はてなキーワード: 電気分解とは
情報どうもです!みつかりました
宇都宮 充
世界最高水準の酸素発生電極との過電圧の比較。赤が今回開発した電極
新潟大学自然科学系による研究グループは、超低過電圧で水を分解する高活性酸素発生触媒を開発し、世界最小のエネルギーで水を電解することに成功したと発表した。
化石燃料に代わる新たなエネルギー源の1つとして水素が期待される中で、水の電気分解による水素生成技術の研究も進められている。しかし、電気分解を行なうための電解質水溶液槽である水電解セルでは、理論電圧である1.23Vに加えて、酸素発生電極と水素発生電極への過電圧が必要で、前者は現状では300mV程度と高いのが課題だった。
研究グループでは、多孔性ニッケル基板とチオ尿素をともに焼成すると、窒化炭素に包まれた硫化ニッケルナノワイヤーが同基板上に析出することを発見。酸素発生電極として利用することで、32mVの超低過電圧での水の電解に成功した。
分析によれば、硫化ニッケルナノワイヤーと電解質水溶液の界面に、触媒活性サイトとなるニッケル酸化物層が形成され、基板から効率的な電子輸送が行なえたことが要因だとしており、高水準な電極と比べても大幅に低い電圧での電解が可能だという。
同グループでは、今回の結果が高効率な水素生成技術の実現につながるとしており、今後はこの水電解セルと太陽電池による、実用的な太陽光水素生成システムの開発を目指すとしている。
我らがインターネット=Google先生で検索すると歯科クリニックのサイトがたくさんヒットしますね。
警鐘を鳴らしているふうだが、どうやら「素人の作った自称次亜塩素酸水は危ない・このお墨付きのアイテムを買いましょう!」という宣伝に見える。
https://b.hatena.ne.jp/entry/s/amanodental.com/periotreat-new-coronavirus-hocl-water.htm
kokemono 世間に出回っている怪しい次亜塩素酸水をありがたがってる人にはこれを読んで欲しい。その上で、たとえ電気分解で作られた次亜塩素酸水であっても、ちゃんと殺菌効果を得ようとすると色々条件あること知ってほしい。
検索順位が低いが、学会の意見はこうらしい。「パーフェクトペリオ」について日本歯周病学会の見解
現状でのPPWの歯周治療への応用については、研究途上の段階で科学的根拠が十分であるとはいえず、日本歯周病学会としては安全性や有効性について学術的な場で充分な討議が行われた後に、臨床に応用されるべきであると考える。
さて、素人の我々は何を信じれば良いだろう。
2020年の初めに広がり始めたコロナウイルスは、瞬く間に人類の死亡原因第一位となった。
初期のコロナウイルスは、空気感染せず、免疫細胞の1つT細胞を破壊するだけだったのでまだ良かったが、
その後、突然変異で生じたウイルスは、はしかのように空気感染し、エイズのように免疫を壊してゆく。
経済が衰退する中で、人類が生き延びるためには、消毒薬を大量に散布してクリーンな居住空間を作り出す以外に手段が無かった。
だが、貧しい人間には希少となったアルコールや界面活性剤を手に入れることはできず、
彼らは、廉価な食塩水を電気分解して作られる、次亜塩素酸水を多用していた。
しかし、低純度な次亜塩素酸水には大量の塩化ナトリウムがそのまま含まれており、
建物内で何度も繰り返し撒かれた結果、いたるところで塩害が発生した。
鉄筋コンクリートの鉄筋が錆びて劣化し、コンクリートが崩れていったのである。
塩害は農作物の不作をも引き起こし、それは大飢饉の発生に繋がった。
今にして思えば、コロナよりも大飢饉による餓死者の方が多かったのではなかろうか。
食糧をめぐる争いで治安は悪化し、無政府状態となるまで1年も掛からなかったと思う。
各地で自警団なる組織が作られたものの、やってることは略奪と縄張り争いだけであった。
ようやくタイムマシンが完成した。
残念ながら、島の風力発電で過去に送れるのは文字情報が精一杯だ。
運が良ければ、このメッセージは2019年の11月1日に読まれることになるだろう。
文明崩壊を回避するために、君たちが今すべきことは、くぁwせdrftgyふじこlp(ここで文章は途切れている
問題なのは PEM電気分解 と 充填 の効率だ。ここが余分に入っているせいでFCEVの効率が悪くなっている。これらを再生エネルギーでやればいいのでは?
そう思う。つーか再生エネルギー自体はDCで取り出されるので、ここで電気分解を行えばAC/DC変換効率分は改善されるんでは
そこは疑問。再生エネルギー生産は時間や場所がブレるし消費の時間・場所とはギャップがある場合が多いんだけど
それを調整するためのEVは誰もが好き勝手にどこかに移動させたい代物なんだよね?
本当にうまくいくのかな
[~中略~]
要するに車体が大型になればなるほど現状の蓄電池には不利になるわけだ。
だからEVの未来としてはスクーターや高齢者向けの超小型モビリティなど、街乗りの小規模な乗り物として活用されることになるのでは
これなら積載量も航続距離もいらない
現状でも電動アシスト自転車は世の中に普及してるし、急速充電ができないという問題点もバッテリー交換という形ですでに解決されている
特に小型モビリティはこれから全世界で高齢化が進むんで市場は今以上に大きいと思われる
[補足]
エネルギー効率重視の元増田(id:vitamin_aceか)にとってブレ幅が大きい上に規模を上げづらい再生エネルギーは相性悪そう
FCEV(燃料電池) vs BEV(電気自動車)について返答してみる。FCEVに水素をいれるよりも、BEVを充電した方が効率が良いという話です。
水素を作る際に投入する電力のうち、数割は熱に変わってしまう。この点をBEVと比較しようと思う。Well-to-Wheelではなく「Grid-to-Wheel」で見た場合となっている。
水素を製造する際には電気分解が主流だ。(石油からの生成もあるが、今回は電気分解とさせていただく)
なお電気分解の際は、送電グリッド(交流)での変換とすると、まず交流を直流に変換する必要がある。この効率を92%とする。
【92%】
電気分解法としてPEMを考えると、効率が80%であるから、この時点で:
【92% * 80% = 74%】
となる。
燃料が問題なのは、「物質」であるために、「貯蔵」と「輸送」が必要になる点だ。
貯蔵に関して言えば、(水素は密度が低いので)貯蔵する際に液化または高圧にする必要があり、必ずエネルギーを消費する。
輸送に関して言えば、重さのある物体を動かすわけなので、必ずエネルギーを消費する。
ここで、燃料を貯蔵する際に使うエネルギーの効率を見てみると:
つまり貯蔵方法として圧縮する場合、今までの効率を掛け合わせると
となった。タンクに充填する段階までで、投入電力の36%は熱として失われる。
さて、ここまで製造した水素を水素タンクに充填した。次はその水素を使用するわけだが、ここでもロスが生じる。
燃料電池に貯蔵されたエネルギーは直流で取り出される。この効率を95%とする。また、取り出した電流をACに変換する必要がある。例えばMiraiのモーターは交流同期モーターで、DCからACへの変換効率を90%とすると、
【92%(ACDC) * 80%(PEM) * 87%(充填) * 95%(FCスタック効率) * 90%(DCAC) = 55%】
となる。
バッテリへ充電する際、ACDC変換の効率を92%、充電の効率を80-90%、インバータのDC→ACの変換効率を96%とすると
【92%(ACDC) * 80-90%(充放電) * 96%(DCAC) = 70-79%】
となる。
すなわち、同じ電力を投入する仮定のもとでは、電気自動車を充電した方が効率が高い。燃料電池車は、「水素製造」〜「燃料電池からの電力を取り出すまで」の間に、投入した電力のうちの45%の熱を出すわけだ。
数字をよくみると、問題なのは PEM電気分解 と 充填 の効率だ。ここが余分に入っているせいでFCEVの効率が悪くなっている。これらを再生エネルギーでやればいいのでは?と思うかもしれないが、そういう話ではなく、その再生エネルギーをBEVの充電に使った方が効率が高いよね、という話なのだ。
電気分解をしないケース(石油精製時利用する水素を使うケース)で見ると、
【87%(充填) * 95%(FCスタック効率) * 90%(DCAC) = 74%】
となり、まぁ悪くないような感じになる。ただ、このケースではCO2を出している。
「水素燃料の輸送ロスについて」への返答としては、「場合によるが(余り物の水素を使うなら効率が高い)、BEVよりも劣る」だろう。
輸送の際の話は答えていないので答えると、液体水素で輸送する場合ボイルオフ(気化していく)によりロスが生じる。圧縮する時にはエネルギーを投入する必要がある。パイプラインを引けばロスはない。
燃料電池スタックにも寿命がある。BEVとの比較はデータがないので難しいが、ここはおあいこのようだ。
Miraiとかはかなり頑丈なプリプレグでタンクを作っており安全性は高い。
リチウムイオンの危険性も確かにあるが、今は切ったり突き刺したりしても燃えないように作られている。
安全性を語る時はケース(事故)を色々考えないといけないので論ずるのは難しいが、一般論で言えばどれも極端なケースを除けば安全に作られていることは確かだ。
ガソリンは使い方を間違えれば兵器にもなるわけだし、あれほど危険なものをある程度安全に使えているので、安全性に関しては規制でなんとかなるという見解だ。
EVに蓄電するケースは自然エネルギーとの付き合い方では最も最適だ。EVをバッファとして使う。その際にパワーグリッドの需給状況に応じて充電電流などを変える必要があるだろうが、CHAdeMOはすでに遠隔監視のために携帯電話網に接続されたものもあることから、あとは制度次第で可能だろう。
水素で蓄電することももちろんできて、各水素ステーションの改質のタイミングを電力のオフピークに行えば良い。ただ書いたように、同じ電力を使うならEVに充電した方が効率は高い。
LPG車が細々と残り続けていることからも、こういう形で燃料電池車が使われるのではという確証の無い予想をしている。
現在のリチウムイオン電池はエネルギー密度が低く、例えばトラックなどがEV化した場合、目指す航続距離にもよるが、トラックの自重の半分とかが電池の重さになるだろう。大型トラックでも25tまでしか許されないので、電池ばかりを積むこともできない。航続距離が欲しいなら積載量を削ることになり、積載量を増やしたいなら航続距離を減らすことになる。
リチウムイオン電池のブレークスルーがなければ、燃料電池車もある程度日の目を見るだろう。
ただ、トラック・バスをEVやFCEVにするのはあまりにもコストがかかるわけで、もうしばらくはハイブリッドのままなのでは無いだろうか。
ICEは効率の点ではEVに遥かに及ばないよ。印象だけでは語るとデマになるので、少し計算した方が良い。
原油⇒精製(90%)⇒輸送(98%)⇒エンジン(30-40%)⇒変速機(80-90%)
=20%-35%程度
一番の問題は、熱機関は最良でもカルノーサイクルの壁を超えられないこと。つまり入力と出力の温度差による限界が来るわけ。
エンジンの素材は金属なので、良くても数百度とかにしかできないわけで、予算度外視でどんなに効率をよくしても量産車で60%に至ることはありえない。
エンジンはアルミか鉄なわけで、そこまで高温にできない。それで30-40%止まりと言うわけ。最近50%近いエンジンができたーとか言うニュースもあるが、もう熱力学上、天井は見え始めている。これは物理学なので、どうしようもならない。
(ちなみに、燃焼温度を上げると今度はNOxなどの問題が顕在化してくる。そのため、むしろEGRなどにより温度を下げるのがトレンド。エンジン開発はいろいろなトレードオフなのだ。)
ディーゼルエンジンは効率が比較的高く、CO2の排出もガソリンエンジンよりも少ないとされるが、NOx/PMなどの排出が多い問題がある。NOxについてはマツダが頑張って尿素SCRなしのエンジン作ったけど、結局、PMについては、DPFを用いて微粒子を捕獲している。そのDPFの煤焼き運転必要だったりするので、その分の燃料は無駄になるわけだよね。
で、エンジン車の問題として、トルクバンドが上のほうにあるので、クラッチ、トルクコンバーター等と変速機が必ず必要となる。その際にロスが出てしまう。AT/MT/DCTは段数が少ないとパワーバンドを生かしきれない。段数が多いと重い。CVTは滑るし、CVTフルードは温まるまで粘度が高くてロスになる(ダイハツはCVTサーモコントローラーとかで頑張ってるけど)。
エンジンの熱効率が50%に達したという記事(JSTの「革新的燃焼技術」)で反論する方がいらっしゃるが、そのエンジンは実験室の563cc単気筒エンジンだ。もちろん単気筒なんて自動車では振動などで使い物にならないから、最低でも3気筒からとなる。そうしたときに、気筒が増えて動弁系などのフリクションの発生によって効率は下がるはずなので、そのまま量産車に適用することは難しい。実用車では気筒数増加による動弁系の負荷、オルタネーターなど補機系の負荷などもかかってくることも頭に入れておきたい。
日産が45%のエンジンを開発しているとの記事もあるが、これはe-Powerの「発電専用」エンジンだ。ハイブリッドなので、こういう芸当が可能だ。
45%からは数%上げるだけでも相当血のにじみ出るような開発の労力がいるだろう。
燃焼温度はアルミや鋳鉄の融点よりも遥かに高いと言う指摘があった。その通りです。
しかし、熱力学を説明したかっただけで、例えば入口・出口の温度差を数万度にしたならば、熱効率はかなりのものとなるが、そんなものは物性的に不可能ということを示したかった。
原油⇒火力発電(超臨界発電) 50-60%⇒送電 (95%) ⇒バッテリへ充電(90%)⇒変換(96%)⇒モーター(95%)
=39-45%
PHEV, BEVの場合、上に示したうちで一番効率の悪い「火力発電」の部分を再生エネルギーや水力に転嫁することで、CO2削減を目指せる。もちろん、原発にしてもCO2は減らせる。
なお日本の火力発電所のSOx/NOx排出は海外に比べてもとても少なく、優秀である。
発電所の部分では、現状でも50-60%の効率は稼げる。なぜ熱機関なのにここまで効率が出せるかと言うと、巨大なプラントで高温に耐えるコストの高いタービンを回してるから。
それによって熱機関の効率が高められるから。車のエンジンは小さくてスケールメリットが働かないよね。でも発電所レベルなら巨大で、コストも充分かけられるのでこう言う芸当ができる。
で、電気の輸送に関しては送電線なので一度つなげたらしばらくはCO2を出さない。送電の効率も超高圧送電(100万ボルト以上)によって高まっている。
また、インバーターとかモーターに電気を流す部分はパワーデバイス(GaN等)の発展によってどんどん効率が上がっている。
なお、モーターのトルク特性としてエンジン車のように変速は不要のため、クラッチ・トルコン・変速機などによるロスはない。将来、インホイールモーターが実用化されれば、モーター→タイヤへの伝達効率はさらに上昇する。
ちなみに、xEVは回生充電もできるために、ブレーキ時に運動エネルギーがICEほど熱に変わらない。
(一方ICEはエンジンブレーキを使ったとしてもエネルギーに変えているわけではないので(多少オルタネータの充電制御は入るが)、ブレーキ時には運動エネルギーを熱にしてしまう。せっかく石油を燃やして運動エネルギーを得たのに、そのエネルギーを回収しないで熱に変えるわけ。)
まあxEVが回生できるとはいえ回生時にパワーデバイスとかの充電ロスがあるから、実はコースティング(回生も何もしない)で空走した方が距離を稼げる。なので、前の信号が赤にかわったとき、EVに関していえば、ブレーキも何も踏まないで空走状態を維持し、空気抵抗だけで0kmにするのが一番効率が高い。まあ、そんなことしていたらノロノロすぎてウザがられるので、妥協点として回生ブレーキを使ってちょっとはロスするけど、エネルギーを回収しながら止まるってことだね。
(ICEだと、エンジンブレーキを積極的に使って、ブレーキを踏まない運転を心がければ良い。やってはいけないのは、Nに入れて空走すること。Nに入れるとエンジンはアイドリングを維持するために燃料を消費する。ギアを入れたままエンジンブレーキをかけると、その間は燃料噴射をやめても回転が維持できるので、エンジンは燃料噴射をやめて、実質消費はゼロとなる。)
バッテリーの製造時の負荷は確かに高い。しかし、製造には電気を使っているので、電力構成によりCO2の排出は変わる。つまりグリーンなエネルギーを使えば問題なくCO2を減らせると言うこと。
なお id:poko_pen がマツダのWell-to-Wheel理論を持ち出しているが、あれば古い時代のバッテリー製造時のCO2データを使っていて、CO2排出を過大評価している。最近のテスラのLi-ion電池工場では、再エネを利用して製造しているのでCO2は少なくできる。こうした、製造時のCO2排出の問題は工場や電源構成をアップデートしていけば減らせる問題だ。
(マツダはBEVよりもICE派で、SPCCI(圧縮着火)とかで頑張ってるから、バイアスがかかってるのは仕方ないと思うね。私は内燃機関とデザイン周りで頑張るマツダは大好きだけど、SKYACTIV-Xが思ったよりも微妙だったから株売っちゃったわ。)
Li-ion電池に10%含まれるリチウムは、採掘時に水を大量に使ったりする問題はある。ただ、これは「製造時」に限った話であり、内燃機関を使うたび、原油のために油田をあちこち掘り返したり、オイルタンカーが座礁して原油を撒き散らしたりするのに比べれば遥かにマシというものだろう。
xEVには必要となる貴金属類には依然として供給リスクとか採掘時の「児童労働」とかの問題を孕んでいる。ここら辺は全世界的に解決するしかなさそう。需要が増えれば、世界の目がこう言う問題に向くはずなので、我々技術者はそれを期待するしかない。
例えば沖縄は石炭火力の比率が高いため、EVの効率を持ってしてもCO2の排出がHVとかより高くなる。しかし、それ以外の都道府県ではICEよりBEVの方がCO2が低い。原発が動いていない現時点でもね。
PHEVはもちろんICEより遥かにCO2を出さないが、BEVには勝てない。ただ、電力構成によっては逆転もありうるが、ほとんどの都道府県ではBEVの方がCO2を出さない。
(追記: anond:20200211034316 に FCEV vs BEV の効率比較を書いた)
燃料電池車に関していえば、無用の長物と言える。水素を製造する場合にも電力が必要だが、まあこれを再エネで行ったとしても、水素の輸送とタンクに注入する際の水素の圧縮時のロスは非常に大きい。その圧縮の際に再エネを使ったとしても、結局そのエネルギーでBEVを充電した方が効率がいいのだ。
そもそもBEVならば、送電線さえあればいいわけで、わざわざ水素のように輸送する必要がない。
また燃料電池は化学反応なので、アクセルレスポンスが遅いと言う欠点があり、反応のラグを補うために燃料電池車には結局バッテリーが積まれている。
ただ、航続距離は長いために、俺は現代におけるタクシーとかのLPG車みたいに細々と残るとは思う。航続距離が重要なトラックやバス、タクシーなどには燃料電池が使われるかもしれない。
効率以外にも、めんどくさい高圧タンクの法定点検とか、割と問題は多い。水素ステーションは可燃性の水素を貯蔵するわけだから、EVの充電スタンドよりも法的なめんどくささがあるのも確か。
これは燃料電池車より論外。カルノーサイクルに縛られてしまうので、電気分解よりも効率が悪くなる。水素の使い方としては燃料電池よりも悪い。
再エネは不安定と言われる。確かに自然相手なので、予測も難しい。しかし将来的にEVが普及すれば、EVをバッファとして利用することで、不安定さを吸収しグリッドを安定させられる。
これは再エネを導入する動機にもなる。職場に着いたらEVにCHAdeMOを挿しておいて、電力の需給バランスに応じて充電開始、とかが普通になるかもね。
BEVは寒さに弱い。リチウムイオン電池の特性上、寒くなると容量が可逆的ではあるが減る。そのためテスラにはバッテリーヒーターが搭載されている。(ちなみに、寒いノルウェーでもテスラが爆売れしているし、なんと新車の半分くらいの売り上げがBEVという。もはや寒さは問題ではないのかも?(まぁ優遇政策があるからだけどね))
FCEVも寒いと反応が弱まって出力が減るので、そこらへんは考慮されている。
一方ICEも、冬になると燃費が悪化するとされる。US DoEによると、理由は、オイルの粘度低下、温度上昇までの暖機、ガソリンの配合が夏と違う(日本でも同じかは謎)など。他には空気密度によるエアロダイナミクスの悪化とかがあるがこれはEVでも同じだ。オイルなどが原因となって燃費が悪化するのはICE特有だろう。
BEVはまた暑さにも弱い。Li-ionは熱によって不可逆的なダメージを受けて、寿命が縮む。そのためテスラにはエアコンを利用する水冷バッテリークーラーが搭載されている。リーフは空冷で、これが問題だったのか、劣化の問題でざわついていたリーフオーナーも多かった。今は改善されているらしい。
URLを多く貼るとスパム認定されるから貼れないけど、US DoEとかCARB、日本だと日本自動車研究所あたりの公開資料を見ればソースに当たれる。
一つだけ、EV vs ICEの効率について、13分程度で詳説してある動画のURLを貼っておく。英語で字幕もないが、割と平易なので、見てみてほしい。論文ソースは動画の中でよく書かれている。
「製造時の負荷」「化石燃料の発電でEVを使うのは利点あるのか?」「リチウム採掘の負荷」の3つで説明されている。簡単に箇条書きにすると:
https://www.youtube.com/watch?v=6RhtiPefVzM
前述のようにマツダはEVと自社のICEについて、Well-to-Wheelでライフサイクルアセスメントで比較している。その比較におけるLi-ion製造時のCO2排出量のデータだが、2010年〜2013年のデータとなっており古い。しかも、Li-ion製造時のCO2の排出量は研究によってばらつきが大きく、いろいろな見方があり正確性があまりないのが現状。また現状を反映していないと考えられる。例えばテスラ「ギガファクトリー」のように太陽電池をのせた自社工場の場合などについては考慮されていないのが問題だ(写真を見ると良い、広大な敷地がほとんど太陽光で埋まっている)。
また、マツダの研究はバッテリー寿命を短く見積りすぎている点で、EVのライフサイクルコストが大きく見える原因となっている。テスラのようにバッテリーマネジメントシステム(BMS)がしっかりとしたEVは寿命が長く、またLi-ionの発展によって将来は寿命を伸ばすことは可能だろう。事実、今まで電極や電解質の改善によってサイクル寿命は伸びてきた。
テスラは現時点で最も売れているわけだし、このことを考慮しないのは少々ズルいと言える。
"Why Hydrogen Engines Are A Bad Idea" でYouTube検索したらわかりやすいが、噛み砕くと
あと補足すると「エンジン」は爆発によるエネルギーを使っているが、全てを使い切れていないこと。十分に長いシリンダーを使って、大気圧まで膨張させるならエネルギーをかなり取り出せるが、そんなものは実用上存在できないので、爆発の「圧力」を内包したまま、排気バルブを開けることになる。この圧力をターボチャージャーで利用することも可能ではあるが、全て使い切れるわけではない。
あーでも、水素エンジンのメリットが1つあった。燃料電池(PEFC)は白金を必要とするため Permalink | 記事への反応(16) | 01:34
COP25開催地がチリからスペインへ急遽変更となり、参加予定だったグレタさんがtwitterで移動方法の支援を求めた。
元々国連会議の場へヨットで大西洋を渡ってきていたが、ヨット故障で帰路の手段に難渋していたのもある。
これにCOP25開催地であるスペイン政府から支援の申し出が表明されたので、スペイン政府が提示する移動手段について考えてみた。
◆移動行程
アメリカ東海岸(現在西海岸とのことだがアメリカ横断は自力でなんとかできるものとして)→スペイン、マドリード
◆時間的期限
COP25は12月2日~13日マドリードで開催される。開始に間に合うには4週間ほど、開催期間中に到着としても6週間弱
◆制約条件
・乗り物は移動行程中にCO2(及び環境汚染物質)を排出しない
・乗り物の製造工程やライフサイクルでのCO2排出量は考慮しない
◆理想路線(CO2排出量は極小だが1人の人間が太平洋を横断する手段としてのコストは高い)
・東海岸にある代替となるヨット……スペイン政府のつてでヨットと乗員を手配できれば
・スペイン海軍の訓練用ヨット……ゲストに移動手段として提示するにはリスクがあるのでは
https://es.wikipedia.org/wiki/Armada_Espa%C3%B1ola
Veleros Escuela A-72 ~ A-79
https://es.wikipedia.org/wiki/Juan_Sebasti%C3%A1n_de_Elcano_(A-71)
(参考)
なぜ帆船なのにエンジン搭載? 「日本丸」はダイハツ製エンジン その使い道とは
https://trafficnews.jp/post/78510
・旅客機……1人が搭乗するかどうかはCO2排出量にほぼ影響がない、利用した上でカーボン・オフセットをすれば良いのではないか
・客船……上に同じ
・コンテナ船……往路ヨットの船長が提案していた帰路の手段、世界物流の大動脈であるコンテナ船をshameすると世界の経済・社会に大きな影響が出るだろう、コンテナ密航ではなく乗船
◆未来路線(現在の技術では挑戦的で高コスト、あるいは移動手段として適さず、スペイン政府の影響力下にない)
・ソーラー飛行機……数年前世界一周中のソーラーインパルスが名古屋に寄ったこと覚えてますか、操縦士1人が乗るのが限界なので不適
・機帆船……動力の他に帆を併用して風力を活用する輸送船、原油高騰の時には燃費削減のため、現在ではCO2排出削減のため、効果はあるもののゼロ・エミッションではない
・原子力潜水艦……移動中CO2を出さない、乗員の出したCO2は回収し、水を電気分解して酸素を生み出す
理想的手段は過去の産業革命以前の技術(材料や製造技術などで近代化されているが)であるが現代社会で日常利用は難しい、
現実路線は現在の炭素経済と呼ばれるもので一般人の経済的スケールでアクセスできる移動手段であり、未来路線は将来的に技術が普及するまで一般人には利用できない。
選択した手段も彼女の方向性の現れになり、支持者や反対者の注目するところで慎重に検討してほしいが、決断は早い方がいい。期限が差し迫るほど天候に左右されて、結果として不本意な選択肢しか残らなくなる。
実現性や安全性で問題がある手段、丸木舟やイカダ、ベーリング海峡を渡る陸路横断コース、大西洋横断ハイパーループやどこでもドア、などは除外した。
石器を利用して作成
紐を利用した道具で作成
紐を利用した罠で捕まえた鹿の皮で作成
木で作成
炎(煙)で作成
硫黄(箱根産)と硝酸カリ(元コウモリの排泄物)と木炭から作成
滑車を流用して作成
皮で風船状の送風機を作成
猫じゃらしで作成
送風機を使って炉で作成
銅を炉で溶かして作成
珪砂で作成
ヤギの腸で作成
ヤギの腸で作成(チューニングは千空の知識を元に計算して実施)
槍を銀メッキして作成
石炭の燃えカスのコールタールを塩酸で洗ってから酢酸エチル(酒+酢)をかけて作成
パラアセトアミドベンゼンスルホン酸を塩酸で煮て重曹で洗って作成
鉄で作成
動作をギアで均一化した改良版わたあめ機を利用して金の繊維を作成
繊維をこより導線作成
鉄を使ってカセキが作成
水車で作成
木+銅で作成
銅板で作成
水車で作成
竹を編んで作成
皮で作成
血+鉄
シアノ酢酸+酒
麻で作成
布で作成
鏡+塩水
廃液と砂利で作成