「リチウムイオン電池」を含む日記 RSS

はてなキーワード: リチウムイオン電池とは

2020-08-12

anond:20200811234646

都内だけどうちの区は単に「ゲーム機の廃棄」ってくくりでそんなややこしくなかったよ。別にリチウムイオン電池をそっちでなんとかしてから捨てろなんてことは言われなかったけどどこの自治体

2020-08-02

最近気になっている事

なんかごちゃごちゃ色々書く。誰かツッコミいれてちょ。

  

新幹線

リニア静岡が揉めてるからもうスルーしたほうがいい

九州新幹線佐賀建設費用を求めすぎているのはおかしいので長崎県とかが出すべき

  

CPU

Ryzenが凄いと評判だけど、結局いろんな会社Intelばっかり使ってるから

どうも凄いって思えない。個人PC需要があるのかな

  

東京オリンピック

来年も無理じゃないのかな。コロナの状況が世界的に収集すると思えないんだけど

来年外国人が沢山来るかもしれないんでしょ?無茶じゃない?

  

災害

これから台風が来るのかと思うと憂鬱。去年の19号みたいなのは来てほしくない。

大地震がこのタイミングでくるのは勘弁。というか来年東日本大震災から10年か。

  

光学ドライブ

Ultra HD Blu-rayの容量は凄いなぁと思う反面、今さら光学ドライブメディアとか言われても使う気になれないなぁ

  

HDD

6TB~8TBのHDDも増えてきたけれど、4TB×2台を今使ってるので十分だなぁ。

クラウドデータもそこそこ保存しているし。

SSDの大容量化低価格化が実現していけば下火になるのかもしれないけど、10年くらいかかるのかな。  

  

電池

リチウムイオン電池以上の電池って全個体電池なんだっけ?

よく分かんないけど、もっと大容量化して欲しいね

  

AI

AIが凄いのは分かったんだけど、それで何が出来るのってところだよね今は。

今できるのってほぼ決まりきった仕事AIが合否の判断したり、データ自動入力するとかだろうし

もうちょっと発展があって欲しい。

  

IPS細胞

徐々に色んな組織を生成できるようになってきている。

恐らく十数年以上もかかると思うけれど、もっと実用化されて欲しいね

腎臓とか臓器作れるようになったら感動ものだなぁ。

2020-04-20

燃えないゴミ出すのって緊張しない??

自分環境での話ではあるんだけど、

まず、月に一回しか回収がないってのが緊張する。

「これに失敗したら…次のチャンスは一か月後…!」って心配になる。

次に、ちゃん不燃ごみなのかが不安

自分が出したものちゃん燃えないゴミとして取り扱ってくれるのか、

「あー、これは資源ごみからダメ」とか「これはリチウムイオン電池入ってるっぽいかダメ」とかで取り残されそうで不安

そして、サイズちゃんと30cm角に収まっているのかが不安

もちろん自分で測って30cm以内なら安心して出すんだけど、中には正直32cmぐらいのものもあったりする。

そういう時に回収員の人が持って行ってくれるのか、それとも「あー、これは2cmオーバーからダメ」って言って置いて行かれちゃうのか不安

燃えないゴミ、やべーな。

2020-02-11

anond:20200211034316

問題なのは PEM電気分解 と 充填 の効率だ。ここが余分に入っているせいでFCEV効率が悪くなっている。これらを再生エネルギーでやればいいのでは?

そう思う。つーか再生エネルギー自体DCで取り出されるので、ここで電気分解を行えばAC/DC変換効率分は改善されるんでは

EVに蓄電するケースは自然エネルギーとの付き合い方では最も最適だ

そこは疑問。再生エネルギー生産時間場所がブレるし消費の時間場所とはギャップがある場合が多いんだけど

それを調整するためのEVは誰もが好き勝手にどこかに移動させたい代物なんだよね?

本当にうまくいくのかな

現在リチウムイオン電池エネルギー密度が低く

[~中略~]

航続距離が欲しいなら積載量を削ることになり、積載量を増やしたいなら航続距離を減らすことになる。

要するに車体が大型になればなるほど現状の蓄電池には不利になるわけだ。

からEV未来としてはスクーター高齢者向けの超小型モビリティなど、街乗りの小規模な乗り物として活用されることになるのでは

これなら積載量も航続距離もいらない

現状でも電動アシスト自転車は世の中に普及してるし、急速充電ができないという問題点もバッテリー交換という形ですでに解決されている

特に小型モビリティはこれから世界高齢化が進むんで市場は今以上に大きいと思われる

リチウムイオン電池ブレークスルーがなければ、燃料電池車もある程度日の目を見るだろう。

やっぱり全個体電池じゃないすかね?

[補足]

エネルギー効率重視の元増田(id:vitamin_aceか)にとってブレ幅が大きい上に規模を上げづらい再生エネルギーは相性悪そう

安全で超効率次世代原発とか開発されないですかね

anond:20200210183214

FCEV(燃料電池) vs BEV(電気自動車)について返答してみる。FCEV水素をいれるよりも、BEVを充電した方が効率が良いという話です。

水素を作る際に投入する電力のうち、数割は熱に変わってしまう。この点をBEV比較しようと思う。Well-to-Wheelではなく「Grid-to-Wheel」で見た場合となっている。

燃料電池車(FCEV)の効率

製造

水素製造する際には電気分解が主流だ。(石油からの生成もあるが、今回は電気分解とさせていただく)

なお電気分解の際は、送電グリッド交流)での変換とすると、まず交流直流に変換する必要がある。この効率92%とする。

92%】

電気分解法としてPEMを考えると、効率が80%であるから、この時点で:

92% * 80% = 74%】

となる。

充填(貯蔵)

燃料が問題なのは、「物質であるために、「貯蔵」と「輸送」が必要になる点だ。

貯蔵に関して言えば、(水素密度が低いので)貯蔵する際に液化または高圧にする必要があり、必ずエネルギーを消費する。

輸送に関して言えば、重さのある物体を動かすわけなので、必ずエネルギーを消費する。

ここで、燃料を貯蔵する際に使うエネルギー効率を見てみると:

まり貯蔵方法として圧縮する場合、今までの効率を掛け合わせると

92% * 80% * 87% = 64%】

となった。タンクに充填する段階までで、投入電力の36%は熱として失われる。

使用

さて、ここまで製造した水素水素タンクに充填した。次はその水素使用するわけだが、ここでもロスが生じる。

燃料電池に貯蔵されたエネルギー直流で取り出される。この効率を95%とする。また、取り出した電流ACに変換する必要がある。例えばMiraiのモーターは交流同期モーターで、DCからACへの変換効率を90%とすると、

92%(ACDC) * 80%(PEM) * 87%(充填) * 95%(FCスタック効率) * 90%(DCAC) = 55%】

となる。

電気自動車(BEV)の効率

バッテリへ充電する際、ACDC変換の効率92%、充電の効率を80-90%、インバータDCACの変換効率を96%とすると

92%(ACDC) * 80-90%(充放電) * 96%(DCAC) = 70-79%】

となる。

すなわち、同じ電力を投入する仮定のもとでは、電気自動車を充電した方が効率が高い。燃料電池車は、「水素製造」〜「燃料電池からの電力を取り出すまで」の間に、投入した電力のうちの45%の熱を出すわけだ。

数字をよくみると、問題なのは PEM電気分解 と 充填 の効率だ。ここが余分に入っているせいでFCEV効率が悪くなっている。これらを再生エネルギーでやればいいのでは?と思うかもしれないが、そういう話ではなく、その再生エネルギーをBEVの充電に使った方が効率が高いよね、という話なのだ

電気分解をしない場合FCEV効率

電気分解をしないケース(石油精製時利用する水素を使うケース)で見ると、

87%(充填) * 95%(FCスタック効率) * 90%(DCAC) = 74%】

となり、まぁ悪くないような感じになる。ただ、このケースではCO2を出している。

水素輸送ロス (anond:20200210183214)

水素燃料の輸送ロスについて」への返答としては、「場合によるが(余り物の水素を使うなら効率が高い)、BEVよりも劣る」だろう。

輸送の際の話は答えていないので答えると、液体水素輸送する場合ボイルオフ(気化していく)によりロスが生じる。圧縮する時にはエネルギーを投入する必要がある。パイプラインを引けばロスはない。

燃料電池寿命

燃料電池スタックにも寿命がある。BEVとの比較データがないので難しいが、ここはおあいこのようだ。

水素貯蔵の安全性について (anond:20200210183214)

Miraiとかはかなり頑丈なプリプレグでタンクを作っており安全性は高い。

リチウムイオン危険性も確かにあるが、今は切ったり突き刺したりしても燃えないように作られている。

安全性を語る時はケース(事故)を色々考えないといけないので論ずるのは難しいが、一般論で言えばどれも極端なケースを除けば安全に作られていることは確かだ。

ガソリンは使い方を間違えれば兵器にもなるわけだし、あれほど危険ものをある程度安全に使えているので、安全性に関しては規制でなんとかなるという見解だ。

蓄電はどうするのか (anond:20200210183214)

EVに蓄電するケースは自然エネルギーとの付き合い方では最も最適だ。EVバッファとして使う。その際にパワーグリッドの需給状況に応じて充電電流などを変える必要があるだろうが、CHAdeMOはすでに遠隔監視のために携帯電話網に接続されたものもあることから、あとは制度次第で可能だろう。

水素で蓄電することももちろんできて、各水素ステーションの改質のタイミングを電力のオフピークに行えば良い。ただ書いたように、同じ電力を使うならEVに充電した方が効率は高い。

水素社会 (anond:20200210183214)

LPG車が細々と残り続けていることからも、こういう形で燃料電池車が使われるのではという確証の無い予想をしている。

現在リチウムイオン電池エネルギー密度が低く、例えばトラックなどがEV化した場合、目指す航続距離にもよるが、トラック自重の半分とかが電池の重さになるだろう。大型トラックでも25tまでしか許されないので、電池ばかりを積むこともできない。航続距離が欲しいなら積載量を削ることになり、積載量を増やしたいなら航続距離を減らすことになる。

リチウムイオン電池ブレークスルーがなければ、燃料電池車もある程度日の目を見るだろう。

ただ、トラックバスEVFCEVにするのはあまりにもコストがかかるわけで、もうしばらくはハイブリッドのままなのでは無いだろうか。

技術はどうなるのか誰にも予測できないので、確証はないけれども。

anond:20200210091314

どちらの採掘時も問題はありますよ。しかし程度問題として、テスラリチウムイオン電池は550kg(容器含んでいる)として、そのなかのリチウムは55kg以下。それに対して、ICEライフサイクル中がぶ飲みするガソリンを作るため、原油は一体何トン必要なんですかね?

そもそもリチウム採掘懸念されている理由を知っていますか?最も大きな問題は水(真水)を大量に消費することです。対して、原油採掘の際には随伴ガス(最近は軽減されていますが)が出て、CO2が必ず出ます

また海洋油田ではプラットフォーム廃棄物問題など(OSPAR条約)があります。MARPOL条約があってもタンカー事故はたびたび起こります採掘、精製、輸送使用のどこにおいても環境破壊が必ず伴います

繰り返しますが、問題は初期コストとしてこれら環境破壊が起こるわけではなく、内燃機関を使っていく以上かならず起きるわけです。

リチウムイオン電池採掘こそ水を消費しますが、そのあとの製造プロセスではリニューアブルエナジーを使えば環境破壊の程度は抑えられ、使用の際はそれ単体では環境破壊を伴いません。

なお、リチウムは廃棄リチウムイオン電池からリサイクルできます原油は燃やしたらできませんよね?

2020-02-10

anond:20200209170643

ICE効率の点ではEVに遥かに及ばないよ。印象だけでは語るとデマになるので、少し計算した方が良い。

エンジン (ICE: internal combustion engine) 効率

追記: 過小評価していたので熱効率を上げました)

原油⇒精製(90%)⇒輸送(98%)⇒エンジン(30-40%)⇒変速機(80-90%)

=20%-35%程度

効率向上の限界

一番の問題は、熱機関は最良でもカルノーサイクルの壁を超えられないこと。つまり入力と出力の温度差による限界が来るわけ。

エンジンの素材は金属なので、良くても数百度かにしかできないわけで、予算度外視でどんなに効率をよくしても量産車で60%に至ることはありえない。

エンジンアルミか鉄なわけで、そこまで高温にできない。それで30-40%止まりと言うわけ。最近50%近いエンジンができたーとか言うニュースもあるが、もう熱力学上、天井は見え始めている。これは物理学なので、どうしようもならない。

(ちなみに、燃焼温度を上げると今度はNOxなどの問題顕在化してくる。そのため、むしろEGRなどにより温度を下げるのがトレンドエンジン開発はいろいろなトレードオフなのだ。)

ディーゼルエンジン効率比較的高く、CO2排出ガソリンエンジンよりも少ないとされるが、NOx/PMなどの排出が多い問題がある。NOxについてはマツダが頑張って尿素SCRなしのエンジン作ったけど、結局、PMについては、DPFを用いて微粒子を捕獲している。そのDPFの煤焼き運転必要だったりするので、その分の燃料は無駄になるわけだよね。

で、エンジン車の問題として、トルクバンドが上のほうにあるので、クラッチトルクコンバーター等と変速機が必ず必要となる。その際にロスが出てしまう。AT/MT/DCTは段数が少ないとパワーバンドを生かしきれない。段数が多いと重い。CVT滑るし、CVTルードは温まるまで粘度が高くてロスになる(ダイハツCVTサーモコントローラーとかで頑張ってるけど)。

エンジン効率への批判について

エンジンの熱効率50%に達したという記事JSTの「革新的燃焼技術」)で反論する方がいらっしゃるが、そのエンジン実験室の563cc単気筒エンジンだ。もちろん単気筒なんて自動車では振動などで使い物にならないから、最低でも3気筒からとなる。そうしたときに、気筒が増えて動弁系などのフリクションの発生によって効率は下がるはずなので、そのまま量産車に適用することは難しい。実用車では気筒数増加による動弁系の負荷、オルタネーターなど補機系の負荷などもかかってくることも頭に入れておきたい。

日産が45%のエンジンを開発しているとの記事もあるが、これはe-Powerの「発電専用」エンジンだ。ハイブリッドなので、こういう芸当が可能だ。

45%からは数%上げるだけでも相当血のにじみ出るような開発の労力がいるだろう。

燃焼温度についての批判

燃焼温度アルミや鋳鉄の融点よりも遥かに高いと言う指摘があった。その通りです。

しかし、熱力学説明たかっただけで、例えば入口・出口の温度差を数万度にしたならば、熱効率はかなりのものとなるが、そんなものは物性的不可能ということを示したかった。

なので、燃焼温度は限られるという意味

BEV (Battery EV) 効率

原油火力発電(超臨界発電) 50-60%⇒送電 (95%) ⇒バッテリへ充電(90%)⇒変換(96%)⇒モーター(95%)

=39-45%

効率アップの方法

PHEV, BEV場合、上に示したうちで一番効率の悪い「火力発電」の部分を再生エネルギーや水力に転嫁することで、CO2削減を目指せる。もちろん、原発にしてもCO2は減らせる。

なお日本火力発電所のSOx/NOx排出海外に比べてもとても少なく、優秀である

発電所の部分では、現状でも50-60%の効率は稼げる。なぜ熱機関なのにここまで効率が出せるかと言うと、巨大なプラントで高温に耐えるコストの高いタービンを回してるから

それによって熱機関効率が高められるから。車のエンジンは小さくてスケールメリットが働かないよね。でも発電所レベルなら巨大で、コストも充分かけられるのでこう言う芸当ができる。

で、電気輸送に関しては送電線なので一度つなげたらしばらくはCO2を出さない。送電効率も超高圧送電(100万ボルト以上)によって高まっている。

また、インバーターとかモーターに電気を流す部分はパワーデバイス(GaN等)の発展によってどんどん効率が上がっている。

なお、モーターのトルク特性としてエンジン車のように変速不要のため、クラッチトルコン変速機などによるロスはない。将来、インホイールモーターが実用化されれば、モーター→タイヤへの伝達効率さらに上昇する。

回生

ちなみに、xEV回生充電もできるために、ブレーキ時に運動エネルギーICEほど熱に変わらない。

(一方ICEエンジンブレーキを使ったとしてもエネルギーに変えているわけではないので(多少オルタネータの充電制御は入るが)、ブレーキ時には運動エネルギーを熱にしてしまう。せっかく石油を燃やして運動エネルギーを得たのに、そのエネルギーを回収しないで熱に変えるわけ。)

まあxEV回生できるとはいえ回生時にパワーデバイスとかの充電ロスがあるから、実はコースティング回生も何もしない)で空走した方が距離を稼げる。なので、前の信号が赤にかわったときEVに関していえば、ブレーキも何も踏まないで空走状態を維持し、空気抵抗だけで0kmにするのが一番効率が高い。まあ、そんなことしていたらノロノロすぎてウザがられるので、妥協点として回生ブレーキを使ってちょっとはロスするけど、エネルギーを回収しながら止まるってことだね。

ICEだと、エンジンブレーキ積極的に使って、ブレーキを踏まない運転を心がければ良い。やってはいけないのは、Nに入れて空走すること。Nに入れるとエンジンアイドリングを維持するために燃料を消費する。ギアを入れたままエンジンブレーキをかけると、その間は燃料噴射をやめても回転が維持できるので、エンジンは燃料噴射をやめて、実質消費はゼロとなる。)

BEV製造時の負荷は?

製造CO2

バッテリーの製造時の負荷は確かに高い。しかし、製造には電気を使っているので、電力構成によりCO2排出は変わる。つまりグリーンエネルギーを使えば問題なくCO2を減らせると言うこと。

なお id:poko_penマツダのWell-to-Wheel理論を持ち出しているが、あれば古い時代バッテリ製造時のCO2データを使っていて、CO2排出過大評価している。最近テスラLi-ion電池工場では、再エネを利用して製造しているのでCO2は少なくできる。こうした、製造時のCO2排出問題工場や電源構成アップデートしていけば減らせる問題だ。

マツダはBEVよりもICE派で、SPCCI(圧縮着火)とかで頑張ってるからバイアスがかかってるのは仕方ないと思うね。私は内燃機関デザイン周りで頑張るマツダは大好きだけど、SKYACTIV-Xが思ったよりも微妙だったから株売っちゃったわ。)

リチウム採掘

Li-ion電池10%含まれリチウムは、採掘時に水を大量に使ったりする問題はある。ただ、これは「製造時」に限った話であり、内燃機関を使うたび、原油のために油田をあちこち掘り返したり、オイルタンカー座礁して原油を撒き散らしたりするのに比べれば遥かにマシというものだろう。

あと、専門外だけど、海水から抽出する技術研究中とか。

コバルト貴金属

xEVには必要となる貴金属類には依然として供給リスクとか採掘時の「児童労働」とかの問題を孕んでいる。ここら辺は全世界的に解決するしかなさそう。需要が増えれば、世界の目がこう言う問題に向くはずなので、我々技術者はそれを期待するしかない。

地域によるCO2排出量の差

例えば沖縄石炭火力の比率が高いため、EV効率を持ってしてもCO2排出HVとかより高くなる。しかし、それ以外の都道府県ではICEよりBEVの方がCO2が低い。原発が動いていない現時点でもね。

その他xEVとBEVとの比較

HV, PHEV

PHEVはもちろんICEより遥かにCO2を出さないが、BEVには勝てない。ただ、電力構成によっては逆転もありうるが、ほとんどの都道府県ではBEVの方がCO2を出さない。

燃料電池車 (FCEV)

(追記: anond:20200211034316 に FCEV vs BEV効率比較を書いた)

燃料電池車に関していえば、無用の長物と言える。水素製造する場合にも電力が必要だが、まあこれを再エネで行ったとしても、水素輸送タンクに注入する際の水素圧縮時のロスは非常に大きい。その圧縮の際に再エネを使ったとしても、結局そのエネルギーでBEVを充電した方が効率がいいのだ。

そもそもBEVならば、送電線さえあればいいわけで、わざわざ水素のように輸送する必要がない。

また燃料電池化学反応なので、アクセルレスポンスが遅いと言う欠点があり、反応のラグを補うために燃料電池車には結局バッテリーが積まれている。

ただ、航続距離は長いために、俺は現代におけるタクシーとかのLPG車みたいに細々と残るとは思う。航続距離重要トラックバスタクシーなどには燃料電池が使われるかもしれない。

効率以外にも、めんどくさい高圧タンクの法定点検とか、割と問題は多い。水素ステーションは可燃性の水素を貯蔵するわけだからEV充電スタンドよりも法的なめんどくささがあるのも確か。

水素ロータリー

これは燃料電池車より論外。カルノーサイクルに縛られてしまうので、電気分解よりも効率が悪くなる。水素の使い方としては燃料電池よりも悪い。

PHEV, BEVと再エネ

再エネは不安定と言われる。確かに自然相手なので、予測も難しい。しかし将来的にEVが普及すれば、EVバッファとして利用することで、不安定さを吸収しグリッドを安定させられる。

これは再エネを導入する動機にもなる。職場に着いたらEVCHAdeMOを挿しておいて、電力の需給バランスに応じて充電開始、とかが普通になるかもね。

気候

寒さ

BEVは寒さに弱い。リチウムイオン電池特性上、寒くなると容量が可逆的ではあるが減る。そのためテスラにはバッテリーヒーターが搭載されている。(ちなみに、寒いノルウェーでもテスラが爆売れしているし、なんと新車の半分くらいの売り上げがBEVという。もはや寒さは問題ではないのかも?(まぁ優遇政策があるからだけどね))

FCEV寒いと反応が弱まって出力が減るので、そこらへんは考慮されている。

一方ICEも、冬になると燃費悪化するとされる。US DoEによると、理由は、オイルの粘度低下、温度上昇までの暖機、ガソリンの配合が夏と違う(日本でも同じかは謎)など。他には空気密度によるエアロダイナミクス悪化とかがあるがこれはEVでも同じだ。オイルなどが原因となって燃費悪化するのはICE特有だろう。

暑さ

BEVはまた暑さにも弱い。Li-ionは熱によって不可逆的なダメージを受けて、寿命が縮む。そのためテスラにはエアコンを利用する水冷バッテリクーラーが搭載されている。リーフは空冷で、これが問題だったのか、劣化問題でざわついていたリーフオーナーも多かった。今は改善されているらしい。

用語

ソース

URLを多く貼るとスパム認定されるから貼れないけど、US DoEとかCARB、日本だと日本自動車研究所あたりの公開資料を見ればソースに当たれる。

一つだけ、EV vs ICE効率について、13分程度で詳説してある動画URLを貼っておく。英語字幕もないが、割と平易なので、見てみてほしい。論文ソース動画の中でよく書かれている。

製造時の負荷」「化石燃料の発電でEVを使うのは利点あるのか?」「リチウム採掘の負荷」の3つで説明されている。簡単に箇条書きにすると:

https://www.youtube.com/watch?v=6RhtiPefVzM

おまけ&追記

マツダLCAについて

前述のようにマツダEVと自社のICEについて、Well-to-Wheelでライフサイクルアセスメント比較している。その比較におけるLi-ion製造時のCO2排出量のデータだが、2010年〜2013年のデータとなっており古い。しかも、Li-ion製造時のCO2排出量は研究によってばらつきが大きく、いろいろな見方があり正確性があまりないのが現状。また現状を反映していないと考えられる。例えばテスラギガファクトリー」のように太陽電池をのせた自社工場場合などについては考慮されていないのが問題だ(写真を見ると良い、広大な敷地ほとんど太陽光で埋まっている)。

また、マツダ研究バッテリ寿命を短く見積りすぎている点で、EVライフサイクルコストが大きく見える原因となっている。テスラのようにバッテリマネジメントシステムBMS)がしっかりとしたEV寿命が長く、またLi-ionの発展によって将来は寿命を伸ばすことは可能だろう。事実、今まで電極や電解質改善によってサイクル寿命は伸びてきた。

テスラは現時点で最も売れているわけだし、このことを考慮しないのは少々ズルいと言える。

なぜ水素エンジン効率が悪いか ( id:greenT )

"Why Hydrogen Engines Are A Bad Idea" でYouTube検索したらわかりやすいが、噛み砕くと

あと補足すると「エンジン」は爆発によるエネルギーを使っているが、全てを使い切れていないこと。十分に長いシリンダーを使って、大気圧まで膨張させるならエネルギーをかなり取り出せるが、そんなもの実用存在できないので、爆発の「圧力」を内包したまま、排気バルブを開けることになる。この圧力ターボチャージャーで利用することも可能ではあるが、全て使い切れるわけではない。

あーでも、水素エンジンメリットが1つあった。燃料電池(PEFC)は白金必要とするため Permalink | 記事への反応(7) | 01:34

2020-01-07

リチウムイオンから全然進化してないのかよ

俺たちはいつまでリチウムイオン電池を使い続けるんだよ。

ニカド電池からリチウムイオン電池ときて、次もう10年くらい前に来てて良いもんでしょ。

いつ来るのよ!

2020-01-02

anond:20200102173754

塊で成果が出た!というのなら、今革新的研究と言われてるのは全部萌芽的研究、基礎研究を経ていますが。

科学というのはまだわからないもの検証していくという段階を経る以上、塊で成果を確認せねばならず。成果はでている。

IPSもオプジーボ青色ダイオードリチウムイオン電池もな。

2019-12-16

日本に学ぶことは多い」「これから中国時代」、日本人のノーベル賞中国人はどう見るか

本文: 

https://www.afpbb.com/articles/-/3250602

魚拓

http://archive.md/Ktinc

http://archive.ph/7IzGO

10月26日 東方新報2019年ノーベル化学賞(Nobel Prize in Chemistry)は、リチウムイオン電池を開発した旭化成Asahi Kasei Corporation)名誉フェロー吉野彰(Akira Yoshino)氏の受賞が決まった。止まらない日本人ノーベル賞ラッシュに、中国では「なぜ日本人ノーベル賞を受賞し、中国人は受賞できないのか」と話題になっている。

【関連記事】「千と千尋の神隠し」が中国で大ヒット! 18年前の作品がなぜ?の背景

 今月9日に吉野氏の受賞が決まると、中国メディアは速報を流すとともに、「外国籍を含む日本出身者のノーベル賞受賞は通算28人に達し、特に21世紀に入ってから米国に次いで受賞者が多い」と言及ネットメディアを中心に、日本中国をさまざまな角度で比較している。

 まず目立つのは、日本を称賛する分析だ。「日本人ノーベル賞受賞者は、子どもの頃に自然科学に関心を持ち、その体験がその後の研究の支えになっている。子ども好奇心や天性をそのまま伸ばす日本教育の特徴が大きい。中国はかつての科挙制度から現在受験競争まで、詰め込み教育ばかり重視されている」「日本紙幣肖像福沢諭吉樋口一葉野口英世で、政治家でも軍人でもない。学者芸術家尊敬する社会意識関係している」「日本は基礎研究が盛んな一方、中国研究商品開発に結びつくものばかりだ」

 また、「中国国内総生産GDP)で日本を抜き、日本に対し優越感に浸る中国人もいるが、日本総合力、技術力に比べれば中国はまだ劣ることを冷静に認識すべきだ」という意見もある。

 その一方で、「日本ノーベル賞受賞者は今後減少していく」という日本国内の見方も同時に伝えている。日本人研究者の論文発表数や論文引用される数は年々減少し、国際的科学競争力は低下する一方だ。

 ノーベル賞20~30歳代の研究成果が数十年後に評価されるパターンが多いが、日本政府が各大学への補助金や基礎研究費への教育振興費を削減しているため、日本の若手研究者の教育環境は著しく悪化している。2015年のノーベル物理学賞(Nobel Prize in Physics)受賞者の梶田隆章(Takaaki Kajita)氏は「このままでは日本から受賞者は生まれなくなる」、2018年ノーベル医学生理学賞(Nobel Prize in Physiology or Medicine)の本庶佑Tasuku Honjo)氏も「かなり瀬戸際に来ている」と警鐘を鳴らしている。

 そのため、「日本ノーベル賞ラッシュ前世紀の遺産」「中国研究者の論文数・被引用数は米国に次ぐほど増えており、将来は中国人のノーベル賞ラッシュが起きる」という意見もある。

日本に学ぶことはまだまだ多い」「これから中国時代」と対照的意見交錯する状況は、ノーベル賞に限らず、日本経済社会に対する中国見方全般と重なっているようだ。(c)東方新報/AFPBB News

_

少し前の記事だけど、この分析は冷静的。一読する価値はある。これみる前からだけど、本当に日本科学研究危機感を持っている。

2019-11-04

anond:20191104113017

新しい技術には絶対時間がかかるよ。30−40年前の基礎技術花咲いているのはある。

だけど、

(1)儲かるのが見えてきてからブーストが弱い。

(2)20年で特許が切れるという考えがない。20年間のうちに特許で守られなくなっても勝てる地盤を作っておかないとならない。

(3)そもそも、今の技術は20−30年前に萌芽が始まったものだけど、もうそんな萌芽なんて日本じゃ生まれない。

儲かるのが見えてきてからブーストが弱いのはiPSだな。

特許が切れて海外勢に席巻されたのは太陽電池リチウムイオン電池

萌芽が日本では生まれようがなくはじめから蚊帳の外なのはAIとか量子コンピューティングな。

2019-10-10

日本人リチウムイオン三人衆の名前を一人しか言えない

誰なの?

こんなに恥ずかしい国にした人達は。

ノーベル賞英語インタビューが始まるからあとにしまーすと言ったところでカメラ切れたの見て思わず唖然としたよ。

本番はそっちでしょ?

会場に向けた英語インタビューこそがノーベル賞において一番盛り上がるところなのに、日本人相手にしたせっまい記者会見がメインみたいにテレビで映すなんて……。

いやー酷いもんだね。

いまどきTV見てるやつのIQなんて90下回っているんだろうけど、それにしたってこんな事を日本中電波がやっているなんてね。

終わってるよ。

終わってないっていうならリチウムイオン電池発明者言ってみろよ!

2019-10-09

リチウムイオン電池の受賞がありなんだったらさー

ソニーウォークマンで受賞とか、ウォズがApple2で受賞とか、そういうのもありなわけ?

かに広く使われてはいるが、リチウムイオン電池ってなんか地味

2019-07-29

anond:20190726072721

科学立国危機って本読んでみ。ガチデータ

ある年の政府による研究科投資は、その5年後、10年後のGDPと強い相関がある。

別のいいかたすりゃ、競争力があるテーマなんて、その前の儲かると断言できないながーい科学技術の積立期間の末にできるもの

iPSなんかだいぶ早い部類だが、それでも臨床研究まで10年かかってるし、

免疫チェックポイント阻害剤は30年かかってる。最近話題全固体電池でも最初に取り掛かってから20年だな。

だけど、選択と集中で、すぐに実用化できるテーマばかりに国の金を集中したら、そりゃ新しいテーマも生まれんよって話。

小泉自民党の悪夢民主党悪夢。後、維新政権取らせたら維新悪夢によってさらに傷は深まるな。つーか、政府が何もしないほうが良い+すぐに成果が出るもの以外するな+不景気だろうが何だろうが財政均衡だ!の新自由主義悪夢

ついでに言うと、特許20年たつと切れる。20年の間にコモディティに近い状況にしないと、海外のぽっと出のベンチャーがまずは特許切れの技術で金を大量に集め安かろう悪かろうで食い込み、売れ出したらその金でさら研究開発をしてあっという間に市場をかっさらう。

3Dプリンタは一気に大量の新しい応用が生まれ(ただし日本は除く)、太陽電池もそれでだめになったし、リチウムイオン電池も今や世界トップ中国会社。もう日本ダメだろうね。

唯一可能性があるのは、パナソニックとか、GSユアサとかが、リチウムイオン専用会社を作って、子会社から外れるのを覚悟で、専用会社として出資を募って、様々な研究邁進することぐらいか

リチウムイオン電池太陽電池市場を席巻した韓国中国メーカーみたいにね。

なので、まずは大学周り締め付けたらいいものができるってのをやめて、小泉自民悪夢民主党悪夢由来のものを全部取り払い、大学の基礎研究を立て直すことだな。

ついでに、何か勝負する技術があるとしたら、専用会社にして、出資をどんどん募って邁進すること。

シャープ太陽電池と、ディスプレイも方向は正しかったけど、借金でやったがために資金が詰まってシャープ自体つぶれてしまった。

借金は返す必要がある。出資は返す必要がない。その代わりに、出資は出した金の何十倍価値会社にしないとならない。

これが、太陽電池専用会社ディスプレイ専用会社を作って、その会社シャープ子会社から外れること、かつつぶれることを覚悟して出資で金を募っていたら、案外、シャープ太陽電池ディスプレイ世界を制覇していたのかもしれない。

出資で金を募ってたら、問題借金でつぶれるって話もなかったわけだしね。

2019-07-23

技術成熟して20年たった技術新興企業が台頭し価格が大幅に低下する。

なぜなら特許が切れるからだ。

特許が切れると、どの企業が参加しても良くなるし、成熟した技術を元に大量に投資して、一貫量産でコストを一気に下げにかかる企業が現れる。

無論儲かりそうなら投資をするのが世の常なので、そういう企業複数現れる。その企業間の競争で一層価格が低下する。

また、価格が低下すると、大量に売れ始める。売上も上がるので、更に技術が洗練される。競争が一気に激化することもあって、開発競争が強くなり性能が上がる。

そうなる前に、最初強かった企業特許保持の20年のうちに大量生産、量産で価格を一気に下げて強くしておかないとならない。なお、各種電子部品ではそれができている。

3Dプリンタ太陽電池で起きてきた流れだ。リチウムイオン電池もそうなるかもなと思っていた。案の定テスラだとか、トヨタですら中国メーカーCATLと組むという流れになっている。

いま、リチウムイオン蓄電池世界トップはその中国メーカーCATLだ。

出資環境が活発な場所で、ターゲットにする商品一本に絞って、どんどん出資を募って、蠱毒のように争い、最後の一匹になれた会社が勝つ。

今思えば、シャープも、ディスプレイ太陽電池を専門企業として分社して、シャープ出資比率がどんどん減って、子会社から外れようが、「増資」で資金調達したら勝てたのじゃないかと思う。

シャープ本体と一体で「借金」で賄ったがために、返済の問題がおきて、本体も傾いてしまった。

増資は返す必要はない。その代わりにうまく行けば投資した金が何十倍になる。借金は返す必要があるが、うまく行っても、ちょこっとの金利しか帰ってこない。

蓄電池はこれから大幅に価格が低下する。残念ながら、日本メーカーは勝者の立場はいないだろう。

蓄電池だけ別会社にして、その会社を潰す覚悟+元会社出資比率を下げ、子会社から外れるつもりでバンバン増資をつのればワンちゃんあるが、そこまで出来ると思えない。

ああ、ついでに、。反原発、親原発というが、太陽電池上記の量産低価格競争にすでに突入している以上、蓄電池があれば基幹電源になる。

その蓄電池が安くなれば、原発純粋コストの面で使われるようになると思えない。今のままでは、蓄電池でも勝者に日本企業はいないだろうが。

2019-05-12

なぜ日本電池交換式EV流行らないのか

過去技術からです。中国も後れを取ることはある。

電気自動車というのは、リチウムイオン二次電池エンジン代わりに350VDCを作ってFETに食わせブラシレスモータで"変速"して駆動する自動車一種ですが、あらゆる二次電池可逆反応を用いるゆえに、燃焼で化学的に安定状態に落として排ガスを捨てるガソリンエンジンよりエネルギー密度が落ちる。使い捨ての方が理論レベルで性能が良いのは当たり前なのです。で、ガソリン乗用車の燃料タンクというのは後席乗員の腰と尻の下あたりにあるのですが、電気自動車では燃料の低い密度のため燃料タンクでありエンジンでもある電池パックの体積を大きくせざるを得なくなるが故にこれが二倍三倍と肥大化し床下全面に広がり、ケツの下は代わりにインバータとか電源回路が行くようになっている。代わりにこの燃料タンクたる電池パックは構造部材となり車体下面を軽く手抜きして負荷を共有するようになってきている。

燃料を2倍3倍と積めばコストは2倍3倍、いやハイテク燃料なので8倍27倍と増えるのだろうかそこは知らないが増える。またリチウムイオン電池というのは最低でも1C速ければ3Cとか5C(九龍ではない。いちしーと読む。リチウムイオン電池の充放電比較に用いる、充放電電流[W]を容量[Wh]で割った慣用表記である)で充電できつまり1時間で充電が完了する、はずであるが、実は電気自動車の5Cというのは0.5メガワットとかでありザクIIF型の後付け設定上定格の半分に達する。旧ザクではない方のザクミノスキー核融合炉を全力稼働させても普通乗用車わずか2台か3台を定格で充電できるのみなのである。そんな大電力は急速充電所でも中々用意ができず充電時間は2時間3時間と伸びてしまうのである

しかしまあ、原発ボコボコ建てればよい話でもある。5Cというのは1/5[hr] = 12分で充電が完了するという話であり供給できる限りにおいてはまあ抑えて20分くらい見ておけばよいわけであるし「電気自動車の充電時間問題の原因は電池や車体の受電能力ではなく発電所供給能力にあることはぜひ理解してもらいたいところである

もろちん、ガソリンスタンド12分も居たくないという当然の声は出るであろうと思うが、電気自動車ガソリンなんか使わないのだからスタンドスタンドを置く必要はないのである駐車場に置いてしまえ。いや駐車場に置いた"電気燃料ポンプ"からコンセントをぐいぐい伸ばして駐車スペースまで引いてしまえ。いやもういっそ電気配線なんかすべての駐車スペースに引いてしまえばいいのである。揮発性の爆発物が流れるわけではないのだから。するとどうだ、駐車スペースに20分停めておくくらいならまあ、昼飯休憩だってそのくらいはかけるだろう。可能じゃないだろうか? ついでに自宅ガレージにも配線をしてやろう。家を出る時は満タンなんである。まあ、300kmは走る。そのあと20分くらいは休憩が必要だ。そのくらいは休憩するんではないか? もちろん一日に300km走らない人は多いだろうし、休憩スポットに充電スポット必要ではあるのだが。

この辺まで社長がまだ収賄逮捕されてない方のブラック企業プロパガンダな。

上を踏まえて電池交換式を考えてほしい。電池交換は1台3分ですみ、充電なら15分必要である。ただしロボットを使う交換所は充電所より遥かに少なく待ちが発生する。待ちが12分以下で済むと言えるか? 電池交換不能なら車体下面を手抜きして軽量化できる。交換式なら締結を緩くし簡単に脱着できるようにすべきだ。脱着構造はどれだけのコストアップになる? 交換後の電池パックは交換所に溜まるが、充電しても交換しても1個につき0.5メガワットの電力を消費する。意味のある違いがあるか? この質問定性的に答えられるものではなかろうが、商業的には結論が出ている。電池交換所はあまりに初期投資が大きく、待ち時間は長く、交換用電池の充電電力要求は過大で、車体の重量増や電池容量への影響は重い。話にならんのである。なお電池規格共通化や課金モデルの話は蛇足になるので省く。

おそらく、中国電池交換式タクシー電池交換式ゆえに車載充電器が貧弱だし実験結果も多く収集することは理にかなっているし、交換運用を維持する方が合理的からそうしているのだろう。あるいは中国行政の身動きが悪く後れを取ることはあるというだけのことかもしれない。だがいずれにせよ、政治を省いて技術的・商業的に見れば上に述べた諸所の理由により電池交換式電気自動車コンセプトは破綻しており、実用化の見込みはないのである。そこを諸賢にはぜひ直視していただきたいところである。結びの言葉が思いつかなかったので句点を打っておく。

余談だが、リチウムイオン電池が絡む話には電気自動車に限らず「共通規格・交換式」を求める声を非常にうるさく感じる。こうした声が交換用電池や交換可能装置の売上に繋がることはない。顧客が求めるのは電池を含めた全体が製品寿命まで整備不要機能する装置であり整備可能製品を求める声は顧客のものではない。ぜひ口をつぐんで消えていただきたいと思う。

2019-02-06

テスラアーキテクチャ

テスラの車は、トヨタメルセデスの古いプラットフォームから派生した純電気自動車だ。まあ、旧型カムリだ。各ECUインパネ(IC)間がCANバスで結ばれ、ゲートウェイを通して車内インフォテインメント(カーナビ)が接続できる。そして、ゲートウェイにはセンターコンソール(MCU)、自動運転モジュール(APE)が接続されている。まあマツコネみたいなものだ。ただし、通常のカーナビと違い、このMCUTegra 3(旧世代)または超高速なIntel Atomプロセッサ(現行)が採用されている(マジ)。そして、海賊版Ubuntu GNU/Linuxを実行している(マジ)。そしてLTE回線に直結し、テスラ本社サーバ(mothership.tesla.com)にOpenVPN接続している。

機能

LTE接続

古いモデル3G、新しいモデルLTEモジュールを標準搭載している。明示的に特別注文しない限り無効化や取り外しは行われない。本社Mothershipは各車の動作状況を監視操作するほか、オートパイロット起動通知を受け取り、またssh接続のためのパスワードを保持する。これによりファームウェアrootが取られた場合オーナーを蹴り出したり、あるいは事故発生時に「オートパイロットは(直前でエラーを吐いて運転をぶん投げたため)使用されておりませんでした」と発表するなどいち早くメディア対策を行うことができる。

アップデート

更新パッケージは前述のOpenVPN経由でダウンロードされ、その中にAPEファームウェアのほかにもドアハンドルブレーキインバータECUなどのファームウェアが含まれていれば、MCU更新処理を行う。これまでに配信されたアップデートには、Linux Kernelを含むMCUOS更新インバータ出力アップ(設計の三倍程度)、緊急制動距離の延長と短縮、自動緊急ブレーキの追加、自動運転の警告間隔延長・短縮(事故報道の頻度に応じて調整)、自動運転機能のものの搭載や根本的な入れ替えなどがある。現在仕様ではファームウェアバージョン表記はYYYY.WW.x.y.zで、GitコミットIDが末尾に付き、平均して月2回程度のローリングリリースが行われる。つまりリポジトリのheadがざっと社内検証を通るとLTEで降ってくる。非常にまれなケースでは社長(@elonmusk)の「やりましょう」ツイートから時間バージョンが上がる。

駆動

電気自動車なので、エンジンは搭載しない。代わりに車体下面にリチウムイオン電池パック(ノミナル電圧480Vまたは400V)を搭載する。パックは火薬ヒューズを含む高電圧コンタクタ(リレー)を介してモータおよびインバータ接続され、インバータモータ進角を監視しながらスロットル指示に合わせて三相交流電源を供給する。この辺りはCPUファンと変わりない。

https://anond.hatelabo.jp/20190206135710

2018-11-26

anond:20181126213231

有料ごみ捨ては需要があると思うけどいまだに何もないのは

リチウムイオン電池危険物を混ぜて捨てる人がいるかもと警戒するからなんだろうか

2018-09-12

戦術レベルの敗退を繰り返してじり貧になったNEC

昔の格言か何かで、『戦略レベルミス戦術レベルでは取り返せない』というのがある。

かに、近年電機業界で大きな損失を出した会社を見てみると、この戦略レベルミスが非常に目立っておりなるほどなと思う。

プラズマディスプレイ社運をかけて大赤字を出したPanasonicPioneer、巨額の開発費をCell Processor投資して爆死したSONYWestinghouseの買収でやらかし東芝等。

ところが、最近増田話題NECを調べてみると、こうした会社とは不振の状況が違うように思えてきた。

なんというか各事業競争力を失って徐々に敗退していくというような。言い換えれば戦術レベルの敗北を繰り返してじり貧になったとでもいうか。

半導体がらみの仕事をしていてNEC事業所にも出入りしていたことがあり、個人的にも興味があったので歴史を少しまとめてみた。

なお、この記事を書くのに参考にしたのは下記NECIRで、1990年からの業績データと、1995年から会社紹介資料が閲覧可能

https://jpn.nec.com/ir/index.html

NEC 事業撤退歴史

1999年 半導体メモリ事業日立統合して分社化。後のエルピーダメモリ2012年経営破綻

2000年 家電部門NECホームエレクトロニクス事業停止。

2001年 有機EL事業サムスンSDIと合弁化。2004年有機EL事業から撤退

2004年 プラズマディスプレイ事業パイオニアに売却。

2010年 半導体子会社NECエレクトロニクスをルネサステクノロジ統合半導体事業から事実上撤退

2011年 パソコン事業レノボとの合弁化。

2011年 液晶事業天馬グループとの合弁化。2016年に完全売却。

2013年 携帯電話事業から撤退

2017年 リチウムイオン電池事業から撤退

NECのかつての栄光

1991年 NEC研究員だった飯島澄男がカーボンナノチューブ発見

2001年 スーパーコンピューター地球シミュレーターが世界一の性能を発揮

2001年 2000年3月決算過去最高の売り上げ5兆4000億円達成。 ※バブル期1990年度でも3兆7000億円程度。この時期までは比較的うまく経営ができていたと思われる。

2003年 小惑星探査機はやぶさ打ち上げ

1985年-1991年 半導体世界一

2001年-2004年 携帯電話日本一

NECの業績に影響のありそうな政治案件

1989年 アメリカスーパー301K発動

1998年 防衛庁談合事件

個人的経験に基づく雑感

NECに出入りしていたころに思ったが半導体事業部に新卒で入った社員は大体優秀かつ深夜残業休出当たり前なモーレツリーマンだった。

設備投資研究開発費も年間3000億円コンスタント投資しており、今の水準で考えても少ないことはなさそう。

しか20世紀終わりから21世紀にかけて爆発的に伸びた情報通信産業に社内のリソースを集中してて、バックに住友財閥もついている。

会社の置かれた状況を考えると韓国サムスン電子中国Huaweiみたいに、今でも世界を席巻できていただろうに。マジでどうしてこうなった

当時気になったのは本業関係ない関連会社が異様に多いことぐらい。(不動産NECファシリティーズ運送業NECロジスティクス食堂運営NECライベックス、企業研修NECラーニング等)

どうでもいいけど最近スローガンのOrchestrating a brighter worldってのはマジで意味不明。迷走ぶりを象徴している。

https://jpn.nec.com/press/201507/20150701_01.html

https://anond.hatelabo.jp/20180911165115

2018-09-06

たとえ原発が動いていても今回の道内全域停電が避けられない理由

まず、北海道電力泊原発は207万kWのPWRが1基。一番でかい火力の苫東厚真発電所が165万kW。今回は苫東厚真発電所が大ダメージを受けた。

んで、泊原発震度2が感知されている。もちろんこの程度で緊急停止はしないが

「外部電源喪失」をしているということは、つまり発電していても送電ができないので全く意味がない。

(泊の立地。端っこにあり一応大きな送電網は2系統繋がってはいる) https://web.archive.org/web/20180816083741/http://www.hepco.co.jp/corporate/company/img/map_zoom.gif

泊原発苫東厚真発電所よりもはるかに出力がでかいので、これが寸断されると電源周波数は当然一気にイカレる。

そもそも、でかい出力のプラントを少数組んで電力網を構築するモノリシック構成だと今回の災害の時にどうしてもSPoFになって被害がでかくなってしまう。

発電量が少量でも、プラント送電網を地理的分散すれば何の問題も起きなかった。

電力分散化と都合のいい技術がある。再エネや燃料電池だ。

風力や太陽光地震には弱そうだが、なにせコストが下がり続けているので、地理的分散が容易だ。

再エネで分散化するには出力の平滑化が課題なので、これから時代災害に強いエネルギー戦略としては再エネ(風力、太陽光地熱、潮力)+蓄電(フライホイールリチウムイオン電池)+揚水などが適するだろう。燃料電池としてはMCFC、SOFCが良い。過渡期のつなぎとしては、火力の助けを借りることになるだろう。

まだ技術成熟していないが、原発もんじゅにかけてきたコストこちらに投入しておけばなにか知見が得られていたかもしれない。廃炉にかけるコストも何の"生産性"もなく無意味技術だ。

というわけで、原発がたとえ稼働していたとしても、巨大だが少数しか作れないプラント災害に弱すぎる。今回の地震で、それが改めて浮き彫りになったといえる。

ブコメ

2018-07-02

日産リーフの急速充電問題解説する

https://www.bbc.com/news/business-44575399

猛烈に発熱するのだ、リチウムイオン電池は。

 電気自動車駆動系は大雑把に言ってモーター、インバーター、巨大なバッテリーからなり、バッテリー放電させインバーター変調してモーターを駆動する。インバーターモーターはガソリンエンジンよりエネルギー変換効率が大変高く、遥かに少ない排熱で遥かに強いトルクを生み出す。だからガソリンよりもエネルギー密度の低いバッテリー、小型のモーターでも十分長距離を高速で走ることができる。電源が架線ではなくバッテリーだということ以外は、平行カルダンVVVF電車と同じだ。だが、このバッテリー問題になる。

トータルで見てガソリン駆動系より効率が遥かに良いことに変わりはないが、エンジンで起きていた熱が燃料タンクに移行するのだ。従ってエンジンは冷やす必要が薄くなる。代わりに燃料タンクたるバッテリーを冷却する必要が起こる。ポンプで燃料を汲み入れるか汲み出すかという違いのようなものから充電しても放電しても発熱は起こる。そこになんとリーフバッテリー自然空冷式を採用してしまった。トヨタでさえ一部ハイブリッドにはファンによる強制空冷を採用している。GMは冷却板を多数挟み込んだ液冷式を使っている。BMWも液冷式だ。

 日産リーフ(旧型および新型)は、この自然空冷設計のため、連続して走行した場合、高温環境に置かれた場合、急速充電した場合などにバッテリー冷却能力が不足し、バッテリー温度高まるバッテリーは高温に晒されると劣化を早め、また発火の危険があるため、制御回路が自動的に充放電動作を抑えてしまう。過熱が発生した場合の性能低下は電気自動車共通性質だが、実利用で過熱が起こるのはリーフ設計上の問題だ。車を降りてから半日以上は熱が抜けないらしい。蒸し焼きだ。

次に、設計性質と利用形態ミスマッチがある。リチウムイオン電池の急速充電には条件がある。極端な低温や高温であってはいけない。電池残量が20%以下など低すぎたり、80%以上など高すぎたりしてはいけない。従って急速充電を繰り返したい場合発熱と冷却が均衡している必要があり、かつ電池の全容量を使い切る必要があってはならない。例えば自動車の満充電航続距離200kmだとすると、「自宅を満タンで出発し、200kmを走行してオーバーヒート寸前で使い切り、すぐに100%までフル充電し、また200kmを走行する」という条件では急速充電はできない。一度の走行距離を総電池容量の60%、120km以下に抑え、また温度も低く保つ必要がある。それ以上に走行したい場合はどうすれば良いだろうか? 常に可能とは限らないが、電池容量が大きく冷却能力の十分な車を買う必要があるだろう。さもなければ妥協して、急速ではない充電を繰り返すしかない。

 この2点の問題が組み合わさってリーフ電池劣化問題と急速充電問題引き起こしている。つまりバッテリー冷却の不足と、バッテリー容量の不足だ。代わりにリーフ現実的価格提示し、純電気自動車の普及を前倒しし、日産に大きな先行者利益をもたらした。

2017-09-17

anond:20170917225453

やっぱり、航空主兵論のさきがけとなったが、空気で古い艦隊決戦論の延長線のままでボコボコになった日本だわ。

ほんの何年か前まで世界全部の太陽電池シェアを握ってたとは思えないね、、、、。

リチウムイオン電池日本お家芸だったんだけど、やっぱりそれも負けるんだろうか。空気原発優遇をし続けるおかげで。

ログイン ユーザー登録
ようこそ ゲスト さん