はてなキーワード: 集合論とは
その通りである。数学はしばしば「数字の計算」と同一視されることがあるが、実際にははるかに広範で深遠な抽象的な学問である。数学の主要な役割は、論理的な構造やパターン、関係性を扱うことであり、数字や数値に限定されるものではない。
数論のような分野では確かに数そのものが主題となるが、例えば集合論、位相幾何学、群論、代数などの分野では、数字というよりも抽象的な対象やその間の関係性を追究する。これらの分野では、数値を超えた抽象的な概念が扱われ、そこでは形式的な推論や証明が重視される。
また、数学の核心には公理的なシステムがあり、それに基づく論理的な演繹を通じて真理を明らかにしていく。この過程において数字は時に一つの「具現化された例」に過ぎず、多くの数学的な議論や証明においては、数値そのものが登場しない場合も多い。
マックス・テグマークの数学的宇宙仮説は、物理的実在が数学的構造そのものであると主張する。これを厳密かつ抽象的な数学の枠組みで表現する。
1. 存在論的同一性:Ob(Str) ≅ Ob(Phys) すなわち、数学的構造の対象と物理的実在の対象が一対一に対応する。
2. 構造保存性:∀ S₁, S₂ ∈ Str, Mor_{Str}(S₁, S₂) ≅ Mor_{Phys}(F(S₁), F(S₂)) すなわち、数学的構造間の射は物理的実在間の射と対応する。
以上の抽象数学的枠組みを用いて、テグマークの数学的宇宙仮説を次のように定式化できる。
この定式化では、集合論、カテゴリ論、トポス理論、モデル理論などの抽象数学を用いて、数学的宇宙仮説を表現した。
特に、数学的構造と物理的実在の間の圏同値やトポス同値を強調することで、両者が数学的に同一視できることを示している。
俺はね、近年AlphaProofのようなAIが数学的証明をできるようになってすんげーワクワクしてんのよ
だってさ、俺が適当に集合論を使って対象を定式化して、んで「これ解いて」とか「こういう感じの定理とかない?」って言ったら証明してくれるんだろ?
すごいじゃん、IT。いままでちまちま手探りで証明しなければならなかったものが、一気にショートカットになるってことだ
まあもちろん、問題の難易度によってはチンプンカンプンな結果を出してしまうかもしれないが、それでも数学的証明ができるというのは革命だろ
ティモシー・ガワーズとかテレンス・タオもSNSでAIに期待してることをつぶやいてたし、やっぱ時代の先端を行っている人たちは「ITは今が旬!」って思ってるな
数学的宇宙仮説を説明するには、宇宙をどのようにモデル化するかを考え、各理論の役割を明確にする必要がある。
以下に、各概念を説明し、物理宇宙を数学的にどのように捉えるかを示す。
数学的宇宙仮説の中心にあるのは、宇宙が数学的構造そのものであるという考え方である。数学的構造は、集合とその上で定義される関係や演算の組み合わせである。
具体例として、微分多様体を考える。微分多様体は、局所的にユークリッド空間に似た構造を持ち、滑らかな関数が定義できる空間である。物理学では、時空を微分多様体としてモデル化し、一般相対性理論の基盤としている。このように、宇宙全体を一つの巨大な数学的構造として捉え、その性質を研究する。
集合論は、数学の基礎を形成する理論であり、すべての数学的対象を集合として扱う。特に、Zermelo-Fraenkel集合論(ZFC)は、集合の存在とその性質を定義する公理系である。数学的宇宙仮説では、宇宙を集合として捉え、その集合上の関係や演算が物理法則を表現していると考える。
モデル理論は、形式的な論理体系が具体的な構造としてどのように実現されるかを研究する。数学的宇宙仮説では、物理宇宙がある論理体系のモデルであると仮定する。具体的には、物理法則を公理とする論理体系のモデルとして宇宙を捉える。これは、ペアノ算術の公理系のモデルとして自然数が存在するのと類似している。
カテゴリ理論は、対象(オブジェクト)とそれらの間の射(モルフィズム)を扱う理論である。カテゴリ 𝒞 は次のように定義される:
射は合成可能であり、合成は結合的である。さらに、各対象に対して恒等射が存在する。
数学的宇宙仮説では、宇宙を一つのカテゴリとして捉えることができる。カテゴリの対象は異なる数学的構造であり、射はそれらの間の変換や関係を表す。これにより、異なる「宇宙」間の関係性を数学的に探求することが可能になる。
トポス理論は、集合論の一般化であり、論理と空間の概念を統一する枠組みである。トポスは、論理体系のモデルとして機能し、異なる数学的構造を統一的に扱うことができる。
数学的宇宙仮説では、宇宙をトポスとして捉えることができる。トポスは、論理体系のモデルであり、異なる物理的現実を表現するための柔軟な枠組みを提供する。トポス理論を用いることで、宇宙の数学的性質をより深く理解することが可能になる。
数学的宇宙仮説を抽象数学で説明するためには、数学的構造、公理系、集合論、モデル理論、カテゴリ理論、トポス理論といった数学的概念を用いることが必要である。
これにより、物理的現実を数学的に厳密に記述し、数学と物理の深い関係を探求することができる。
この仮説は、数学的対象が物理的実体として存在するという新しい視点を提供するが、現時点では哲学的な命題としての性格が強く、数学的に証明可能な定理ではない。
ZFC (Zermelo-Fraenkel set theory with the Axiom of Choice) の哲学は、数学基礎論における中心的な位置を占め、その含意は数理論理学、モデル理論、証明論にまで及ぶ。
ZFCの存在論的基盤は、von Neumann–Bernays–Gödel (NBG) 集合論との比較において明確になる。NBGがクラスの概念を導入するのに対し、ZFCは純粋に集合のみを扱う。この違いは、大規模基数の存在に関する議論において重要な意味を持つ。例えば、到達不能基数の存在は、ZFCでは公理として追加する必要があるが、NBGではより自然に扱える。
ZFCの哲学的重要性は、その一階述語論理に基づく形式化にある。これにより、完全性定理が適用可能となり、モデル理論的手法を用いた相対的無矛盾性証明が可能になる。特に、ゲーデルのL構造(構成可能全体)とコーエンの強制法は、ZFCの独立性結果を示す上で本質的な役割を果たす。
ZFCの公理系、特に置換図式の導入は、フレーゲの論理主義の崩壊後の数学基礎論の再構築において重要な役割を果たした。置換図式は、ラッセルのパラドックスを回避しつつ、十分な数学的対象の存在を保証する。
選択公理 (AC) の哲学的含意は特に深い。ACは、トポロジー的ベクトル空間におけるハーン・バナッハの定理や、測度論におけるバナッハ・タルスキのパラドックスなど、数学の広範な領域に影響を及ぼす。ACの非構成的性質は、直観主義数学や構成的数学との緊張関係を生む。
ZFCの哲学は、大規模基数公理の研究と密接に関連する。イナクセシブル基数、マーロ基数、超コンパクト基数などの大規模基数の存在は、ZFCの無矛盾性を強化し、数学的宇宙の階層構造を示唆する。これらの基数の存在は、プラトニズム的な数学観を支持するように見えるが、形式主義的解釈も可能である。
ゲーデルの不完全性定理のZFCへの適用は、数学的真理の本質に関する深遠な問いを提起する。特に、第二不完全性定理は、ZFCがその自身の無矛盾性を証明できないことを示し、ヒルベルトプログラムの限界を明らかにした。
ZFCの哲学的含意は、数学的構造主義との関連でも重要である。ブルバキ学派の構造主義的アプローチは、ZFCを基盤として数学的構造を定義し、分析する。一方、カテゴリー論的基礎づけは、ZFCに代わる代替的なアプローチを提供し、トポスの概念を通じて数学的宇宙の多様性を示唆する。
内部モデルの理論、特にゲーデルのL構造の研究は、ZFCの哲学に新たな視点をもたらす。V=L(すべての集合が構成可能である)という仮定は、連続体仮説や一般化連続体仮説を肯定するが、同時に多くの大規模基数の存在を否定する。これは、数学的宇宙の「薄さ」と「厚さ」の間の哲学的緊張を生む。
結論として、ZFCの哲学は、数学的存在論、認識論、真理論の交差点に位置し、現代数学の基礎に関する最も深遠な問題を提起する。その影響は、数学哲学にとどまらず、論理学、計算理論、量子力学の基礎にまで及ぶ。ZFCの哲学的探究は、数学的知識の本質と限界に関する我々の理解を深化させ、数学と哲学の境界を絶えず再定義しているのである。
量子力学における観測者問題についてはよく知られるように、人間の主観性が量子実験の結果に重要な役割を果たしている。
ドイツの物理学者ヴェルナー・ハイゼンベルクによる有名な引用がある。
「私たちが観察するのは現実そのものではなく、私たちの質問の方法にさらされた現実です。」
例えば有名なダブルスリット実験では、スリットの後ろに検出器を置かなければ電子は波として現れるが、検出器を置くと粒子として表示される。
したがって実験プロトコルの選択は、観察する行動パターンに影響する。これにより、一人称視点が物理学の不可欠な部分になる。
さて、数学にも一人称視点の余地はあるか。一見すると、答えは「いいえ」のように見える。
ヒルベルトが言ったように、数学は「信頼性と真実の模範」のようである。
それはすべての科学の中で最も客観的であり、数学者は数学的真理の確実性と時代を超越した性質に誇りを持っている。
ピタゴラスが生きていなかったら、他の誰かが同じ定理を発見しただろう。
さらに定理は、発見時と同じように、今日の誰にとっても同じことを意味し、文化、育成、宗教、性別、肌の色に関係なく、今から2,500年後にすべての人に同じ意味があると言える。
さて、ピタゴラスの定理は、平面上のユークリッド幾何学の枠組みに保持される直角三角形に関する数学的声明である。しかし、ピタゴラスの定理は、非ユークリッド幾何学の枠組みでは真実ではない。
何が起こっているのか?
この質問に答えるには、数学的定理を証明することの意味をより詳しく調べる必要がある。
定理は真空中には存在しない。数学者が正式なシステムと呼ぶものに存在する。正式なシステムには、独自の正式な言語が付属している。
つまり、アルファベットと単語、文法は、意味があると考えられる文章を構築することを可能にする。
その言語には、「点」や「線」などの単語と、「点pは線Lに属する」などの文章が含まれる。
次に正式なシステムのすべての文のうち、有効または真実であると規定した文を区別する。これらは定理である。
それらは2つのステップで構築されれる。まず、最初の定理、証明なしで有効であると宣言する定理を選択する必要がある。これらは公理と呼ばれる。
公理からの演繹は、すべての数学がコンピュータで実行可能な印象を生む。しかし、その印象は間違っている。
公理が選択されると、正式なシステムで定理を構成するものに曖昧さがないのは事実である。
これは実際にコンピュータでプログラムできる客観的な部分である。
例えば平面のユークリッド幾何学と球の非ユークリッド幾何学は、5つの公理のうちの1つだけで異なる。他の4つは同じである。
しかしこの1つの公理(有名な「ユークリッドの5番目の仮定」)はすべてを変える。
ユークリッド幾何学の定理は、非ユークリッド幾何学の定理ではなく、その逆も同様。
ユークリッド幾何学と非ユークリッド幾何学の場合、答えは明確である。これは、単に説明したいものに対応している。
数学は広大であり、どのように公理を選択するかという問題は、数学の基礎に深く行くと、はるかに感動的になる。
すべての数学的オブジェクトは、いくつかの追加構造を備えたセットと呼ばれるものであるということだ。
たとえば自然数のセット1,2,3,4,...は加算と乗算の演算を備えている。
集合論は特定の正式なシステムによって記述される。Ernst ZermeloとAbraham Fraenkelと、選択の公理と呼ばれる公理の1つに敬意を表して、ZFCと呼ばれる。
今日の数学者は、すべての数学を支える集合論の正式なシステムとしてZFCを受け入れている。
彼らは、無限の公理と呼ばれるZFCの公理の1つを含めることを拒否する。
言い換えれば、有限主義者の正式なシステムは、無限の公理のないZFCである。
無限大の公理は、自然数の集合1,2,3,4,...が存在すると述べている。すべての自然数に対してより大きな数があるという声明(「ポテンシャル無限大」と呼ばれる)よりもはるかに強い声明である。
有限主義者は、自然数のリストは決して終わらないことに同意するが、いつでも自然数の集合の有限の部分集合のみを考慮することに限定する。
彼らは一度にまとめたすべての自然数の合計が実在することを受け入れることを拒否する。
この公理を取り除くと、有限主義者が証明できる定理はかなり少なくなる。
正式なシステムを判断し、どちらを選択するかを決定することができるいくつかの客観的な基準...なんてものはない。
「時間と空間を超越した何かを象徴しているので無限大が大好きだ」と言えば無限大の公理を受け入れることができる。
ゲーデルの第二不完全性定理は、十分に洗練された正式なシステム(ZFC等)は、自身の一貫性を証明することができないと述べている。
数学者は、今日のすべての数学の基礎であるZFCが確固たる基盤にあるかどうかを実際に知らない。
そしておそらく、決して知ることはない。
なぜなら、ゲーデルの第二の不完全性定理によって、より多くの公理を追加することによってZFCから得られた「より大きな」正式なシステムにおけるZFCの一貫性を証明することしかできなかったから。
一貫性を証明する唯一の方法は、さらに大きな正式なシステムを作成することだけだ。
数学を行うためにどの公理を選択すべきかについて、実際には客観的な基準がないことを示唆している。
要するに、数学者が主観的に選んでいるというわけである。自由意志に任せて。
公理のための主観的な基準というのは、より豊かで、より多様で、より実りある数学に導くものを選ぶという人は多い。
これは自然主義と呼ぶ哲学者ペネロペ・マディが提唱する立場に近い。
特定の公理のセットを選択する行為は、量子物理学の特定の実験を設定する行為に似ている。
それには固有の選択肢があり、観察者を絵に導く。
現代の数学者のほとんどは形式化された数学の体系であるツェルメロ-フレンケル集合論ZFCを使っています.
言及されている通り, ゲーデルの不完全性定理によってZFCが無矛盾であるならばZFCは自身の無矛盾性を証明することができません. ZFCが矛盾している可能性はあります. ZFCの無矛盾性に関しては, 一方でZFCを用いて多くの数学者が数学をしている中でまだ矛盾が見つかってないという傍証もあります.
仮に矛盾が見つかってしまった場合, その後の方向性はいくつか考えられます:
1. その矛盾の証明をよく調べて, その原因を取り除いてZFCより弱い新たな数学体系を構築する.
これに関しては普段の数学をする際にフルでZFCを使っているわけではないので, 合理的なZFCより弱い体系を見つけることができればこれまでの数学を続けることができるかも知れません.
この場合は数学がどうなるか想像がつきません. 数学にとって大打撃になると思います.
他にもZFC以外の別の数学の形式的な基礎づけを与えようという動きもあります. またZFCより改善させるような新しい体系, 公理形を見つける方向の研究もあります.
哲学など数学以外のことは専門外のため, あくまで数学に関することだけ言及させていただきます.
ユークリッド幾何学に言及されているように数学の歴史は紀元前まで遡りますが, 数学の形式化が意識され始めたのは1900年代以降と最近の話です. 主にヒルベルトによって主導されたものだと私は理解しています. (もちろん多くの数学者がこのプログラムに関わってきました. ) 数学の形式化や形式主義で調べると参考になると思います.
数学的な内容に関して言及したいことは多くありますが, かいつまんで述べさせていただきます.
(あくまでこれは元の記事が間違っているなどと主張しているわけではないです. 現代の数学の考え方や雰囲気の一部を分かっていただければ幸いです. )
現代の形式化された数学は原理的には決められたルール(公理と推論規則)を用いて行われる一連の手続きです. それらの「意味」が何かは一旦全て忘れてください. ここで公理とはあらかじめ定められた記号列で, 推論規則とはいくつかの文字列を用いて新しい文字列を生み出す操作です, 例えば文字列A→BとAが与えられたときに文字列Bを得る操作があります. 定理(数学的命題)とはこの操作によって生み出される文字列です. これらの操作は数学における証明を形式的に記述したものになっています. 論理式などもこの形式化のもとで特定の条件を満たす文字列として定義されます. 例えば論理式Pの否定は¬Pという文字列です. (ここでは否定を表すための記号として¬という文字列を用いています. )
ここまで文字列だけを考えた形式的なものですが, 構造やモデルを使うことによってこれらの文字列を解釈する(つまり意味を与える)ことができます. (詳細は省きます. ) 構造やモデルを定めることによって論理式の意味が一意的に定まります. またそれらの取り方を変えることによって意味が変わることもあります.
これの考え方によって(数学的な)意味は形式から分離されています. さらに気になる場合はゲーデルの完全性定理などを見てください.
そして適切な公理と推論規則を定めることにより数学そのものを形式的に扱うことできます. その適切な公理はツェルメロ-フレンケル集合論(ZFC)と呼ばれており, 現在の数学者はこのZFCを用いて数学をしています. (一部, 圏論などでZFCに収まらない議論があると聞きますが, それらもZFCの適切な拡張を考えることで解決できます. )
つまり, これまでに書かれた数学の証明などは全てこのZFCを用いることで文字列の操作に書き換えることができます.
一方で数学の論文は普段の言葉(自然言語)を使って書かれます. これは本当に全て文字列に書き換えることをした場合, 可読性が著しく落ち, また分量も膨大になるため人が読めないためです. しかし証明は自然言語で書きつつも, いざとなったら形式的に文字列に書き換えることができるという前提に立っています. そしてこれは理論的には可能であり, 数学の厳密性を担保しています.
「定義の一意性」に関してですが私自身が元記事の要点を完全に理解しているわけではないのですが, 数学に関していうとある数学的概念の定義が複数あることはよくあります. もちろんその複数ある定義が同値であることを証明されなければなりません. ここで同値というのはある数学的対象Aが定義Pと定義Qで与えられていた時に, 「Aが定義Pを満たすならば, 定義Qを満たす. またAが定義Qを満たすならば定義Pを満たす. 」ということです. 実際に使う際には用途に合った定義を用いることになります. それらは同値なのでどれを選んでも問題ないです.
以上がざっくりとした形式化された数学に関してです. 参考になれば幸いです.
追記: これは筆者個人の考えですが, 数学と哲学の議論はしっかりと分離してなされるべきだと考えています. もちろん相互の交流はなされるべきですが, 両者を混同するのは誤解や誤りの原因になると思います.
しかし、こういった商品は運びやすいように組み立て式になっており、しかもDIYしている気分になれるので一石二鳥なのです。
本棚を組み立て終わると、デスクの上に積んであった本の山をすっぽりと収めることができました。
というのも、私は数学愛好家なので、リファレンスとして数学書を大人買いしたいのです。
仕事柄、特に線形代数や離散最適化のような数学は使いますが、私が興味のあるのはそういった実用志向のアルゴリズムではありません。
むしろ取り組みたいのは、フェルマーの最終定理やラングランズ予想のような、一見すると実用からは遠いけれど、数学の本質を突くような深淵です。
数学には二種類の文化があり、アルゴリズム的な問題解決者と、深淵な理論を目指す者がいます。
プログラマーであればほぼ例外なく前者の立場になりますが、後者というのは「理論Aの理解のためにはBの理解が必要で、その理解にはCの理解が必要で、その理解のためには...」という階層が非常に深いものを表します。
私はいまだに、コホモロジーとはなんであるのかについてよくわからないのです。
コホモロジーをGPTに対し「小学生にもわかるように説明せよ」とやったものが以下です。
コホモロジーは、数学の中のとても難しい概念ですが、小学生にわかりやすく説明するために、一緒に想像の旅に出かけてみましょう。
まず、コホモロジーは、ある種の「形」や「パターン」を見つけるための道具と考えてみてください。例えば、あなたが宝探しをしていて、地図があるとします。この地図は、宝物がどこにあるかを示しています。しかし、この地図はただの紙切れで、宝物自体は地図にはありません。でも、地図を使って、宝物のありかを見つけることができますよね。
コホモロジーも同じようなものです。コホモロジーは、数学的な「地図」のようなもので、それを使って、数学の世界に隠された「宝物」を見つけることができます。この「宝物」は、数学の中の特定のパターンや形、構造などを指します。
しかし、コホモロジーはとても複雑で、大人でも理解するのが難しいです。だから、小学生のあなたがすぐに理解できなくても大丈夫です。大切なのは、コホモロジーのような難しい概念に挑戦する勇気と、学び続ける意欲を持つことです。これからも、色々なことに興味を持ち、学び続けてくださいね!。
これじゃあ、なにも理解していないのと同じでしょう。結局、深淵を理解するためには地道な努力が必要です。
理論構築者の観点からみると、数学は登山に似ていると思います。
コホモロジーにたどり着くためには、集合論、群論、位相幾何学、ホモロジー理論と順を追っていかなければならないのです。
これまでの私は、理論構築者ではなく、問題解決者だったので、「問題」という単位で物事を理解してきました。
アルゴリズムなので、問題を解くための前提知識はさほど必要なく、むしろ必要なのはIQです。
ところが、ラングランズプログラムや超弦理論といった深淵は、IQに加えて、山登りの体力や努力や時間が必須になります。
しかも、仮に山を登り終えたとしても、プログラマーの仕事としてなんの役にも立たないのです。
深淵に取り組むというのは、そういう廃人的な努力を必要とするので、職業的な数学者でない限り努力の誘因が失われてしまいます。
深淵な登山をして、誰にも認められることなく自己満足して、何が楽しいのでしょうか。
ここ最近、ChatGPTのプロンプトをひたすら書きまくってるのだが分かってきたことがある
恐らく近い将来ChatGPTによって大半のプログラマーは職を失うことになるだろうし
残されたプログラマーもソースコードを書くのでは無くてプロンプトを書くことの方が増えるだろう
アセンブリ言語を書いてる人はほぼ死滅しているしCやC++ですら書いてる人は少ない
同様にプロンプトを書く人(プロンプター)が重宝されるようになるのだろう(もちろん例外的分野は存在する)
ただ、残念ながらプログラマーや非プログラマーがプロンプターになれるかというとそうではない
プロンプトを書く時に必要なのは、純粋にプログラマーが必要とされている能力の部分だからだ
その言語を知ってるだとかライブラリを知っているといった知識的な能力ではなくて
要件定義の能力や論理演算や集合論みたいな知識だったりオブジェクト指向や関数的な考え方だけが純粋に必要になる
例えば割とダメダメプログラマーは条件が100個あった時に普通にIF文を100個書く
こういうプログラマーはプロンプトを作ることができないし、仮に書いたとしてもまともに動かない
ちゃんとしたプログラマーは条件100個を整理してまず2つの場合に分けてそれぞれで3つに分け・・・みたいなことをする
場合によっては要件定義を鑑みて必要無い条件を削除する(もちろん確認の上で)
そういった整理整頓が出来る人じゃないとプロンプトを書くことは不可能なので
例えばPythonの書き方を知っているだけのプログラマーとかコピペで生きてきたプログラマーは死滅すると思う
彼らはプロンプトを書けないし、書くために学習しようとしてもベースとなっているものが無いのでそこから覚え直すしかない
なのでプログラマーの上位層はプロンプターとして生き残るが下位層は死滅するし、残念ながらプロンプター教室というのもちょっと想像が付かないしたぶん不可能だと思う
シュレーディンガーはアインシュタインに宛てて、量子力学のコペンハーゲン解釈の重大な欠陥を明らかにするために、架空の実験装置を作った。この解釈では、量子系は外部の観測者と相互作用するまで、2つ以上の状態の重ね合わせに留まるとされる[1]。
この効果を、原子というミクロな世界の特殊性として片付けることはできるかもしれないが、その世界が、テーブルや椅子、猫といったマクロな日常世界に直接影響を及ぼすとしたらどうだろうか。シュレーディンガーの思考実験は、それを明らかにすることで、量子力学のコペンハーゲン解釈の不条理を明らかにしようとした。 粒子が重ね合わされた状態にあることは、一つの事実だ。しかし猫はどうだろう。猫はどちらか一方にしか属さないし、死んだり生きていたりもしない。
ガイガーカウンターの中に、ほんの少しの放射性物質が入っていて、1時間のうちに原子の1つが崩壊するかもしれないが、同じ確率で1つも崩壊しないかもしれない。このシステム全体を1時間放置しておくと、その間、原子が崩壊していなければ、猫はまだ生きていると言うだろう。システム全体のΨ関数(波動関数)は、その中に生きている猫と死んだ猫(表現は悪いが)が等しく混ざり合っていることで、このことを表現している。
この思考実験の意味合いについては、多くの現代的な解釈や読み方がある。あるものは、量子力学によって混乱した世界に秩序を取り戻そうとするものである。また、複数の宇宙で複数の猫が生まれると考えるものもあり、「重ね合わせられた猫」がむしろ平凡に見えてくるかもしれない。
通常の話では、波動関数は箱入りのネコを記述する。QBismでは、箱を開けたら何が起こるかについてのエージェントの信念を記述する。
例えば、Aさんがギャンブラーだとしよう。ネコの生死を賭けたいが、量子波動関数が最も正確な確率を与えてくれることを知っている。しかし、世の中には波動関数のラベルがない。自分で書き留めなければならない。自由に使えるのは、Aさん自身の過去の行動とその結果だけである。なので結果として得られる波動関数は、独立した現実を反映したものではない。世界がAさんにどう反応したかという個人的な歴史なのだ。
今、Aさんは箱を開けた。死んだ猫、あるいは生きている猫を体験する。いずれにせよ、Aさんは自分の信念を更新し、将来の出会いに期待するようになる。他の人が不思議な「波動関数の崩壊」と呼ぶものは、QBistにとっては、エージェントが自分の 賭けに手を加えることなのだ。
重ね合わせを形成するのはエージェントの信念であり、その信念の構造から猫について何かわかる。なぜなら、波動関数は、エージェントが箱に対して取り得るすべての行動(相互に排他的な行動も含む)に関する信念をコード化しており、Aさんの信念が互いに矛盾しない唯一の方法は、測定されていない猫に固有の状態が全く存在しない場合だからである。
QBistの話の教訓は,ジョン・ホイーラーの言葉を借りれば参加型宇宙であるということである。
2. ボーミアンについて
量子力学のコペンハーゲン解釈によれば、電子のような量子粒子は、人が見るまで、つまり適切な「測定」を行うまで、その位置を持たない。シュレーディンガーは、もしコペンハーゲン解釈が正しいとするならば、電子に当てはまることは、より大きな物体、特に猫にも当てはまることを示した:猫を見るまでは、猫は死んでいないし生きていない、という状況を作り出すことができる。
ここで、いくつかの疑問が生じる。なぜ、「見る」ことがそんなに重要なのか?
量子力学には、ボーム力学というシンプルでわかりやすい版があり、そこでは、量子粒子は常に位置を持っている。 猫や猫の状態についても同様だ。
なぜ物理学者たちは、シュレーディンガーの猫のような奇妙でありえないものにこだわったのだろうか?それは、物理学者たちが、波動関数による系の量子的な記述が、その系の完全な記述に違いないと思い込んでいたからである。このようなことは、最初からあり得ないことだと思われていた。粒子系の完全な記述には、粒子の位置も含まれるに違いないと考えたのである。 もし、そのように主張するならば、ボーミアン・メカニクスにすぐに到達する。
シュレーディンガーの猫の本当の意味は、実在論とは何の関係もないと思う人もいる。それは、知識の可能性と関係があるのだ。問題は、量子世界が非現実的であることではなく、量子系を知識の対象として安定化できないことである。
通常の知識の論理では、私たちの質問とは無関係に、知るべき対象がそこに存在することが前提になる。しかし、量子の場合、この前提が成り立たない。量子力学的なシステムに対して、測定という形で問いを投げかけると、得られる答えに干渉してしまう。
これらの本質的な特徴は「反実仮想」であり、何があるかないか(現実)ではなく、何が可能か不可能かについてである。実際、量子論の全体は反実仮想の上に成り立っている。反実仮想の性質は、量子論の運動法則よりも一般的であり、より深い構造を明らかにするものだからだ。
量子論の後継者は、運動法則は根本的に異なるかもしれないが、反実仮想の性質を示すことで、重ね合わせやエンタングルメント、さらには新しい現象が可能になるだろう。
シュレーディンガーは、仮想的な猫の実験で何を言いたかったのだろうか?現在では、シュレーディンガーは、量子論は、猫が死んでも生きてもいない浮遊状態にある物理的可能性を示唆していると主張したと一般に言われている。しかし、それは正反対である。シュレーディンガーは、そのようなことは明らかに不合理であり、そのような結果をもたらす量子論を理解しようとする試みは拒否されるべきであると考えたのである。
シュレーディンガーは、量子力学の波動関数は、個々のシステムの完全な物理的記述を提供することはできないと主張したアインシュタイン-ポドロスキー-ローゼンの論文に反発していたのである。EPRは、遠く離れた実験結果の相関関係や「spooky-a-distance(不気味な作用)」に着目して、その結論を導き出したのである。
シュレーディンガーは、2つの前提条件と距離効果とは無関係に、同じような結論に到達している。彼は、もし1)波動関数が完全な物理的記述を提供し、2)それが「測定」が行われるまで常に彼自身(シュレーディンガー)の方程式によって進化するなら、猫はそのような状態に陥る可能性があるが、それは明らかに不合理であることを示したのだ。したがって、ジョン・ベルの言葉を借りれば、「シュレーディンガー方程式によって与えられる波動関数がすべてではないか、あるいは、それが正しくないかのどちらか」なのである。
もし、その波動関数がすべてでないなら、いわゆる「隠れた変数」を仮定しなければならない(隠れていない方が良いのだが)。もし、それが正しくないのであれば、波動関数の「客観的崩壊」が存在することになる。以上が、Schrödingerが認識していた量子力学的形式を理解するための2つのアプローチである。いわゆる「多世界」解釈は、1も2も否定せずにやり過ごそうとして、結局はシュレーディンガーが馬鹿にしていた結論に直面することになる。
シュレーディンガーの例は、量子システムの不確定性をミクロの領域に閉じ込めることができないことを示した。ミクロな系の不確定性とマクロな系の不確定性を猫のように絡ませることが考えられるので、量子力学はミクロな系と同様にマクロな系にも不確定性を含意している。
問題は、この不確定性を形而上学的(世界における)に解釈するか、それとも単に認識論的(我々が知っていることにおける)に解釈するかということである。シュレーディンガーは、「手ぶれやピンボケの写真と、雲や霧のスナップショットとは違う」と指摘し、量子不確定性の解釈はどちらも問題であるとした。量子もつれは、このように二律背反の関係にある。
ベルが彼の定理を実験的に検証する前、量子力学の技術が発展し、もつれ状態の実在性を利用し、巨視的なもつれシステムを作り出す技術が開発される前、形而上学的な雲のオプションはテーブルから外されるのが妥当であった。しかし、もしもつれが実在するならば、それに対する形而上学的な解釈が必要である。
波動関数実在論とは、量子系を波動関数、つまり、死んだ猫に対応する領域と生きた猫に対応する領域で振幅を持つように進化しうる場と見なす解釈のアプローチである。シュレーディンガーが知っていたように、このアプローチを真面目に実行すると、これらの場が広がる背景空間は、量子波動関数の自由度を収容できる超高次元空間となる。
6. 超決定論について
不変集合論(IST)は、エネルギーの離散的性質に関するプランクの洞察を、今度は量子力学の状態空間に再適用することによって導き出された量子物理学のモデルである。ISTでは、量子力学の連続体ヒルベルト空間が、ある種の離散的な格子に置き換えられる。この格子には、実験者が量子系に対して測定を行ったかもしれないが、実際には行わなかったという反実仮想の世界が存在し、このような反実仮想の世界は格子の構造と矛盾している。このように、ISTは形式的には「超決定論」であり、実験者が行う測定は、測定する粒子から独立しているわけではない。
ISTでは、ISTの格子上にある状態は、世界のアンサンブルに対応し、各世界は状態空間の特別な部分集合上で進化する決定論的系である。非線形力学系理論に基づき、この部分集合は「不変集合」と呼ばれる。格子の隙間にある反実仮想世界は、不変集合上には存在しない。
アインシュタインは、量子波動関数は、不気味な距離作用や不確定性を持たない世界のアンサンブルを記述していると考えていたが、これは実現可能である。 特に、シュレーディンガーの猫は、死んでいるか生きているかのどちらかであり、両方ではないのだ。
シュレーディンガーの猫の寓話に混乱をもたらしたのは、物理システムが非関係的な性質を持つという形而上学的仮定である。 もし全ての性質が関係的であるならば、見かけ上のパラドックスは解消されるかもしれない。
猫に関しては、毒が出るか出ないか、猫自身が生きているか死んでいるかである。 しかし、この現象は箱の外にある物理系には関係ない。
箱の外の物理系に対しては、猫が起きていても眠っていても、猫との相互作用がなければその性質は実現されず、箱と外部系との将来の相互作用には、原理的に、猫がその系に対して確実に起きていたり確実に眠っていたりした場合には不可能だった干渉作用が含まれる可能性があるからだ。
つまり「波動関数の崩壊」は、猫が毒と相互作用することによって、ある性質が実現されることを表し、「ユニタリー進化」は、外部システムに対する性質の実現確率の進化を表すのである。 これが、量子論の関係論的解釈における「見かけのパラドックス」の解決策とされる。
8. 多世界
物理学者たちは古典物理学では観測された現象を説明できないことに気づき、量子論の現象論的法則が発見された。 しかし、量子力学が科学的理論として受け入れられるようになったのは、シュレーディンガーが方程式を考案してからである。
シュレーディンガーは、自分の方程式を放射性崩壊の検出などの量子測定の解析に適用すると、生きている猫と死んでいる猫の両方が存在するような、複数の結果が並列に存在することになることに気づいた。実はこの状況は、よく言われるように2匹の猫が並列に存在するのではなく、生きている1匹の猫と、異なる時期に死んだ多数の猫が並列に存在することに相当する。
このことは、シュレーディンガーにとって重大な問題であり、量子測定中に量子状態が崩壊することによって、量子系の進化を記述する方程式としての普遍的な有効性が失われることを、彼は不本意ながら受け入れた。崩壊は、そのランダム性と遠方での作用から、受け入れてはならないのだろうか。その代わりに、パラレルワールドの存在が示されれる。これこそが、非局所的な作用を回避し、自然界における決定論を守る一つの可能性である。
経済学者にあこがれて経済学部目指したのなら、いっそ博士まで行って博士号(Ph. D.)取得するのも一つの道じゃないかと。
その話と、現実的な就職のための話がイマイチ繋がらない感じはするけども。
憧れは憧れで、GAFAみたいな巨大テック企業のエンジニアになりたいって言うのだったら、
コンピュータサイエンス(情報科学)系の学部入り直す方がよさげ。特にGoogleのエンジニア採用はコンピュータサイエンスやってないとほぼ即死するような計算量やらの問題が出て来まくるんで、やっぱり情報科学系出身のエンジニアがめっちゃ多いし。
ちなみに、数学が得意であるが、高校数学が得意レベルである、つまり計算が得意レベルだったら、経済学者とかには向いてないとは思う。大学数学以降をある程度まともにやろうと思うと集合論ベースの現代数学の発想に頭を切り替えないといけないし、経済学で使う「数学」もある程度大学数学の素養がないときつい。
[ボタン]
横にボタンがあるときは左右ボタンが機能し、カーソルが横に移動する、ないときは何も起こらない
ボタンから起動する関数を呼ぶの自体はカーソルがちゃんと移動すればどうとでもなるんだけど自分の知識では十字キーの上下で事前に配列に保存していたUIの横にカーソルを移動させることしかできない
すべての画面上のUIの位置を比較して移動させるのもいいんだけどパフォーマンスが悪そう
そこでグラフ理論か集合論でどうにかならないかと思ったんだけど何か方法ある?
愚直にUI属性与えてこの時はボタンが横にあるからこう。。。ってやるしかないんだろうか
配列の長さで横移動して[][n+1]、上下は[n+1]で移動することならできそう
めんどくささはあるが。。。
画家や建築家などを挙げている辺り、研究者についてはどうでもいいかもしれないけど一分野についてだけ説明しておくね
物理学など他の学問ではどうなるかは面倒くさいので言及しないとして…
数学の研究をする際には歴史については自然と覚えてしまう程度の知識さえあればいいと思う
具体的にはピタゴラスの定理は千年単位のオーダーの大昔に証明されたとか
数百年前には今のような集合論に基づいて数学理論を一から組み立てていく形式は無かった…みたいな基本的な常識があればいいし
それと論文を書く際に論文に関わる狭い分野内で既に何が証明されてるかを把握して説明を出来ればいい
前者は数学の教科書を読んでいる内にいつの間にか知っているし、後者は研究集会に出るだけで自然と把握出来るので
これ以上の勉強が数学者になるための必要条件に入っているかと言うと、全く無い
たとえば線形代数の理論も分からないような人間が数学の研究をするのは極めて難しいが
線形代数の理論がどうやって出来たかの歴史なんて知らなくても一切問題ないし知らない数学者も多いだろう
行列式が行列より先に扱われていた事なんて雑談に使える豆知識にしかならんし
matrixがラテン語の子宮から来てる事はジェンダーの研究者とかの方が知ってると役にたつ事柄なんじゃないかな…
という風に数学者にとっては極めて重要な理論であっても歴史は知らなくても問題ない理論がかなりある訳だ
これは別の分野の研究者でも成り立つ事なのかもしれないが面倒くさいのでここでお終いにする