はてなキーワード: 半群とは
匿名サイト上のコミュニケーションシステムを、抽象的な非可換力学系として捉えます。この系を記述するため、von Neumann 代数 M 上の量子力学的フレームワークを採用します。
M を II_1 型因子とし、その上のトレース状態を τ とします。系の時間発展は、M 上の自己同型写像 α_t: M → M (t ∈ R) によって与えられるとします。この α_t は強連続な一径数自己同型群を成すと仮定します。
系のエントロピーを、Connes-Størmer エントロピーとして定義します:
h(α) = sup{h_τ(α,N) | N ⊂ M は有限次元von Neumann部分代数}
ここで、h_τ(α,N) は N に関する相対エントロピーレートです。
エントロピー最小化問題を、以下の変分問題として定式化します:
この問題に対するアプローチとして、非可換 Lp 空間の理論を用います。p ∈ [1,∞] に対し、Lp(M,τ) を M の非可換 Lp 空間とし、||x||_p = (τ(|x|^p))^(1/p) をそのノルムとします。
エントロピー汎関数の連続性を保証するため、超弱位相よりも強い位相を導入します。具体的には、L1(M,τ) と M の積位相を考えます。この位相に関して、エントロピー汎関数 h の下半連続性が成り立ちます。
次に、Tomita-Takesaki モジュラー理論を適用します。τ に付随するモジュラー自己同型群を σ_t とし、KMS 条件を満たす平衡状態を考察します。これにより、系の熱力学的性質とエントロピーの関係を明らかにします。
エントロピー最小化のための具体的な戦略として、非可換 Lp 空間上の勾配流を考えます。エントロピー汎関数 h の L2-勾配を ∇h とし、以下の発展方程式を導入します:
dα_t/dt = -∇h(α_t)
この方程式の解の存在と一意性を、非線形半群理論を用いて証明します。さらに、解の長時間挙動を分析し、エントロピー最小の状態への収束を示します。
系の構造をより詳細に理解するため、M の部分因子 N ⊂ M を考え、Jones の基本構成 M_1 = ⟨M,e_N⟩ を行います。ここで e_N は N 上への条件付き期待値の拡張です。この構成を繰り返すことで、Jones タワー
N ⊂ M ⊂ M_1 ⊂ M_2 ⊂ ...
を得ます。各段階でのエントロピーの変化を追跡することで、系の階層構造とエントロピー最小化の関係を明らかにします。
最後に、自由確率論の観点から系を分析します。M 内の自由独立な部分代数の族 {A_i} を考え、それらの自由積 *_i A_i を構成します。自由エントロピーを
χ(X_1,...,X_n) = lim_m→∞ (1/m) S(tr_m ⊗ τ)(p_m(X_1),...,p_m(X_n))
と定義し、ここで X_1,...,X_n ∈ M、p_m は m 次の行列代数への埋め込み、S は古典的エントロピーです。
この自由エントロピーを用いて、系の非可換性とエントロピー最小化の関係を探ります。特に、自由次元 δ(M) = n - χ(X_1,...,X_n) を計算し、これが系のエントロピー最小化能力の指標となることを示します。
以上のフレームワークにより、匿名サイト上のエントロピー最小化問題を、非可換確率論と作用素代数の言語で記述し、解析することが可能となります。