連続時間モデルにおいて、最適投資戦略は Hamilton-Jacobi-Bellman (HJB) 方程式を解くことで導出される。
投資家の効用関数を U(x) とし、リスク資産の価格過程を幾何ブラウン運動
このとき、最適な投資比率 π*(t,x) は以下の HJB 方程式を解くことで得られる:
0 = sup_π { U'(x)(rx + (μ-r)πx) + ½U''(x)σ²π²x² + V_t }
ここで、V(t,x) は価値関数、r は無リスク金利である。
完備市場を仮定し、リスク中立測度 Q のもとでのオプション価格を導出する。
ヨーロピアン・コール・オプションの価格 C(t,S) は以下で与えられる:
C(t,S) = e^(-r(T-t)) E_Q[(S_T - K)⁺ | F_t]
ここで、K は行使価格、T は満期、F_t は時刻 t までの情報集合である。
Black-Scholes モデルの下では、この期待値は解析的に計算可能であり、以下の公式が得られる:
C(t,S) = SN(d₁) - Ke^(-r(T-t))N(d₂)
ここで、N(・) は標準正規分布の累積分布関数、d₁ と d₂ は所定の公式で与えられる。
Heston モデルなどの確率ボラティリティモデルでは、ボラティリティ自体が確率過程に従うと仮定する:
ここで、W¹ₜ と W²ₜ は相関 ρ を持つウィナー過程である。
このモデルの下でのオプション価格は、特性関数法を用いて数値的に計算される。
大口注文の最適執行を考える。Almgren-Chriss モデルでは、以下の最適化問題を解く:
min_x E[C(x)] + λVar[C(x)]
ここで、C(x) は執行コスト、x は執行戦略、λ はリスク回避度である。
市場インパクトを線形と仮定すると、最適執行戦略は時間に関して指数関数的に減少する形となる。
極値理論を用いて、稀な事象のリスクを評価する。一般化極値分布 (GEV) を用いて、最大損失の分布をモデル化する:
F(x; μ, σ, ξ) = exp{-(1 + ξ((x-μ)/σ))^(-1/ξ)}
ここで、μ は位置パラメータ、σ はスケールパラメータ、ξ は形状パラメータである。
これにより、通常の VaR や ES では捉えきれないテールリスクを評価できる。
確率制御理論を用いて、時間変動する市場環境下での最適資産配分を導出する。
dXₜ = μ(Xₜ,αₜ)dt + σ(Xₜ,αₜ)dWₜ
sup_α E[∫₀ᵀ f(Xₜ,αₜ)dt + g(X_T)]