数学的宇宙仮説を説明するには、宇宙をどのようにモデル化するかを考え、各理論の役割を明確にする必要がある。
以下に、各概念を説明し、物理宇宙を数学的にどのように捉えるかを示す。
数学的宇宙仮説の中心にあるのは、宇宙が数学的構造そのものであるという考え方である。数学的構造は、集合とその上で定義される関係や演算の組み合わせである。
具体例として、微分多様体を考える。微分多様体は、局所的にユークリッド空間に似た構造を持ち、滑らかな関数が定義できる空間である。物理学では、時空を微分多様体としてモデル化し、一般相対性理論の基盤としている。このように、宇宙全体を一つの巨大な数学的構造として捉え、その性質を研究する。
集合論は、数学の基礎を形成する理論であり、すべての数学的対象を集合として扱う。特に、Zermelo-Fraenkel集合論(ZFC)は、集合の存在とその性質を定義する公理系である。数学的宇宙仮説では、宇宙を集合として捉え、その集合上の関係や演算が物理法則を表現していると考える。
モデル理論は、形式的な論理体系が具体的な構造としてどのように実現されるかを研究する。数学的宇宙仮説では、物理宇宙がある論理体系のモデルであると仮定する。具体的には、物理法則を公理とする論理体系のモデルとして宇宙を捉える。これは、ペアノ算術の公理系のモデルとして自然数が存在するのと類似している。
カテゴリ理論は、対象(オブジェクト)とそれらの間の射(モルフィズム)を扱う理論である。カテゴリ 𝒞 は次のように定義される:
射は合成可能であり、合成は結合的である。さらに、各対象に対して恒等射が存在する。
数学的宇宙仮説では、宇宙を一つのカテゴリとして捉えることができる。カテゴリの対象は異なる数学的構造であり、射はそれらの間の変換や関係を表す。これにより、異なる「宇宙」間の関係性を数学的に探求することが可能になる。
トポス理論は、集合論の一般化であり、論理と空間の概念を統一する枠組みである。トポスは、論理体系のモデルとして機能し、異なる数学的構造を統一的に扱うことができる。
数学的宇宙仮説では、宇宙をトポスとして捉えることができる。トポスは、論理体系のモデルであり、異なる物理的現実を表現するための柔軟な枠組みを提供する。トポス理論を用いることで、宇宙の数学的性質をより深く理解することが可能になる。
数学的宇宙仮説を抽象数学で説明するためには、数学的構造、公理系、集合論、モデル理論、カテゴリ理論、トポス理論といった数学的概念を用いることが必要である。
これにより、物理的現実を数学的に厳密に記述し、数学と物理の深い関係を探求することができる。
この仮説は、数学的対象が物理的実体として存在するという新しい視点を提供するが、現時点では哲学的な命題としての性格が強く、数学的に証明可能な定理ではない。
つまり、(モデル理論における)「数学的構造」の形式的定義と同型性の形式的定義があり、そして実際、これは新しい主張でもなければ、洞察でもないのだが、この意味での数学的構...