = Φ(ρ(t))に対応することを示す。

記事への反応(ブックマークコメント)

ログイン ユーザー登録
ようこそ ゲスト さん