「極値」を含む日記 RSS

はてなキーワード: 極値とは

2024-08-23

忙しい人のための物理学

1. 古典力学 (Classical Mechanics):

古典力学では、粒子の運動時間 t の関数 q(t) で表され、ニュートン運動方程式を満たすのだ:

q̈ = -U'(q)

ここで、U(q) はポテンシャルエネルギーである運動方程式は、ラグランジアン L(q) = 1/2q̇² - U(q) に基づく変分問題として再定義でき、作用積分 S(q) = ∫ₐᵇ L(q)dt極値点として運動記述するのだ。これは、最小作用の原理とも呼ばれるぞ。

2. 古典場の理論 (Classical Field Theory):

古典理論では、粒子ではなく、連続的な場 φ(x,t) を考えるのだ。この場は部分微分方程式に従い、例えば波動方程式

□φ = 0

記述されるぞ。ラグランジアン L(φ) は微分多項式であり、作用積分 S(φ) = ∫_D L(φ)dx dt を極小化することによって運動方程式(オイラー-ラグランジュ方程式)が導かれるのだ。

3. ブラウン運動 (Brownian Motion):

古典力学と異なり、量子力学では粒子は古典的な軌道を持たず、確率的に動くのだ。ブラウン運動モデルにして、粒子の位置 q(t) は確率密度

P(q) ∝ e^(-S(q)/κ)

に従い、ここで S(q) = ∫ₐᵇ (1/2q̇² - U(q)) dt作用、κ は拡散係数である。このような確率動力学の期待値は、経路積分を用いて計算されるぞ。

4. 量子力学 (Quantum Mechanics):

量子力学ではブラウン運動モデルを基にしつつ、拡散係数 κ を虚数 iℏ に置き換えるのだ(ℏ はプランク定数)。したがって、量子力学の相関関数は次のように表されるぞ:

⟨q_j₁(t₁) ··· q_jₙ(tₙ)⟩ = ∫ q_j₁(t₁) ··· q_jₙ(tₙ) e^(iS(q)/ℏ) Dq

5. 量子場理論 (Quantum Field Theory):

量子場理論でも、場の相関関数は次のように表されるのだ:

⟨φ_j₁(x₁, t₁) ··· φ_jₙ(xₙ, tₙ)⟩ = ∫ φ_j₁(x₁, t₁) ··· φ_jₙ(xₙ, tₙ) e^(iS(φ)/ℏ) Dφ

ただし、この積分は複素測度に基づくため、数学的に厳密に定義するのが困難であり、理論物理学における重要課題となっているのだ。

2024-08-06

最適投資戦略

1. 確率動的計画法による最適投資戦略

連続時間モデルにおいて、最適投資戦略Hamilton-Jacobi-Bellman (HJB) 方程式を解くことで導出される。

投資家の効用関数を U(x) とし、リスク資産価格過程幾何ブラウン運動

dSₜ/Sₜ = μdt + σdW

で表す。ここで、Wₜ はウィナー過程である

このとき、最適な投資比率 π*(t,x) は以下の HJB 方程式を解くことで得られる:

0 = sup_π { U'(x)(rx + (μ-r)πx) + ½U''(x)σ²π²x² + V_t }

ここで、V(t,x) は価値関数、r は無リスク金利である

2. マルチンゲール法によるオプション価格評価

完備市場仮定し、リスク中立測度 Q のもとでのオプション価格を導出する。

ヨーロピアンコール・オプション価格 C(t,S) は以下で与えられる:

C(t,S) = e^(-r(T-t)) E_Q[(S_T - K)⁺ | F_t]

ここで、K は行使価格、T は満期、F_t は時刻 t までの情報集合である

Black-Scholes モデルの下では、この期待値は解析的に計算可能であり、以下の公式が得られる:

C(t,S) = SN(d₁) - Ke^(-r(T-t))N(d₂)

ここで、N(・) は標準正分布の累積分関数、d₁ と d₂ は所定の公式で与えられる。

3. 確率ボラティリティモデル派生証券価格付け

Heston モデルなどの確率ボラティリティモデルでは、ボラティリティ自体確率過程に従うと仮定する:

dSₜ/Sₜ = μdt + √vₜdW¹ₜ

dvₜ = κ(θ-vₜ)dt + ξ√vₜdW²ₜ

ここで、W¹ₜ と W²ₜ は相関 ρ を持つウィナー過程である

このモデルの下でのオプション価格は、特性関数法を用いて数値的に計算される。

4. 最適執行戦略市場インパクトモデル

大口注文の最適執行を考える。Almgren-Chriss モデルでは、以下の最適化問題を解く:

min_x E[C(x)] + λVar[C(x)]

ここで、C(x) は執行コスト、x は執行戦略、λ はリスク回避度である

市場インパクト線形仮定すると、最適執行戦略時間に関して指数関数的に減少する形となる。

5. 極値理論とテールリスク管理

極値理論を用いて、稀な事象リスク評価する。一般極値分布 (GEV) を用いて、最大損失の分布モデル化する:

F(x; μ, σ, ξ) = exp{-(1 + ξ((x-μ)/σ))^(-1/ξ)}

ここで、μ は位置パラメータ、σ はスケールパラメータ、ξ は形状パラメータである

これにより、通常の VaR や ES では捉えきれないテールリスク評価できる。

6. 確率制御理論と動的資産配分

確率制御理論を用いて、時間変動する市場環境下での最適資産配分を導出する。

状態変数 Xₜ の動学を

dXₜ = μ(Xₜ,αₜ)dt + σ(Xₜ,αₜ)dW

と表し、制御変数 αₜ に関する最適化問題を解く:

sup_α E[∫₀ᵀ f(Xₜ,αₜ)dt + g(X_T)]

ここで、f は瞬間的な報酬関数、g は終端時点での報酬関数である

この問題は、前述の HJB 方程式を解くことで解決される。

2024-07-31

他人言動を2つの勢力に分類して一貫性を求めるやつ

他人にラベルをつけて、行動がそのラベルに反すると憤るやつ

物事グラデーションを認めず極値の2択にするやつ

物事の要素ごとの評価ができず全肯定全否定にするやつ

こういうのがよくいるわけだけど、なんというか

0/1化思考根底にあって発露の仕方の違いと思うと説明がつく気がする。

敵/味方や善/悪の二分類しか処理できないか

敵なのにその行動はおかしい、というようなことを言い出す。

ベル名前自体は変えてるが、敵か味方かという意味を持たせたランダムテキストに過ぎない。

勢力しか認識出来ないので敵に所属した人間の行動の揺らぎを受け止めれない。

そういうことなんだと思う。

2024-05-22

anond:20240522131534

「客が法律破れといったから破った」の極論につながるメンタリティ

これは勝手に話を極値拡張してるだけだし、違法行為の注文ならSIerも断るわな。

詭弁で話捻じ曲げて物事をわかったつもりになってるだけ。

2023-07-18

anond:20230718110918

それはバグではありません。仕様です

データに付加する記号意味は次のとおりです。

表示例 意味解説
正常値 統計値を求める基礎となる資料が全て揃っている値です。
値) 準正常値 統計を行う対象資料許容範囲内で欠けていますが、上位の統計に用いる際は一部の例外を除いて原則として正常値と同等に扱います必要資料数は、要素または現象統計方法により若干異なりますが、全体数の80%を基準します。
値] 資料不足値 統計を行う対象資料許容範囲を超えて欠けています。値そのものを信用することはできず、通常は上位の統計に用いませんが、極値、合計、度数等の統計では、その値以上(以下)であることが確実である、といった性質を利用して統計に利用できる場合があります

2023-04-28

SFネクサス』が読んじゃダメ理由:おもろいか

おもろいから読んじゃダメ

個人的には

『三体』・『プロジェクトヘイルメアリー』・『星を継ぐもの

と並べて面白SF小説四天王とよんでるんだけどさ。

SFを読む時間圧力掛けて凝縮させたみたいに、ドチャクソ面白くて一気に読み切ってしまう。

Amazon も星4.4の評価

本当に、本当に、本当に面白い。

でも読んじゃダメ

やめとけ。

万が一俺の文章を読んでポチりそうになっても一旦手を止めてほしい。

ネクサス』は他の3つとは決定的に違う点がある。

そう。

要するに続刊が翻訳されないのだ。

三部作なのに、いつまで経っても第二部が翻訳されない。

ぜーーーーーーんぜん、出ない、出る気配がない。

出版社にも何か事情があるんだろう、それが分からない以上、責められない。

まさか売れてないからじゃないだろうな?

世間面白SF小説が判定できないのか?

まさかまさか俺がズレてるんじゃないだろうな、いや絶対それはない、この本に限ってはあり得ない、、、などと悶々としてしまうよ。

ねえ…。小説読みなら分かってくれるよな;;; ;この気持ち…。

続刊が出ない極値に落ちる苦しみ。続刊おあずけ地獄。こんなにオモロイのに。みんなにもそういう本、あるんだろ?

2021-11-18

anond:20211118210841

こういう極論だからNGって言うやつマジでバカだと思うわ

すべてが〇〇であるというような主張には極値であろうと1件の例外があれば反証完了だし

議論許容範囲を定めるような際にも両極から始めて範囲絞らないと限界わからんだろ

2021-09-07

暗記数学が正しい Part. 1

長くなりすぎたので、概要編と実践例に分けます

本稿では、和田秀樹氏らが提唱している暗記数学というものについて述べます

受験数学方法論には「暗記数学」と「暗記数学以外」の二派があるようですが、これは暗記数学が正しいです。後者の話に耳を傾けるのは時間無駄です。

受験諸君は悪質な情報に惑わされないようにしましょう。

よくある誤解と事実

まず、読者との認識を合わせるために、暗記数学に関するよくある誤解と、それに対する事実を述べます

誤解1: 暗記数学は、公式や解法を覚える勉強法である

暗記数学は、数学知識有機的な繋がりを伴って理解するための勉強法です。公式や解法を覚える勉強法ではありません。「暗記」という語は、「ひらめき」とか「才能」などの対比として用いられているのであり、歴史年号のような丸暗記を意味するわけではありません。このことは、和田秀樹氏の著書でも繰り返し述べられています

誤解2: 受験数学は暗記数学で十分だが、大学以降の数学は暗記数学では通用しない

類似の誤解として、

などがあります。これらは事実に反します。むしろ大学理学部工学部で行わていれる数学教育は暗記数学です。実際、たとえば数学科のセミナー大学入試の口頭試問などでは、本稿で述べるような内容が非常に重視されます。また、ほとんどの数学者は暗記数学賛同しています。たまに自他共に認める「変人」がいて、そういう人が反対しているくらいです。大学教育関係者でない人が思い込みで異を唱えても、これが事実だとしか言いようがありません。

嘘だと思うならば、岩波書店から出ている「新・数学の学び方」を読んで下さい。著者のほとんどが、本稿に書いてあるように「具体例を考えること」「証明の細部をきちんと補うこと」を推奨しています。この本の著者は全員、国際的に著名な業績のある数学者です。

そもそも、暗記数学別に和田秀樹氏が最初に生み出したわけではなく、多くの教育機関で昔から行われてきたオーソドックス勉強法です。和田秀樹氏らは、その実践例のひとつ提案しているに過ぎません。

暗記数学の要点

暗記数学の要点を述べます。これらは別に数学勉強に限ったことではなく、他の科目の勉強でも、社会に出て自分の考えや調べたことを報告する上でも重要なことです。

  1. 数学重要なのは、技巧的な解法をひらめくことではなく、基礎を確実に理解することである
  2. そのためには、具体的な証明計算例を通じて学ぶことが効果である
  3. 論理ギャップや式変形の意図などの不明点は曖昧にせず、調べたり他人に聞いたりして、完全に理解すべきである

ひらめきよりも理解

一番目は、従来数学重要ものが「ひらめき」や「才能」だと思われてきたことへのアンチテーゼです。実際には、少なくとも高校数学程度であれば、特別な才能など無くとも多くの人は習得できます。そのための方法論も存在し、昔から多くの教育機関で行われています。逆に、「"才能"を伸ばす勉強法」などと謳われるもの効果があると実証されたもの存在しません。

大学入試に限って言えば、入試問題大学研究活動をする上で重要知識や考え方が身についているのかを問うているのであって、決していたずらな難問を出して「頭の柔らかさ」を試したり、「天才」を見出そうとしているわけではありません。

実例を通じて理解する

二番目はいわゆる「解法暗記」です。なぜ実例重要なのかと言えば、数学に限らず、具体的な経験と結びついていない知識理解することが極めて困難だからです。たとえば、

などを、初学者が読んで理解することは到底不可能です。数学においても、たとえば二次関数定義だけからその最大・最小値問題の解法を思いついたり、ベクトル内積定義線形性等の性質だけを習ってそれを幾何学問題に応用することは、非常に難しいです。したがって、それらの基本的概念性質が、具体的な問題の中でどのように活用されるのかを理解する必要があります

これは、将棋における定跡や手筋に似ています。駒の動かし方を覚えただけで将棋が強くなる人はまず居らず、実戦で勝つには、ルールから直ちには明らかでない駒の活用法を身につける必要があります数学において教科書を読んだばかりの段階と言うのは、将棋で言えば駒の動かし方を覚えた段階のようなものです。将棋で勝つために定跡や手筋を身につける必要があるのと同様、数学理解するためにも豊富実例を通じて概念定理の使い方を理解する必要があります。そして、将棋において初心者独自に定跡を思いつくことがほぼ不可能なのと同様、数学の初学者有益実例を見出すことも難しいです。したがって、教科書入試問題採用された教育効果の高い題材を通じて、数学概念意味や論証の仕方などを深く学ぶべきです。

そして、これは受験数学だけでなく、大学以降の数学を学ぶ際にも極めて重要なことです。特に大学以降の数学抽象的な概念が中心になるため、ほとんどの大学教員は、学生が具体的な実例を通じて理解できているかを重視します。たとえば、数学科のセミナー大学入試の口頭試問などでは、以下のような質問が頻繁になされます


不明点を曖昧にしない

教科書や解答例の記述で分からない部分は、調べたり他人に聞いたりして、完全に理解すべきです。自分理解絶対的に正しいと確信し、それに関して何を聞かれても答えられる状態にならなければいけません。

たとえば、以下のようなことは常に意識し、理解できているかどうか自問すべきです。

  1. 文中に出てくる用語記号定義を言えるか。
  2. 今、何を示そうとしているのか、そのためには何が言えれば十分なのか。
  3. 式変形をしたり、ある性質を導くために、どのような定理を使ったのか。
  4. その定理仮定は何で、本当にその条件を満たしているのか。
  5. そもそもその定理は本当に成り立つのか。自力証明できるか。
  6. どういう理屈意図でそのような操作・式変形をするのか。

ほとんどの人はまず「自分数学が分かっていない」ということを正確に認識すべきです。これは別に、「数学の非常に深い部分に精通せよ」という意味ではありません。上に書いたような「定義が何で、定理仮定結論が何で、文中の主張を導くために何の定理を使ったのか」といったごく当たり前のことを、多くの人が素通りしていると言うことです。

まず、用語記号定義が分からないのは論外です。たとえば、極大値と最大値の違いが分かっていないとか、総和記号Σ でn = 2とか3とかの場合に具体的に式を書き下せないのは、理解できていないということなのですから、調べたり他人に聞いたりする必要があります

また、本文中に直接書いていないことや、「明らか」などと書いてあることについても、どのような性質を用いて導いたのか正確に理解する必要があります。たとえば、

整数l, m, nに対して、2l = mnとする。このとき、mまたはnは2の倍数。

などと書いてあったら、これは

pが素数で、mnがpの倍数ならば、mまたはnはpの倍数。

という一般的定理を暗に使っていることを見抜けなければいけません。上の命題はpが素数でなければ成り立ちません。たとえば、l = 1, m = n = 2として、4l = mnを考えれば、mもnも4で割り切れません。他にも、

a ≡ b (mod n) ⇒ mamb (mod n)

は正しいですが、逆は一般的には成り立ちません。nとmが互いに素ならば成り立ちます。それをきちんと証明できるか。できなければ当然、調べたり他人に聞いたりする必要があります

l'Hôpitalの定理なども、もし使うのであれば、その仮定を満たしていることをきちんと確かめ必要があります

さらに、単に解法を覚えたり当て嵌めたりするのではなく、「なぜその方法で解けるのか」「どうしてそのような式変形をするのか」という原理意図理解しなければいけません。たとえば、「微分極値が求まる理屈は分からない(或いは、分からないという自覚さえない)が、極値問題からとりあえず微分してみる」というような勉強は良くありません。

そして、教科書の一節や問題の解答を理解できたと思ったら、本を見ずにそれらを再現してみます。これは「解き方を覚える」と言うことではなく、上に書いたようなことがすべて有機的な繋がりを持って理解できているかかめると言うことです。

はじめの内はスラスラとは出来ないと思います。そういう時は、覚えていない部分を思い出したり、本を見て覚え直すのではなく、以下のようなことを自分で考えてみます

  • 問題文の条件をどう使うのか
  • 何が分かれば、目的のものが求まるのか
  • どのような主張が成り立てば、ある定理を使ったり、問題文の条件を示すのに十分なのか

こういうことを十分に考えた上で本を読み直せば、ひとつひとつ定義定理、式変形などの意味が見えてきます。また、問題を解くときは答えを見る前に自分で解答を試みることが好ましいです。その方が、自分が何が分かっていて何が分かっていないのかが明確になるからです。

以上のことは、別に数学勉強に限った話ではありません。社会に出て自分の考えや調べたことを報告する時などでも同様です。たとえば、近年の労働法道路交通法改正について説明することになったとしましょう。その時、そこに出てくる用語意味が分からないとか、具体的にどういう行為違法(or合法)になったのか・罰則は何か、と言ったことが説明できなければ、責任ある仕事をしているとは見なされないでしょう。

2020-08-27

中学高校数学にいわゆるユークリッド幾何学不要

ここでいう「ユークリッド幾何学」とは、座標空間ベクトル三角関数微分積分などの解析的手法を用いないいわゆる総合幾何学のことです(*1)。2020年8月現在高校数学カリキュラムでいえば、「数学A」の「図形の性質」に該当する分野です。

ユークリッド幾何学不要だと思う理由単純明快で、何の役にも立たないからです。大学に入って、「補助線を引いて、相似な三角形を作って~」とか「コンパスと定規による作図」みたいなパズルゲームをやることは絶対にありません(*2)。これは常識で考えても分かると思います。たとえば工学研究で、ある物体の弧長や面積などを測定しなければならないとして、ユークリッド幾何学の補助線パズル適用できる多角形や円などしか測れないのでは話になりません。一方、座標空間ベクトル三角関数微分積分などの手法一般的現象記述する上で必ず必要になります

もちろん、たとえば三角比定義するには、「三角形内角の和は180度である」とか「2角が等しい三角形は相似である」といった初等幾何学性質必要になります。そのようなものを全て廃止せよと言っているわけではありません。しかし、高校1年生で習う余弦定理:

OABに対して、|AB|^2 = |OA|^2 + |OB|^2 - 2|OA||OB|cos∠AOB

証明してしまえば、原理的にはユークリッド幾何学問題は解けます。それ以降は、ユークリッド幾何学的な手法問題設定にこだわる必要はないと思いますし、実際それで問題ありません。

現状、少なくない時間ユークリッド幾何学に費やされています数学の1単元を占めているだけではなく、その他の単元にもユークリッド幾何学の発想に影響された例や問題が多く登場します。たとえば、複素平面において4点の共円条件や垂直二等分線を求めさせる問題など。そして最も労費されているのは生徒の自習時間です。以前よりマシになったとはいえ大学入試等には技巧的な図形問題が出題されるため、受験生はその対策に多大な時間を費やしています

高校数学では以下のような事項が重要だと思いますユークリッド幾何学を学ばせている時間があったら、このような分野を優先的に修められるようにすべきです。

これらの分野は数学手法としても非常に強力ですし、大学以降で数学を学ぶ際、現実的問題数学物理問題として正確に記述する際に必ず必要になります。仮にユークリッド幾何学が何らかの場面で応用されるとしても、微分積分などと同レベル重要だと真剣に主張する人っていらっしゃるでしょうか?

ユークリッド幾何学初等教育で教えるべきだとする根拠には、大雑把に言って以下の4つがあると思います

  1. ユークリッド幾何学では証明の考え方を学ぶことができる
  2. 図形問題代数や解析の問題よりも直感的で親しみやす
  3. ユークリッド幾何学問題を解くことで「地頭」「数学直観」などが鍛えられる
  4. ユークリッド幾何学歴史的重要である

しかし、これらはいずれも正鵠を射ていません。

まず①は明らかにおかしいです。ユークリッド幾何学に限らず、数学のあらゆる命題証明されるべきものからです。高校教科書を読めば、相加平均・相乗平均の不等式、点と平面の距離公式三角関数加法定理微分ライプニッツ則や部分積分公式など、どれも証明されていますそもそも数学問題はすべて証明問題です。たとえば、関数極値問題は、単に微分が0になる点を計算するだけではなく、そこが実際に極値であるかそうでないか定義や既知の性質に基づいて示す必要があります。したがって、ユークリッド幾何学けが特に証明の考え方を学ぶのに有効だという理由はありません。

②もおかしいです。図形問題を扱うのはユークリッド幾何学だけではないからです。ベクトル微分積分でも図形問題を扱います。たとえば、三角形の5心の存在や、チェバの定理メネラウス定理などはベクトルを用いても容易に示すことができます。また言うまでもなく、曲線の接線は微分で求めることができ、面積や体積は積分で求めることができます。また、ユークリッド幾何学手法問題ごとに巧い補助線などを発見しなければいけないのに対し、解析的な手法一般方針が立てやすく汎用的です。したがって、図形問題を扱うのにユークリッド幾何学手法にこだわる理由はありません。

③は単なる個人思い込みであり、科学的な根拠はありません。そもそも数学教育の目的は「地頭」などを鍛えることではなく、「大学や実社会において必要数学素養を身につけること」のはずです。また、これも上ふたつと同様に「ユークリッド幾何学以外の数学では、『数学直観』などは鍛えられないのか」という疑問に答えられておらず、ユークリッド幾何学特別視する理由になっていません。

④もおかしいです。そもそも歴史的重要である」ことと「初等教育で教えるべき」という主張には何の関係もありません。歴史的重要ならば教えるというなら、古代バビロニアインド中国などの数学特に扱わないのはなぜでしょうか。もっと言えば、文字式や+-×÷などの算術記号が使われ始めたのでさえ、数学史的に見ればごく最近のことですが、昔はそれらを使わなかったからといって、今でもそれらを使わず数学記述するべき理由があるでしょうか。

数学重要なのはその内容であるはずです。ユークリッド幾何学擁護する論者は、「(表面的に)計算問題に見えるか、証明問題に見えるか」のようなところに価値を置いて、一方が数学教育的に有意疑だと見なしているようですが、そんな分類に意味は無いと思います

大昔は代数計算方程式の解法(に対応するもの)は作図問題帰着していたようですが、現代でそれと同様の手法を取るべき理由は全くありません。記述する内容が同じであれば、多項式や初等解析のような洗練された方法重要な結果を導きやす方法を用いればよいに決まっています数学史家は別として)。同様に、ユークリッド幾何学も、解析的な手法で解ければそれでよく、技巧的な補助線パズルなどに興じたり、公理的な方法にこだわる必要はありません。

たとえば、放物線は直線と点から距離が等しい点の軌跡として定義することもできますが、初等教育重要なのは明らかに2次関数グラフとして現れるものです。放物線を離心率や円錐の断面などを用いて導入したところで、結局やるのは二次関数の増減問題なのですから最初から2次関数グラフとして導入するのは理にかなっています数学教育の題材は「計算問題証明問題か」などではなく、このような観点で取捨選択すべきです。

三角比などを学んだあともユークリッド幾何学を教えたり、解析的な手法では煩雑になるがユークリッド幾何学範疇ではエレガントに解けるような問題を出して受験生を脅したりするのは、意味が無いと思います。それは、「掛ける数」と「掛けられる数」を区別したり、中学連立方程式を学ぶのに小学生鶴亀算を教えるのと同様に、無駄なことをしていると思います

----

(*1)

現代数学では、n次元ベクトル空間R^n = Re_1⊕...⊕Re_nに

(e_i, e_j) = δ_i,j (クロネッカーデルタ)

内積定義される空間上の幾何学はすべてユークリッド幾何学に分類されます。したがって、上にあげた座標空間ベクトル微分積分、一次変換なども敢えて分類すればユークリッド幾何学です。しかし、ここではその意味でのユークリッド幾何学不要と言っているのではありません。飽くまでも、技巧的な補助線問題や、公理的な方法にこだわることが不要だと言っています

(*2)

数学科の専門課程で学ぶガロア理論では、コンパスと定規による作図可能性が論じられますが、これは「作図問題ガロア理論が応用できる」というだけであり、「ガロア理論を学ぶのに作図の知識必要」というわけではありません。

2020-06-10

基本的数学で覚えなければいけないことは無い

たとえば、数学がまともにできる人で、(a + b)(c + d)の展開公式を覚えている人はいないだろう。分配法則を知っていれば計算できるからだ。そして、多項式に対して分配法則が成り立つことは(もちろん厳密に証明することはできるが)自然感覚であり、これも覚える必要はない。

こんな自明な例に限らず、数学で何かを覚えることが、遠回りであり、本末転倒であることを説明する。

また、読解力の低い奴のために補足しておくが、「覚えなくていい」というのは「勉強しなくていい」ということではない。まあ、こういう勘違いをする奴らはこの一文自体読めないか無駄なんだが、少なくとも俺が「ここに書いてあるだろボケ」と言うための根拠にはなる。

定義は覚える必要があるか

無い。

定義公理は他の事実から導かれないので覚える必要がある」という意見があるが、間違いだ。

それは単に論理的に導かれないというだけであって、考えている問題に対してそのように概念定義すべき理由存在するからだ。

たとえば、複素数実数係数の2次方程式の解として生じるからi^2=-1と導入するのは自然であるし、三角形は2角と1辺の長さが決まれば決定されるから三角比定義自然ものである

そもそも、どのような経緯でそのような概念が導入されるのか理解することは、別に数学に限らず重要である

定理公式は覚える必要があるか

無い。

数学公式はすべて論理的に導出できるのだから、覚える必要はない。特に高校数学程度の定理公式などに大して証明が難しいものは無いのだから、瞬時に正しく導けなければいけない。

また、大抵の公式は、その意味理解できていればいくつかの具体例で試せば分かる。たとえば、三角関数加法定理は、cos(π/2+θ)とsin(π/2+θ)さえ分かれば求められる。

用語を覚える必要があるか

無い。

用語などはどうでもいい。

たとえば、平方完成という名前を知らなくても、二次方程式の解の公式の導出や、二次関数極値問題が解ければ全く問題ない。

問題の解き方は覚える必要があるか

無い。

そもそも数学理解度を確かめるために具体的な問題があるのであって、問題の解き方を覚えるのは完全に本末転倒である

その問題で使われている概念定理、解答の論理展開などをしっかり理解することが本質的である

2020-05-22

中学高校数学ユークリッド幾何学不要である

中学高校数学から、いわゆるユークリッド幾何学廃止してよい。理由単純明快で、何の役にも立たないからだ。

大学に入ったら、どの学部に行っても、「補助線を引いて、相似な三角形を作って〜」などと言ったパズルをやることは絶対にない。メネラウス定理高校卒業以降(高校数学指導以外で)使ったことのある現代はいないだろう。こういうことは、別に高等数学知識の無い高校生でも、常識で考えて分かると思う。たとえば工学で、弧長や面積を測定する機器必要になったとして、補助線パズル適用できるごく一部の多角形などしか測れないのでは話にならない。現代数学および科学技術を支えているのは、三角関数ベクトル微分積分などを基礎とする解析的な手法である

もちろん、たとえば三角比定義するには「三角形内角の和は180°である」とか「2角が等しい三角形は相似である」等のユークリッド幾何学定理必要になる。そういうものを全て廃止せよと言っているわけではない。しかし、余弦定理まで証明してしまえば、原理的にはユークリッド幾何学問題は解ける。また、実用上もそれで問題ない。したがって、余弦定理を初等的な方法で示したら、ユークリッド幾何学手法はお役御免でよい。

高校数学では、以下の分野が特に重要だと思われる。

これらはいずれも、高等数学を学ぶ際に欠かせない基礎となる分野である。仮にユークリッド幾何学が何らかの場面で使われるとしても、いくらなんでも微分積分などと同等以上に重要だと主張する人はいないだろう。

現在、これらの分野は十分に教えられていない。微分方程式と一次変換は現在2020年5月)のカリキュラムでは教えられておらず、ベクトル文系範囲から除かれ、代わりにほとんど内容の無い統計分野が教えられている。また、高校生にもなって、コンパスと定規による作図みたいなくだらないことをやっている。本当に、どうかしているとしか言い様がない。

ユークリッド幾何学を教えるべきとする根拠代表的ものは、証明の考えに触れられるというものだ。つまり代数や解析は計算主体であるが、ユークリッド幾何学証明主体なので、数学的な思考力を鍛えられるというものだ。

しかし、これは明らかに間違っている。別にユークリッド幾何学の分野に限らず、数学のあらゆる命題証明されなければならないからだ。実際、高校数学教科書を読めば、三角関数加法定理や、微分ライプニッツ則など、証明が載っている。そもそも数学問題は全て証明問題である関数極値問題は、単に微分が0になる点を計算するだけではなく、そこが実際に極値であることを定義に基づいて示さねばならない。数学思考力を養うのに、ユークリッド幾何学が他の分野より効果的だという根拠は無い。

2020-05-21

暗記数学が正しい

受験生諸君は、悪質な情報に惑わされないように。

暗記数学の要旨

和田秀樹らによるいわゆる「暗記数学」の要点をまとめると、以下のようになるだろう。

数学重要なのは、技巧的な解法をひらめくことよりも、基礎を確実に理解することである

これは従来、数学入試問題を解くのに必要なのが曖昧模糊とした「ひらめき」や「才能」だと思われていたことへのアンチテーゼである。「暗記」という語はその対比であり、特別な才能がなくとも、基礎事項を確実に習得することで、入試を通過できる程度の数学力は身に付くことを主張している。

そもそも大学入試大学研究をする上で重要知識や考え方の理解度を問うているわけであって、徒な難問を出して受験生を試しているわけではない。したがって、そのような重要事項(つまり教科書の基礎事項や、数学活用する上で頻繁に出てくるような考え方)を身に付けるのが正攻法である

そのための教材としては、エレガントな別解や難問に拘ったものよりも、基礎事項や入試頻出の問題網羅したスタンダードものが良いとされる。

数学理解するには、具体的な証明計算例を通じて行うのが効果である

これはいわゆる解法暗記である。なぜ、具体的な実例を学ぶのかと言えば。数学に限らず、具体的な経験と関連付けられていない知識理解できないためである

実際、教科書を読んだばかりの人の多くは、自身知識入試問題との間にギャップを感じる。たとえば、ベクトル内積定義線形性等の性質を知っただけでは、それを幾何学問題に応用するのは難しいだろう。教科書を読んだばかりの段階というのは、将棋で喩えれば駒の動かし方を覚えただけのようなもので、実戦で勝つのは難しい。実戦で勝つには、定跡や手筋のような、ルールだけから直ちに明らかではない、駒の活用法を身に着ける必要がある。

将棋の定跡を初心者独自発見するのが難しいのと同様に、数学自明でない実例を見出すことも難しい。そのほとんどは歴代数学者が生涯をかけて究明してきたものなのだから、当然であるしかし、現代高校生には既に教科書入試問題がある。特に入試問題は、数学専門家が選りすぐった、良質な実例の宝庫である受験生はこれを通じて数学概念活用のされ方や、論理の展開等を深く理解するべきである

そしてこれは、大学以降で数学工学を学ぶ際も同様である特に大学以降の数学では、抽象的な概念が中心になるため、ほとんどの大学教員は、具体的な実例を通じて理解しているかを非常に重んじる。たとえば、セミナー大学入試等では、以下のような質問が頻繁になされる。

  • ある概念(群やベクトル空間など)の具体例を言えるか。
  • 逆に、そうでないものの具体例を言えるか。
  • ある定理を具体的な状況に適用すると何が言えるか。
  • ある定理仮定を除いて、反例を構成できるか。

論理ギャップや式変形の意味等の不明点は曖昧なままにせず、人に聞いたり調べたりして、完全に理解すべきである

教科書記述や、解いた問題は完全に理解すべきである。つまり

といったことを徹底的に自問するべきである自分理解絶対に正しいと確信し、それに関して何を聞かれても答えられる状態にならなければいけない。「微分極値が求まる理屈は分からない(或いは、分からないという自覚さえない)が、極値問題からとりあえず微分してみる」というような勉強は良くない。

そして、理解できたと思ったら、教科書の一節や問題の解答を何も見ずに再現してみる。これはもちろん、一字一句を暗記するということではなく、上に書いたような知識有機的な繋がりを持って理解できているのかを確認することである。ある事実が、どのような性質を前提としていて、どのように示されるのかという数学ストーリー理解していれば、何も見ずともスラスラ書けるはずだ。

また、問題を解く際は、いきなり答えを見るのではなく、一通り自分で解答を試みてから解答を見ることが好ましい。実際に手を動かすことにより、分かっている部分とそうでない部分が明確になるからである

以上のことは、何も受験数学に限った話ではない。他の科目でも、社会に出て自分で調べたり考えたりしたこと他人に発表するときでも同様である

暗記数学に賛成している人・反対している人

一般的に、暗記数学に賛成している人。

要するに、数学の専門知識社会的常識のある人は暗記数学に賛成しているようだ。

逆に、反対している人。

反対しているのは、金儲けが目的で目立つことを言っているか、何かをこじらせて勉強法に無駄な拘りを持っている人たちのようだ。

----

追記

思うに、アンチ暗記数学派というのは、精神根底に以下のような考えを持っているのではないのだろうか?

一部の人は、大学入試では「ひらめき」「発想力」「頭の柔らかさ」「地頭の良さ」などを試すために敢えて典型的ではない問題を出しているとか、「天才」を発掘するために常人には解けないような難問を出題していると思っているのかも知れない。しかし、先にも述べたように、大学入試は、大学に入って研究するための基礎学力を測っており、入試問題は、そこで問われている知識や考え方が重要から出題されるわけである。したがって、そういう重要知識や考え方を十分に身に着けていれば受かる。ただそれだけの話である。そして、良識ある教育者は、数学重要なところが分かっているから、それに基づいて教材や予想問題を作っている。そうでない人はもしかしたら、大学普通受験生には解けないように徒に問題を複雑にしていると思い込み、ひねくれた問題を教えているのかも知れない。

また、「数学自体重要ではなく、数学を通じて思考力を鍛えることが重要」とか「受験勉強社会に出て嫌な仕事我慢するための訓練」等と思っている人もいるかも知れない。特に前者は、自称数学好きにもいるようだ。しかし、深く考えるまでもなく、大学受験数学が課せられるのは、大学研究するために(少なくとも、教員が望む水準で)絶対必要からである。そして何度も言うように、入試で問われるのは、研究のために必要知識や考え方であり、「頭の柔らかさ」などではない。また、数学をそれほど使わない学部にも、受験数学が課せられるのは、多くの大学には転部等の制度があり、文学部から経済学部とか、農学部から工学部に転部するような事例は珍しくないかである

上記2つに共通するのは、「理解」よりも「ひらめき」等のオカルティックなものを重視することである。これは、上に述べた胡散臭い教育業者や、受験生に絡んでる学歴コンプが暗記数学に反対する理由と符合する。金儲けがしたい受験業者にとって、「基礎を確実に理解することが重要」と言うよりも「入試本番に典型問題は出ないから、ひらめきが大事(。そして、ウチの教材を使えば、それが鍛えられる)」などと言った方が、客は集まりやすいだろう。また、SNS等で受験生教員などに絡んでる奴にしても、数学本質理解できず霊感的なもの価値見出しおかし勉強理論かぶれてしまったと考えれば納得がいく。

繰り返しになるが、受験生諸君はそういう悪質な情報に惑わされてはいけない。

2019-10-31

身の丈

身の丈にあった生き方をする、これは格言的であり、立派なように思えるが、文科大臣発言への反応を見るに、教育ということになれば話は違うようである

私はどのような生き方にも価値があるように思えるし、人生のどのような瞬間にもある種の価値を認めたい。しかし、この考えが危険なのはアフリカで今まさに死んでいく子供生命をも肯定してしまう点である。そして、それは自明に間違っており、ここに私の思考矛盾する。

この矛盾社会個人を丸々包摂できないことを原因とする。どのような人生でもその一瞬一瞬意味があるが、主観を離れた社会的な観点から見れば、社会を成立させるために無意味であると捨象しなければいけない要素になってしまう瞬間もあるのだ。

最近まどかマギカを見たのでそれに照らし合わせてみる。キュゥべえ視聴者から毛嫌いされているらしく、それは地球少女をこの宇宙というプラットフォームを維持するための捨て駒としてしか見ていないかである

私たちアフリカの子供の存在社会問題だと考えることは同様の構造に当てはめられる気がする。アフリカの子供が死んでいくのを肯定でいないのは、社会根底人権という概念が支えているからだ。アフリカの子供はそんな概念存在しないことをあからさまにし、私たち社会に対する疑念を抱く。いや、抱くべきなのだが、社会という存在なしに生きられない私たち社会ではなく、アフリカの子供達の存在に疑問を抱く。果たしてそんな命あっていいのか、いいはずがない、と。

アフリカまどマギがどう一致するのか。まず、結果において、まどマギでは少女は消費させるが、アフリカ場合には救われつつある。一見相反するようにも見えるがそれはyes/no、on/offのどちらかということであって構造は一致している。魔法少女が消費されてしまうのは、宇宙という社会のためであり、キュゥべえ少女を消費することを躊躇わないのは少女主観に重きを置かないかである。そして、アフリカの子供が救われるのは、ひょっとすれば当人のためというよりは我々の社会のためであり、子供を救うことが完全に肯定されるということは、子供主観人生否定することである

果たして上記文章構造が一致していると説明できているかも、果たして本当に一致しているのかも不明であるが、ここで一つ加えておきたいのは、アフリカの子供の命を救うことはその子本来主観的生を否定している、故に子供を救うのはやめろと言いたいのではないし、私の主観ではそのような活動は勇ましいものであると思う。最近netflixで公開されたビルゲイツ映像面白かった。今年のノーベル経済学賞もそんな感じだったしね。

話をアフリカから比較平和日本に移すと、私たち生活には当たり前に人権が備わっている。まあ虐待されている子供や、台風でも避難所に入れてくれないホームレス存在はあるが、アフリカとの比較対象ではないだろう。そしてその人権は、政府私たち生存させ教育を施すことを要求するわけだが、果たしてそれはどの程度が妥当なのだろうか。

アフリカに関しては上記のように、子供を救うことはその子供の主観人生を損なわせるものだと私は主張した。社会というものが守られるべきものであるとすれば、個人主観を損なうことは、少なくとも生命を維持するというレベルでは非難されるべきことではない。しかし、それを推し進めていった人権私たちにとって幸せなのだろうか。

人権担保する領域が増えるに従って、我々は主観的な存在領域社会的な存在に明け渡す。人権肥大化極値に達せば人は単なる社会歯車であり、キュゥべえ非難されたように、おそらくこれも望ましくはない。

人権肥大化させる仮説もアフリカの例も極端である。前者は極端に社会的であり、後者は極端に主観である

落合陽一が何かで、プラットフォーム個人より優先されるということを言っていた気がする。これはキュゥべえ発言である。この発言肯定できるか否かは、各人が、その存在社会的な領域主観的な領域にどのような割合で分割しているかによるのではないだろうか。

疑問は、私たちはどれほど主観的で、どれほど社会的であればいいのだろうか。

2007-12-12

Re: http://anond.hatelabo.jp/20071212141328

それが絶頂なのか単なる極値なのかは後世になってみないとわからんだろ

 
ログイン ユーザー登録
ようこそ ゲスト さん