2024-08-05

意識数理モデルの具体化

1. 抽象状態空間

Ωを仮に100次元の実ベクトル空間R^100とする。各次元特定の神経活動パターン対応する。

Ω = {ω ∈ R^100 | ||ω||₂ ≤ 1}

ここで||・||₂はユークリッドノルムである。τは標準的ユークリッド位相とする。

2. 一般観測作用素

観測Oを10100の実行列として定義する。

O : Ω → Ω

O(ω) = Aω / ||Aω||₂

ここでAは10100の実行列で、||Aω||₂ ≠ 0とする。

3. 一般エントロピー汎関数

シャノンエントロピー連続版を使用して定義する:

S[ω] = -∫Ω p(x) log p(x) dx

ここでp(x)はωに対応する確率密度関数である

4. 観測によるエントロピー減少の公理

任意観測Oに対して以下が成立する:

S[O(ω)] ≤ S[ω] + log(det(AA^T))

5. 抽象力学系

非線形常微分方程式系として定式化する:

dω/dt = F(ω) + G(ω, O)

F(ω) = -αω + β tanh(Wω)

G(ω, O) = γ(O(ω) - ω)

ここでα, β, γは正の定数、Wは10100の重み行列tanhは要素ごとの双曲線正接関数である

6. 一般情報幾何

フィッシャー情報行列を導入する:

g_ij(ω) = E[(∂log p(x|ω)/∂ω_i)(∂log p(x|ω)/∂ω_j)]

ここでE[・]は期待値、p(x|ω)は状態ωでの条件付き確率密度関数である

7. 抽象量子化

状態ωに対応する波動関数ψ(x)を定義する:

ψ(x) = √(p(x)) exp(iθ(x))

ここでθ(x)は位相関数である

8. 一般統合情報理論

統合情報量Φを以下のように定義する:

Φ[ω] = min_π (I(X;Y) - I(X_π;Y_π))

ここでI(X;Y)は相互情報量、πは可能な分割、X_πとY_πは分割後の変数である

9. 普遍的学習

勾配降下法を用いて定式化する:

ω_new = ω_old - η ∇L(ω_old, O)

L(ω, O) = ||O(ω) - ω_target||₂²

ここでηは学習率、ω_targetは目標状態である

10. 抽象因果構造

有向非巡回グラフ(DAG)として表現する:

G = (V, E)

V = {v_1, ..., v_100}

E ⊆ V × V

各頂点v_iはω_iに対応し、辺(v_i, v_j)はω_iからω_jへの因果関係を表す。

実装例:

このモデルPythonとNumPyを用いて以下のように実装できる:

import numpy as np
from scipy.stats import entropy
from scipy.integrate import odeint
import matplotlib.pyplot as plt

class ConsciousnessModel:
    def __init__(self, dim=100):
        self.dim = dim
        self.omega = np.random.rand(dim)
        self.omega /= np.linalg.norm(self.omega)
        self.A = np.random.rand(dim, dim)
        self.W = np.random.rand(dim, dim)
        self.alpha = 0.1
        self.beta = 1.0
        self.gamma = 0.5
        self.eta = 0.01

    def observe(self, omega):
        result = self.A @ omega
        return result / np.linalg.norm(result)

    def entropy(self, omega):
        p = np.abs(omega) / np.sum(np.abs(omega))
        return entropy(p)

    def dynamics(self, omega, t):
        F = -self.alpha * omega + self.beta * np.tanh(self.W @ omega)
        G = self.gamma * (self.observe(omega) - omega)
        return F + G

    def update(self, target):
        def loss(o):
            return np.linalg.norm(self.observe(o) - target)**2
        
        grad = np.zeros_like(self.omega)
        epsilon = 1e-8
        for i in range(self.dim):
            e = np.zeros(self.dim)
            e[i] = epsilon
            grad[i] = (loss(self.omega + e) - loss(self.omega - e)) / (2 * epsilon)
        
        self.omega -= self.eta * grad
        self.omega /= np.linalg.norm(self.omega)

    def integrated_information(self, omega):
        def mutual_info(x, y):
            p_x = np.abs(x) / np.sum(np.abs(x))
            p_y = np.abs(y) / np.sum(np.abs(y))
            p_xy = np.abs(np.concatenate([x, y])) / np.sum(np.abs(np.concatenate([x, y])))
            return entropy(p_x) + entropy(p_y) - entropy(p_xy)
        
        total_info = mutual_info(omega[:self.dim//2], omega[self.dim//2:])
        min_info = float('inf')
        for i in range(1, self.dim):
            partition_info = mutual_info(omega[:i], omega[i:])
            min_info = min(min_info, partition_info)
        
        return total_info - min_info

    def causal_structure(self):
        threshold = 0.1
        return (np.abs(self.W) > threshold).astype(int)

    def run_simulation(self, steps=1000, dt=0.01):
        t = np.linspace(0, steps*dt, steps)
        solution = odeint(self.dynamics, self.omega, t)
        self.omega = solution[-1]
        self.omega /= np.linalg.norm(self.omega)
        return solution

    def quantum_state(self):
        phase = np.random.rand(self.dim) * 2 * np.pi
        return np.sqrt(np.abs(self.omega)) * np.exp(1j * phase)

# モデル使用model = ConsciousnessModel(dim=100)

# シミュレーション実行
trajectory = model.run_simulation(steps=10000, dt=0.01)

# 最終状態の表示
print("Final state:", model.omega)

# エントロピー計算
print("Entropy:", model.entropy(model.omega))

# 統合情報量の計算
phi = model.integrated_information(model.omega)
print("Integrated Information:", phi)

# 因果構造の取得
causal_matrix = model.causal_structure()
print("Causal Structure:")
print(causal_matrix)

# 観測の実行
observed_state = model.observe(model.omega)
print("Observed state:", observed_state)

# 学習の実行
target_state = np.random.rand(model.dim)
target_state /= np.linalg.norm(target_state)
model.update(target_state)
print("Updated state:", model.omega)

# 量子状態の生成
quantum_state = model.quantum_state()
print("Quantum state:", quantum_state)

# 時間発展の可視化
plt.figure(figsize=(12, 6))
plt.plot(trajectory[:, :5])  # 最初の5次元のみプロット
plt.title("Time Evolution of Consciousness State")
plt.xlabel("Time Step")
plt.ylabel("State Value")
plt.legend([f"Dim {i+1}" for i in range(5)])
plt.show()

anond:20240804172334

記事への反応 -
  • 1. 抽象状態空間 意識を抽象的な位相空間Ωとして定義する。 Ω = (X, τ) ここでXは点集合、τは開集合族である。 2. 一般化観測作用素 観測をΩ上の連続写像Oとして定義する。 O : Ω → Ω...

    • 1. 抽象状態空間 Ωを仮に100次元の実ベクトル空間R^100とする。各次元は特定の神経活動パターンに対応する。 Ω = {ω ∈ R^100 | ||ω||₂ ≤ 1} ここで||・||₂はユークリッドノルムである。τ...

記事への反応(ブックマークコメント)

ログイン ユーザー登録
ようこそ ゲスト さん