「ガロア理論」を含む日記 RSS

はてなキーワード: ガロア理論とは

2024-08-28

抽象代数学の魅力とは

抽象代数学は、代数的構造を探求する数学の一分野である

その核心は、具体的な数や図形から離れ、演算性質のものに着目することにある。

群論を例に取ると、群とは集合G上の二項演算・が結合法則を満たし、単位元存在し、各元に逆元が存在するという公理を満たす代数的構造である

この抽象的な定義により、整数加法群(Z,+)や置換群S_nなど、一見異なる対象統一的に扱うことが可能となる。

群論の発展は、ガロア理論を生み出し、5次以上の代数方程式代数的解法が存在しないことの証明につながった。

環論では、可換環を中心に、イデアルや素イデアル概念が導入され、代数幾何学との深い関連が明らかになった。

体論は、代数的閉体や有限体の理論を通じて、ガロア理論暗号理論の基礎を提供している。

これらの理論は、単に抽象的な概念の探求にとどまらず、数論や代数幾何学、さらには理論物理学や量子情報理論など、広範な分野に応用されている。

例えば、リー群論は素粒子物理学の基礎理論となっており、SU(3) × SU(2) × U(1)という群構造標準模型対称性記述している。

また、抽象代数学概念圏論によってさら一般化され、函手や自然変換といった概念を通じて、数学の異なる分野間の深い関連性が明らかにされている。

圏論視点は、代数位相幾何学代数的K理論などの現代数学の発展に不可欠な役割果たしている。

抽象代数学の魅力は、その普遍性と深遠さにある。

単純な公理から出発し、複雑な数学構造を解明していく過程は、純粋数学醍醐味であり、同時に自然界の根本法則理解する上で重要洞察を与えてくれるのである

2022-01-23

anond:20220123104251

程度問題であって、「大手企業」で語りが終わってしまうような解像度なんだとするとやってる仕事高卒でもできるレベルだろうと思う。

また、「誰でもできる」と「自分しかできない」の間にはかなりのギャップがあって、「誰でもできるわけではない仕事」は無限に近いくらいあり、それに対して人間の数はずっと少ないので、他にやる奴がいない仕事自分を注ぎ込んだ結果は「自分がいなかったら存在しない仕事」にはなるんだよね。

相対論だって電磁気学ガリレイ相対性原理との矛盾は当時よく知られていて、相対論アインシュタインがいなくても誰かが作っていただろうと言われている(そもそもアインシュタインノーベル賞受賞理由相対論じゃなくて光電効果だというのは有名な話)。本当にそいつ以外できなかったかもしれない仕事というのはガロア理論とかだろうね。

2021-08-07

数学物理でびっくりした概念

数学物理大人になって学び直したら、「そんなことあるの?」とびっくりした概念を書いていく。

  

1位 ガウス驚異の定理

 地球儀を切り開いて、平面にしようとしても、2次元世界地図はできません。

 という定理

 3次元⇨2次元への距離を保った変換はできませんということを示しており、これを発展させた弟子リーマンが、「じゃあ、4次元から次元とか、もっと次元でも同じじゃない?」とリーマン幾何学を創出。後の相対性理論空間が曲がる)の記述へと繋がる。

  

2位 論理回路

 信号機とかのプログラム電気回路表現するにはどうすればいいのか?ということの理論

 4ビット信号(0101みたいなの)だと、16通り応答が必要となる。簡単に考えれば16通りの設計必要そうだけど、カルノー図を使った簡易化という謎のテクニックにより、なんとかなり簡単電気回路設計することができる。

  

3位 ラグランジアンハミルトニアン

 物理では、位置エネルギーとか運動エネルギーとか謎のエネルギーという量が出てくる。

 なんと、解析力学では、「謎のエネルギーの方が本質であり、運動とか位置とかはエネルギーから導かれる。エネルギーが先、運動位置が後」という理論

 式変形だけだと納得がいかないが、実験的に本当にそうらしい。

 人間理解に反するのがすごい。

  

4位 再起構文

 プログラムの話になってしまうけど。

 再起構文というのを書くと、ナルトの「多重影分身」みたいなプログラムが書けたりする。

 いまだに原理理解できていないけど、結果的にそうなってる。不思議すぎる。

  

5位 空間分解能(解像度)は光の波長の半分くらい

 写真とかどこまで拡大できるのか?の限界値を決める理論

 なんと、光の半分くらいまでしか画像を読み取ることができない。

 光以外にも、エコー超音波)で体の中を観れるけど、あれは超音波の波長が0.5mmとかなら、0.25mmまでの物しか判別できない。

 だから何?と思ったけど、半導体制作で「波長が短い(nm)の光を使って半導体を描くので、この理論を使います」とか、いろんなところでかなり効いてくる理論みたい

  

6位 5次以上の方程式の解の公式代数的な表現の)はない。(ガロア理論

 これは証明をぜひ追ってみて欲しい。

  

7位 フーリエ変換ラプラス変換。(工学

 簡単方程式が解けたり、異常な手続きで解けたりする。

 実際に、これらの手法提案されたとき数学的な記述ができなくて、「それ本当に成り立つの?なぜ?」ということで数学者が紛糾。

 人間直感てすごいなあとなる。

  

8位 フーリエ変換数学

 超関数理論

 自分も完全には理解できていないけど。

 ショーアの理論佐藤幹夫理論どっちも面白い

 量子力学とかも物理不安定理解が、数学的にどう不安定なのかが納得できる。

  

10位 ソリトン工学数学

 広田良吾先生工学的解法を、佐藤幹夫先生数学的に示すところが面白いので、是非是非。

 単なる偏微分方程式の解法から不思議現象が出てきて、工学的に謎解法が出てきて、数学的に完結される様子がドラマチック。

2020-09-02

anond:20200827182934

ユークリッド幾何学学校で教える必要がある

公理から初めて論述によって命題を示すという手法現代数学の基本

代数微分積分などは計算だけできれば解けてしまうが

ユークリッド幾何学では厳密な論証を学ぶことができる

公理から論述命題を示す手法現代数学の基本であって

もしユークリッド幾何学を学ばなければ抽象代数学などが理解できなくなることは明らか

現代数学である群論ガロア理論公理から初めて命題を導く

微分積分などだけを教えていると群論ガロア理論などが理解できなくなってしま

ガロア理論では作図が主に扱われるからユークリッド幾何学応用になっている

から元増田の役に立たない論は明らかに間違い

ユークリッド幾何学はまず中初等教育において論述を教える題材として適している

代数などはただの計算であって厳密ではないがユークリッド幾何学公理から始めて曖昧さな命題を示す

これは現代数学の基本であって群論ガロア理論を学ぶ際に必要能力

代数では多項式とは?集合とは?などが厳密に説明されていないがユークリッド幾何学には曖昧さは無い

ユークリッド幾何学が扱う題材は図形であって初等教育にも馴染みやす

現代数学を厳密に展開するには公理集合論まで遡らねばならないが

ユークリッド幾何学公理中学生でも理解できて完全

このような条件を満たす単元は他には無い

群論ガロア理論などの抽象代数学はユークリッド幾何学の考えを継承している

これらが確立されたのは18世紀であり微分積分などはそれよりも大分昔の理論から厳密性がない

ユークリッド幾何学現代数学モデルであるから論述を教えることができる

群論ガロア理論対称性を扱う数学対称性とは回転や相似変換などの一般化だから

やはりユークリッド幾何学を学ぶことは群論ガロア理論を学ぶことに役立つ

特に群論では、群の正規群(特異点を持たない群)による商で対称性を分類する

この割り算にはユークリッドの互除法アルゴリズムを用いることができるからユークリッド幾何学の応用になっている

群論の一部であるリー群ではユークリッド空間の回転である直交群を扱うからこれもユークリッド幾何学が直接役に立つ

ユークリッド幾何学では公理から始めて命題証明するがこれは現代数学の基本

群論ガロア理論もこのスタイル継承していてユークリッド幾何学を学ばないと抽象代数学が理解できない

ガロア理論ユークリッド幾何学と同様に、対称性公理から作図可能性を論ずる

これはいくつかの公理から始めて可能な手順の組み合わせを厳密に論述することで様々な図形を作図していく

ヒルベルト提唱した円積問題などもこの応用であって、現代数学において極めて重要

ユークリッド幾何学公理から始めて論述のみによって命題証明する

これは現代数学の基本であってガロア理論ヒルベルト理論などがその手法を受け継いでいる

これは現代数学において極めて重要

代数微分積分はただの計算であって論述を教えていないか

ユークリッド幾何学をやらないと抽象代数学などを理解できなくなってしま

ガロア理論は作図を扱うからユークリッド幾何学知識必須

代数などでは計算しかやらず概念定義曖昧だがユークリッド幾何学論述には曖昧さが一切無く

ユークリッド幾何学は図形を扱うから中高生にも理解やす

初等教育論述を教える題材として適しており他にこのような条件を満たす題材は無い

anond:20200902124342

同意

現代数学ルーツガロア理論にあることは間違いないが中学で作図などを教えたら

飛び級入学を許して、ゲーデル不完全性定理ラッセル論理学などどんどん読み進めるのがよいと思う

不完全性は量子力学などでも基本的概念であるから幅広く応用が効く

その基礎がユークリッド幾何学で身につけた論述能力にあることは疑いようがない

現行のカリキュラム実用性だけを重視し結果だけ示して細部は曖昧にしているが、これらは現代数学の基礎だから完全に修める必要がある

そういう人は足し算や掛け算もペアノの公理から厳密に示すべきだし、微分積分は測度論などを使い厳密に論ずるべき

2020-08-27

中学高校数学にいわゆるユークリッド幾何学不要

ここでいう「ユークリッド幾何学」とは、座標空間ベクトル三角関数微分積分などの解析的手法を用いないいわゆる総合幾何学のことです(*1)。2020年8月現在高校数学カリキュラムでいえば、「数学A」の「図形の性質」に該当する分野です。

ユークリッド幾何学不要だと思う理由単純明快で、何の役にも立たないからです。大学に入って、「補助線を引いて、相似な三角形を作って~」とか「コンパスと定規による作図」みたいなパズルゲームをやることは絶対にありません(*2)。これは常識で考えても分かると思います。たとえば工学研究で、ある物体の弧長や面積などを測定しなければならないとして、ユークリッド幾何学の補助線パズル適用できる多角形や円などしか測れないのでは話になりません。一方、座標空間ベクトル三角関数微分積分などの手法一般的現象記述する上で必ず必要になります

もちろん、たとえば三角比定義するには、「三角形内角の和は180度である」とか「2角が等しい三角形は相似である」といった初等幾何学性質必要になります。そのようなものを全て廃止せよと言っているわけではありません。しかし、高校1年生で習う余弦定理:

OABに対して、|AB|^2 = |OA|^2 + |OB|^2 - 2|OA||OB|cos∠AOB

証明してしまえば、原理的にはユークリッド幾何学問題は解けます。それ以降は、ユークリッド幾何学的な手法問題設定にこだわる必要はないと思いますし、実際それで問題ありません。

現状、少なくない時間ユークリッド幾何学に費やされています数学の1単元を占めているだけではなく、その他の単元にもユークリッド幾何学の発想に影響された例や問題が多く登場します。たとえば、複素平面において4点の共円条件や垂直二等分線を求めさせる問題など。そして最も労費されているのは生徒の自習時間です。以前よりマシになったとはいえ大学入試等には技巧的な図形問題が出題されるため、受験生はその対策に多大な時間を費やしています

高校数学では以下のような事項が重要だと思いますユークリッド幾何学を学ばせている時間があったら、このような分野を優先的に修められるようにすべきです。

これらの分野は数学手法としても非常に強力ですし、大学以降で数学を学ぶ際、現実的問題数学物理問題として正確に記述する際に必ず必要になります。仮にユークリッド幾何学が何らかの場面で応用されるとしても、微分積分などと同レベル重要だと真剣に主張する人っていらっしゃるでしょうか?

ユークリッド幾何学初等教育で教えるべきだとする根拠には、大雑把に言って以下の4つがあると思います

  1. ユークリッド幾何学では証明の考え方を学ぶことができる
  2. 図形問題代数や解析の問題よりも直感的で親しみやす
  3. ユークリッド幾何学問題を解くことで「地頭」「数学直観」などが鍛えられる
  4. ユークリッド幾何学歴史的重要である

しかし、これらはいずれも正鵠を射ていません。

まず①は明らかにおかしいです。ユークリッド幾何学に限らず、数学のあらゆる命題証明されるべきものからです。高校教科書を読めば、相加平均・相乗平均の不等式、点と平面の距離公式三角関数加法定理微分ライプニッツ則や部分積分公式など、どれも証明されていますそもそも数学問題はすべて証明問題です。たとえば、関数極値問題は、単に微分が0になる点を計算するだけではなく、そこが実際に極値であるかそうでないか定義や既知の性質に基づいて示す必要があります。したがって、ユークリッド幾何学けが特に証明の考え方を学ぶのに有効だという理由はありません。

②もおかしいです。図形問題を扱うのはユークリッド幾何学だけではないからです。ベクトル微分積分でも図形問題を扱います。たとえば、三角形の5心の存在や、チェバの定理メネラウス定理などはベクトルを用いても容易に示すことができます。また言うまでもなく、曲線の接線は微分で求めることができ、面積や体積は積分で求めることができます。また、ユークリッド幾何学手法問題ごとに巧い補助線などを発見しなければいけないのに対し、解析的な手法一般方針が立てやすく汎用的です。したがって、図形問題を扱うのにユークリッド幾何学手法にこだわる理由はありません。

③は単なる個人思い込みであり、科学的な根拠はありません。そもそも数学教育の目的は「地頭」などを鍛えることではなく、「大学や実社会において必要数学素養を身につけること」のはずです。また、これも上ふたつと同様に「ユークリッド幾何学以外の数学では、『数学直観』などは鍛えられないのか」という疑問に答えられておらず、ユークリッド幾何学特別視する理由になっていません。

④もおかしいです。そもそも歴史的重要である」ことと「初等教育で教えるべき」という主張には何の関係もありません。歴史的重要ならば教えるというなら、古代バビロニアインド中国などの数学特に扱わないのはなぜでしょうか。もっと言えば、文字式や+-×÷などの算術記号が使われ始めたのでさえ、数学史的に見ればごく最近のことですが、昔はそれらを使わなかったからといって、今でもそれらを使わず数学記述するべき理由があるでしょうか。

数学重要なのはその内容であるはずです。ユークリッド幾何学擁護する論者は、「(表面的に)計算問題に見えるか、証明問題に見えるか」のようなところに価値を置いて、一方が数学教育的に有意疑だと見なしているようですが、そんな分類に意味は無いと思います

大昔は代数計算方程式の解法(に対応するもの)は作図問題帰着していたようですが、現代でそれと同様の手法を取るべき理由は全くありません。記述する内容が同じであれば、多項式や初等解析のような洗練された方法重要な結果を導きやす方法を用いればよいに決まっています数学史家は別として)。同様に、ユークリッド幾何学も、解析的な手法で解ければそれでよく、技巧的な補助線パズルなどに興じたり、公理的な方法にこだわる必要はありません。

たとえば、放物線は直線と点から距離が等しい点の軌跡として定義することもできますが、初等教育重要なのは明らかに2次関数グラフとして現れるものです。放物線を離心率や円錐の断面などを用いて導入したところで、結局やるのは二次関数の増減問題なのですから最初から2次関数グラフとして導入するのは理にかなっています数学教育の題材は「計算問題証明問題か」などではなく、このような観点で取捨選択すべきです。

三角比などを学んだあともユークリッド幾何学を教えたり、解析的な手法では煩雑になるがユークリッド幾何学範疇ではエレガントに解けるような問題を出して受験生を脅したりするのは、意味が無いと思います。それは、「掛ける数」と「掛けられる数」を区別したり、中学連立方程式を学ぶのに小学生鶴亀算を教えるのと同様に、無駄なことをしていると思います

----

(*1)

現代数学では、n次元ベクトル空間R^n = Re_1⊕...⊕Re_nに

(e_i, e_j) = δ_i,j (クロネッカーデルタ)

内積定義される空間上の幾何学はすべてユークリッド幾何学に分類されます。したがって、上にあげた座標空間ベクトル微分積分、一次変換なども敢えて分類すればユークリッド幾何学です。しかし、ここではその意味でのユークリッド幾何学不要と言っているのではありません。飽くまでも、技巧的な補助線問題や、公理的な方法にこだわることが不要だと言っています

(*2)

数学科の専門課程で学ぶガロア理論では、コンパスと定規による作図可能性が論じられますが、これは「作図問題ガロア理論が応用できる」というだけであり、「ガロア理論を学ぶのに作図の知識必要」というわけではありません。

2018-09-03

[]2018年9月2日日曜日増田

時間記事文字数文字数平均文字数中央値
0012215293125.437
0173590880.929
02254049162.068
0318188141045.2139.5
041352940.731
05151655110.345
06213553169.262
07273401126.065
08172110124.1107
09365645156.833.5
10636592104.635
11606699111.748
1281527065.123
13497418151.446
1456536495.864
1584569067.737
1673426258.426
176812725187.148.5
18515583109.543
19353725106.453
209213435146.040
2179696588.236
2210214937146.443.5
239010443116.043
1日1350170065126.040

頻出名詞 ()内の数字単語が含まれ記事

人(153), 自分(126), 今(68), 話(61), 増田(47), 気(43), あと(43), 必要(41), 女(39), 前(39), 人間(39), 気持ち(39), 結局(35), 問題(35), 関係(34), 好き(33), 他(33), 相手(32), 理由(32), 仕事(32), 意味(31), 時間(31), 感じ(31), 今日(31), 男(30), 最近(29), 日本(28), 場合(27), 普通(27), 昔(26), 無理(25), 存在(25), しない(25), 一番(24), 顔(24), 嫌(23), ネット(23), 会社(23), 手(22), 社会(22), 女性(21), 人生(21), 頭(21), アニメ(21), 内容(21), 記事(21), 目(20), 勝手(20), レベル(20), 声(20), 子供(19), 誰か(19), 世界(19), 最初(19), 言葉(19), 勉強(19), 先(19), 一人(19), 家(18), 逆(18), 上司(18), 友達(18), バカ(18), 説明(18), 結婚(17), 全部(17), 理解(17), 作品(17), 彼氏(17), ダメ(17), 可能性(17), 一緒(16), 先生(16), 毎日(16), 大学(16), 文章(16), ー(16), 経験(16), 自体(16), 男性(16), 趣味(16), 親(16), 企業(15), 情報(15), 世の中(15), 体(15), 本人(15), 最後(15), 気分(15), 心(15), 確か(15), お互い(15), ゲーム(15), 店(15), 正直(15), 完全(14), 対応(14), 方法(14), 絵(14), 生活(14), 夜(14), イメージ(14), 意見(14), スマホ(14), 想像(14), 投稿(14), 全て(14), 社長(14), 絶対(14)

頻出固有名詞 ()内の数字単語が含まれ記事

増田(47), 日本(28), 可能性(17), スマホ(14), じゃなくて(13), 寿司屋(10), リアル(10), ヨッピー(10), 個人的(10), アメリカ(10), 10年(10), カス(9), …。(9), twitter(9), 元増田(9), 何度(8), ブコメ(8), 出版社(7), 低能先生(7), なのか(7), OK(7), わからん(7), SNS(7), PCデポ(7), アイコン(7), いない(6), ようじょ(6), マジで(6), ガチ(6), どんだけ(6), ???(6), パワハラ(6), キモい(6), 小説家(6), 2018年(5), ネット上(5), 一緒に(5), LINE(5), 社会人(5), asahi.com(5), pixiv(5), ブログ(5), あいつら(5), 回転寿司(5), なんの(5), 本人確認(5), 3回(5), s(5), 東京(5), にも(5), 毎日(5), ASL(5), ブクマ(5), Amazon(5), 全体的(5), ツイッター(5), 上の(5), ネトウヨ(5), 昭和(5), 普通に(5), ニコ動(4), 夫婦(4), 未来少年コナン(4), LGBT(4), PC(4), 40代(4), ツイート(4), 分からん(4), 低気圧(4), Twitter(4), アイマス(4), ワイ(4), 鈴口(4), 5年(4), 元ネタ(4), フリーランス(4), レイシスト(4), 自分自身(4), hatena(4), 検索履歴(4), 被害者(4), 掃除機(4), 悪いこと(4), いいんじゃない(4), 1人(4), ED(4), 認知症(4), あなたに(4), 身分証(4), 韓国(4), 具体的(4), 嘘松(4), ガロア理論(4), 登場人物(4), ブックマーク(4), ケンヂ(4), 人間関係(4), article(4), 台湾(4), セフレ(4), FGO(4)

投稿警察もどき日中に再投稿された本文の先頭20文字 ()内の数字投稿された回数

うんち (14), そうだね。うんちだね。💩 (9), パンティー (7), やらせろ (3), 鈴口をチロチロしながら 肉棒と袋を全(2), (2), ハイスコアガールエンディング歌って(2), 私と彼は所詮恋人夫婦にはなれない(2)

頻出トラックバック先(簡易)

小説家って儲からなすぎでは? /20180901210923(12), ■PCデポ記事についてヨッピーさんにあれこれ聞いた話(前編) /20180902034231(11), ■もう無理立ち上がれない /20180901225058(10), ■街の寿司屋って誰が行ってるの? /20180902140322(10), ■数学に詳しい人に聞きたい [追記あり] /20180902103608(9), ■PCデポ記事についてヨッピーさんにあれこれ聞いた話(後編) /20180902034446(8), ■寿司屋に肉のネタが少なすぎる /20180902102651(7), ■ネトウヨレイシストの中で「物語」はどう咀嚼されてるんだろう /20180902220717(6), ■階級出身高校で決まる /20180902213209(5), (タイトル不明) /20180902013815(5), ■ /20180902135956(5), ■聞き返す時に「はっ?」とか「あっ?」とか言うのが癖になってる /20180902135806(5), ■日本人は我慢強いのか? /20180902010859(5), ■アニメ二次創作が一気に無価値になったと思わん? /20180902140812(5), ■35000人の前で人生最大のピンチに陥ったB'z稲葉氏を見れて良かった。 /20180901224514(5), ■昔ほんの出来心興味本位AVに出ちゃったんだけど /20180902163408(4), ■すべてどうでもよくなってきた /20180902145027(4), ■なぜ私がオフに引きこもるのか /20180902203604(4), ■anond20180902140322 /20180902141523(4), ■ /20180902133436(4), ■書籍を紹介するときAmazonのページにリンクを張る人 /20180902041823(4), ■処女のまま21になった /20180902115653(4), ■水上バスなんて娯楽があったのか /20180901204301(4), ■童貞みたいに一度してしまうとなくなってしまものある? /20180901235648(4)

増田合計ブックマーク数 ()内の数字は1日の増減

5574020(4125)

2018-09-02

anond:20180902103608

数学専門の修士1年です。整数論を学ぶものの端くれとして助言させていただきます。とりあえず以下の分野について勉強なさることを薦めます

(必要なら)微積分と線形代数の復習

微積分なら杉浦「解析入門」がおすすめ線形代数なら佐武「線型代数学」か斎藤線形代数世界」がおすすめです。

体とガロア理論

堀田可換環と体」、雪江「代数学1・2・3」あたりがよい。

環論

Atiyah MacDonald「可換代数入門」、雪江「代数学1・2・3」あたりがよい。辞書として松村可換環論」を買うといいかも。

整数論

Serre「A Course in Arithmetic」とか、斎藤黒川加藤「数論」の6章あたりまでとか。

これらは数学学部3〜4年のカリキュラムに含まれ基本的知識です。先の内容を学びたい気持ちもあると思いますが、まずこれらの分野を「十分」学んでください。各分野についてどれぐらい学ぶ必要があるかというと、買った本の各章の内容について、証明の内容も含め、何も見ずにだいたい説明できるぐらい読んでください。あともちろん演習問題は全部解いてください。詳しい数学勉強方法東京大学河東先生のこのページを参考にしてください。

http://www.ms.u-tokyo.ac.jp/~yasuyuki/sem.htm

ここまで勉強なさると、宇宙際タイヒミュラー理論を学ぶハードルがどれだけか、少しイメージが湧くようになると思いますもっと勉強したいと思ったら、また増田に来てください。期待しております

anond:20180902103608

整数論専門院卒、非数学者です。

まずは

1. ガロア理論

2. 楕円曲線

の二つについて理解することを目標にされるといいと思います

この二つは19世紀以前の数学最高峰であり、また現代数学の多くの分野に関連することから、IUTを目標としない人でも学ぶ価値のある理論だと思います

またIUTでは楕円曲線ガロア理論を用いて数の加法乗法構造を調べるというようなことをしています

以下では、上の二点についてもう少し詳しく説明してみます

1. ガロア理論

ガロア理論方程式を解くということを群という対称性を用いて理解するものです。これを用いて5次方程式の解の公式の有無や作図問題などの古典的問題解決されました。これを理解するためには代数学特に群や体について基本的な事を学ぶ必要があります

さら整数論に関わるものとして、p進体などを学んだ上で類体論勉強なさるのがよいと思います。p進体では(普通対数関数と同じように)log定義することができ、これはIUTでも重要役割を果たします。類体論特別場合として円分体のガロア理論理解すると、例えばガウスなんかの整数論の話もより深く理解できると思います

2. 楕円曲線

楕円曲線は楕円関数論をある種代数的に扱うようなものです。楕円関数というのは、三次式の平方根積分でこの積分を表すために導入された関数です。19世紀数学でかなり研究されたものですが、これについては複素解析という複素数平面上で微積分をするということについて理解する必要があります

さらにその後の発展として、リーマン面や基本群、ホモロジーといった概念が考えられました。基本群やホモロジーというのはトポロジーという分野で研究されているものですが、数論幾何でも重要役割を果たします。

上の二つの話は独立したものではなく、相互に関連しあうものです。例えば、基本群とガロア群はある意味では同じものだと観ることができます。このような視点を持って整数研究をするのが数論幾何という分野です。

まとめると、まずはガロア理論目標として代数基本的なこと、楕円関数目標にして複素解析を学ぶのが良いと思います

これは同時並行に進めることをお勧めします。

上に書いたようなことは数論幾何を専門にするなら学部生ぐらいで知っている話です。これらを踏まえてIUTにより近い専門的な内容を学んでいくのが良いでしょう。私もその辺りについて詳しいことは言えないのですが、例えば京都大学の星先生の書かれたIUTのサーベイをご覧になってみるのが良いのではないでしょうか。

ガロア理論って何の役に立っているの?

https://ja.m.wikipedia.org/wiki/ガロア理論

グロタンディークガロア理論において古典的ガロア理論は次のように理解される。K上のエタール代数はアフィンスキームSpec(K) の上のエタール層を表しており、

埋め込みK → K sep に対応する射 Spec(K sep) → Spec(K) が表す「点」でのファイバーをとることに対応する関手 FK sep: A → HomK(A, K sep)が、

同値 : Spec(K) 上のエタール層の圏 EtK≡ G が連続的に作用する集合の圏 BG をひき起こしている。また、絶対ガロア群はこのファイバー関手自己同型群として実現されており、

特定公理を満たしている関手 {\displaystyle \operatorname {F} _{K^{\mathrm {sep} }}:\operatorname {Et} _{K}\to (\mathrm {Sets} )} からガロア群を復元できることが分かる。

また、上の圏同値によって、体 K上の ガロアコホモロジーは、Spec(K) 上のエタール・コホモロジー理論同値となる。

これ、中二病適当に書いた文章じゃないんでしょ?

この理論は何を作るとき必要なの?

This is a pen位簡潔に説明してほしい。

anond:20180902103608

理科学修士卒、非数学者意見

(数論が専門ではなかった。)

① 工学修士だと、微分積分線形代数複素関数論あたりは知っていると思う。

応用系と数学科向けだとちょっと内容が違うので(εδ論法とか)、まずその辺の復習から始める。

現時点での理解度によるけど100時間くらい?

② 純粋数学への入口として、「集合と位相」のような本を読む。

(私は松坂和夫を読んだ。)約100時間

③ 抽象思考の壁を乗り越えるために「代数学」のような本を読む。ガロア理論くらいまで。

(私は森田康夫だった。)約200時間

④ 雑学というか、モチベーションの維持として初等整数論の本を読んだり問題をといたりする。

(私はヴィノグラードフとか高木貞二とか)100時間くらい?

このくらいで、とっかかりは出来るので、その後何やったらいいかも見えてくるはず。

上記+3000時間くらいで理論入口あたりにはたどり着くと思う。

2018-06-21

抽象代数研究とかガロア理論とか小学校からやって30代くらいででかい問題解いて60とか70ででかい問題残して歴史名前残すってめっちゃ憧れる

2016-12-19

ガロア理論理解したい

ガロア理論は、5次以上の方程式には、代数的な一般解は無いよ、ってのを証明するための理論らしい。

群、環、体みたいなのを使うっぽい?圏とかリー群とかも亜種とかであるらしい?

からない。全然からない。

俺は28歳だけど、中高では、一応数学で全国1位になったことある

医学部に行っちゃったけど、東大理1とか行って、今博士とったりしてる奴等がうらやましい。

  

なんだ。ゲーデル不完全性定理とか、流体力学とか、機械学習とか、濃度がどうとか、数学物理学科は楽しそうだ。

理解してえ。

理解せずに死にたくねえ。

俺が知らないたくさんの数学定理とかあるんだろ。

理解してえ。死にたくねえよぉ。

2014-04-15

「『数学ガール ガロア理論』第10章」の解説

数学ガール ガロア理論』の第10章(最終章)がそれまでの章に比べて難しくて挫折するという感想がけっこうあるようなので、その補足的な解説を試みます。『ガロア理論』第10章はガロアの第一論文を解説しているので、解説の解説ということになります

定理4までと定理5を分ける

10章でおこなわれるガロアの第一論文の説明は、

と進んでいきますが、ミルカさんはその途中で何度も、ガロアの第一論文テーマが「方程式代数的に解ける必要十分条件であることを確認します。

なぜ何度も確認するかといえば、最後定理5(方程式代数的に解ける必要十分条件)以外は、一見したところでは「方程式の可解性」に関わることが見て取れないので、途中で確認を入れないと簡単に道に迷ってしまうからでしょう。定理2(≪方程式ガロア群≫の縮小)や定理3(補助方程式のすべての根の添加)は、目的方程式を解くときに利用する補助方程式に関わる話ですが、やはり定理を見ただけでは「方程式の可解性」との繋がりはよく見えません。

そこで逆に、いったん「方程式の可解性」の話から離れて定理5を除外して、それ以外だけに注目します。

方程式の可解性」から離れて見たとき定理1から定理4までで何をやっているかというと、

ということ(ガロア対応と呼ばれます)を示していますミルカさんの言葉を使えば(p.362)、体と群の二つの世界に橋を架けています

この体と群の対応関係を図で見ると、10.6節「二つの塔」の図(p.413、p.415、p.418)、あるいは

http://hooktail.sub.jp/algebra/SymmetricEquation/Joh-GaloisEx31.gif

http://f.hatena.ne.jp/lemniscus/20130318155010

のようになります(この体と群の対応関係は常に成り立つわけではなく、第8章「塔を立てる」で説明された「正規拡大」のときに成り立ちます)。

体と群に対応関係があること(定理1~定理4)を踏まえて、定理5を見ます

方程式代数的に解く」というのは「体の拡大」に関係する話です。

方程式の係数体から最小分解体まで、冪根の添加でたどりつくことが、方程式代数的に解くことなのだ」

(第7章「ラグランジュ・リゾルベント秘密」p.254)(ただし、必要なだけの1のn乗根を係数体が含んでいるという条件のもとで)

そこから、「体と群の対応」を利用して、方程式の解の置き換えに関する「群」の話に持っていくのが、定理5になるわけです(なお「方程式を解くこと」と「解の置き換え」が関係していることは、すでに第7章に現れていました)。

「≪群を調べる≫って≪体を調べる≫よりも(...)」

「いつも楽とは限らない。でも方程式の可解性研究のためには、群を調べるほうが楽だ」

(第10章「ガロア理論」p.394)

「解の置き換えの群」を定義したい

ここまでの話で、定理4までで行いたいことが「≪体の世界≫と≪群の世界≫の対応関係」だということが分かりました。

しかしこの対応を示すためには、まず、この対応関係における≪群の世界≫というのがいったい何なのかをきちんと定義しないといけません。

≪体の世界≫というのは「体の拡大」で、これは8章「塔を立てる」で説明されています

一方、その「体の拡大」に対応する「群」は「方程式の解の置き換え方の可能な全パターン」なのですが、これが正確にどんなものなのかは10章以前には定義されていません。

「解の置き換え方」であるための必要条件

(以下、4次方程式の例をいくつかあげますが、面倒なら流し読みでさらっと進んでください)

たとえば一般3次方程式では、解α、β、γの置き換え方は全部で6通り(3×2×1)あります(第7章p.252)。同様に考えると、一般4次方程式では、解α、β、γ、δの置き換え方は全部で24通り(4×3×2×1)あることが分かります

ところが、x4+x3+x2+x+1=0という4次方程式を考えてみます。これは5次の円分方程式です(第4章「あなたくびきをともにして」)。

x5-1 = (x-1)(x4+x3+x2+x+1)なので、この方程式の解α、β、γ、δは1の5乗根のうちの1以外のものだと分かります。したがって、解の順番を適当に選ぶとβ=α2、γ=α3、δ=α4という関係が成り立ちます

これについての解の置き換え方を考えると、αを、α、β、γ、δのうちのどれに置き換えるかを決めると、それに連動して、β、γ、δがどの解に置き換わるかも自動的に決まってしまます。たとえばαをβ(=α2)に置き換えると、(β、γ、δ)=(α2、α3、α4)は、

(β、γ、δ) = (α2、α3、α4)

↓ αをβに置き換える

2、β3、β4) = ((α2)2、(α2)3、(α2)4) = (α4、α6、α8) = (α4、α1、α3) = (δ、α、γ)

となるので、

(α、β、γ、δ) → (β、δ、α、γ)

のように置き換わります。αの置き換え方は4通り(α、β、γ、δの4つ)なので、この4次方程式x4+x3+x2+x+1=0の解の置き換え方は次の4通りとなります

(α、β、γ、δ) → (α、β、γ、δ)  = (α、α2、α3、α4)

(α、β、γ、δ) → (β、δ、α、γ)  = (α2、α4、α6、α8)

(α、β、γ、δ) → (γ、α、δ、β)  = (α3、α6、α9、α12)

(α、β、γ、δ) → (δ、γ、β、α)  = (α4、α8、α12、α16)

あるいはx4-5x2+6=(x2-2)(x2-3)=0 という方程式を考えます。解は√2、-√2、√3、-√3の4つですが、この場合「√2と-√2の置き換え」や「√3と-√3の置き換え」は許されますが、「√2と√3の置き換え」は許されません。

なぜかというと、(√2)2 -2 = 0、という式を考えると分かります。この式で√2を√3に置き換えると、左辺は(√3)2 -2 = 1となり、一方、右辺は0のままです。このような等式を破壊してしまうような解の置き換え方は認められません。そのため、可能な解の置き換え方は4通りになります。ただし、4通りの置き換え方のパターン(解の置き換えの「群」)は、5次円分方程式ときの4通りの置き換えパターンとは異なっています。(α、β、γ、δ) = (√2、-√2、√3、-√3)と置くと、可能な置き換え方は

(α、β、γ、δ) → (α、β、γ、δ)  = ( √2、-√2、 √3、-√3)

(α、β、γ、δ) → (β、α、γ、δ)  = (-√2、 √2、 √3、-√3)

(α、β、γ、δ) → (α、β、δ、γ)  = ( √2、-√2、-√3、 √3)

(α、β、γ、δ) → (β、α、δ、γ)  = (-√2、 √2、-√3、 √3)

となります

では、「認められる置き換え方」であるためにはどのような条件を満たす必要があるのかというと、それは

  • 「解の置き換えをおこなうとき、解は、共役元のどれかに移らなければならない」

というものです。つまり解θの最小多項式f(x)とすると、解の置き換えをしたときに、θはf(x)の根θ1、...、θnのどれか(この中にはθ自身も入っています)に移らなければなりません。この条件を満たしていれば、等式に対して解の置き換えをおこなっても、等式が破壊されることはありません。

簡単な場合帰着させる

解の置き換えであるための必要条件が出ましたが、この条件だけではx4+x3+x2+x+1=0のときのような、解の置き換えで複数の解の動きが連動しているような場合をどう考えればいいのかは、まだ分かりません。x4+x3+x2+x+1=0のときは一つの解の動きを決めれば他の解の動きが決まりましたが、方程式によっては解の間の関係もっとずっと複雑にもなりえます

しかしそれは、たくさんの解を一度に考えるから解の間の関係が複雑になって混乱するのです。

もしもx4+x3+x2+x+1=0のときの解αのように、ただ一つの解の動きだけを考えて全ての置き換えが決まってしまうならば、話はずっと簡単になります

そして、その「一つの解の動きだけを考える」ようにしているのが、

です。

体に注意を向けたほうがいい。添加体を考えれば、補題3の主張は一行で書ける」

K(α1、α2、α3、...、αm) = K(V)

(10.3.3節「補題3(Vを根で表す)」p.369)

これによって、「解α1、α2、α3、...、αmの置き換え」ではなく、ただひとつの「Vの置き換え」だけを考えればいいことになります

これと、解の置き換えの必要条件「解の置き換えをおこなったとき、解は、共役元のどれかに移らなければならない」を合わせると、「解の置き換え方の可能な全パターン」とは、「Vから、Vの共役への置き換えのうちで、可能なものすべて」となります

そして補題4(Vの共役)は、「Vの(共役への)置き換え」をすると、もとの多項式f(x)の根α1、α2、α3、...、αmの間の置き換えが発生するという性質を述べています。つまり「Vの置き換え」によって「方程式f(x)=0の解の、可能な置き換えが実現される」わけです。

この考えにもとづいて「解の置き換えの群」を定義しているのが、定理1(≪方程式ガロア群≫の定義)の説明の途中の、10.4.4節「ガロア群の作り方」です。

(ガロアは正規拡大の場合にだけ「解の置き換えの群」を定義したので、正規拡大のときの「解の置き換えの群」を「ガロア群」と呼びます)

体と群の対応関係証明する

前節で、証明のかなめとなるVと「解の置き換えの群」が定義されました。Vの最小多項式fV(x)の次数をnとすると、次が成り立ちます(最小多項式は既約で、既約多項式は重根を持たないので、Vの共役の個数は最小多項式の次数nと一致することに注意する)。

  • K(α1、α2、α3、...、αm) = K(V) の拡大次数はnである
  • (Vの共役はちょうどn個あるので)「解の置き換え方の可能な全パターン」の個数は、n以下である

※1 考えている体K(V)に含まれない数へのVの置き換えは「解の置き換え」には認められないので、「解の置き換え方の個数」と「共役の個数」は一致するとは限りません。

※2 「最小多項式」は8.2.8節「Q(√2+√3)/Q」と8.2.9節「最小多項式」で説明されていますが、最小多項式が既約であることと一意に決まること(8.2.9節p.282)は、定義(可約と既約)と補題1(既約多項式性質)から証明されます

そして、

  • K(V) (=K(α1、α2、α3、...、αm) ) が正規拡大の場合、「解の置き換え方の全パターン」は、ちょうどn個ある(なぜなら、正規拡大ではVの共役がすべてK(V)に入っているため、VからVのどの共役への置き換えも「解の置き換え」として認められるので)。

したがって正規拡大のときには、

  • K(α1、α2、α3、...、αm)の拡大次数 = 「解の置き換えの群」の要素数 = n

という等式が成り立ちます。この関係が「体と群の対応」の第一歩目になります

このとき(つまり正規拡大のとき)、

が成り立ちます。実のところこの性質1と性質2は

  • ≪体の塔≫と≪群の塔≫の一番下の段が、互いに対応している

ことを主張しています

そして定理2(≪方程式ガロア群≫の縮小)と定理4(縮小したガロア群の性質)で、

  • ≪体の塔≫と≪群の塔≫の中間の段が、互いに対応している

ことを主張しています

定理3(補助方程式のすべての根を添加)と定理4で、

ことを主張しています

このように定理1、定理2、定理3、定理4によって、体と群の対応が示されます

定理5(方程式代数的に解ける必要十分条件)に進む

方程式代数的に(つまり冪乗根によって)解けるかという問題は

と言い換えられます。そして、

  • 「1の原始p乗根が最初から係数体Kの元にあるとする」(p.403)と、Kに冪乗根「p√a」を添加したK(p√a)は、Kの正規拡大になる

ので、「適切な冪乗根が存在するか」という問題は「適切な正規拡大が存在するか」という問題になり、体と群の対応により

という問題になります。この「適切な正規部分群があるかどうか」をもっと詳しく正確に述べたのが定理5です。

まとめ

まとめると、第10章の流れは次のようになっています

  1. 補題1(既約多項式性質)
  2. 補題2(根で作るV)、補題3(Vを根で表す)
    • すべての根α1、α2、α3、...、αmの添加を、ただひとつの要素Vの添加に帰着させる。
  3. 定理1の説明(10.4.4「ガロア群の作り方」) + 補題4(Vの共役)
    • (添加したVを使って)ガロア群(「解の置き換えの群」)を定義する。
  4. 定理1(≪方程式ガロア群≫の定義)、定理2(≪方程式ガロア群≫の縮小)、定理3(補助方程式のすべての根の添加)、定理4(縮小したガロア群の性質)
  5. 定理5(方程式代数的に解ける必要十分条件)

それでは改めて第10章を読んでいきましょう。



(追記: 数式の間違いの指摘ありがとうございます。訂正しました)

2011-07-19

http://anond.hatelabo.jp/20110718221633

線形代数は,ジョルダン標準形存在線形代数っぽくないけれど計量とガロア理論くらいで終わりじゃないか?解析も数論も幾何も基礎論も線形代数が基礎になるようなところはまあほんとにさわりだけでないかな.

2011-01-12

http://anond.hatelabo.jp/20110111171750

だが団塊の世代トップクラスはあなどれんぞ。

1970年代ものづくりで、ライバルメーカーに差をつけるために本命技術とは別にガロア理論を使った見せ球を使ってライバルメーカーを混乱に陥れる、とかやってた人間を知っている。

我々の世代でそこまでできる人間はなかなかいない。目立ってる人間(dankogaiからshi3z氏やらひろゆきに至るまで)は少なくとも、そういう深い引き出しは持ってないような気がする。

インスピレーションやダッシュ力はあるんだけどね。

2009-10-21

http://anond.hatelabo.jp/20091019172845

> 何世紀かのちにやっと理解されるような難解な数学理論を編み出したからではない。

何世紀かのちにやっと理解された難解な数学理論って具体的にどのようなものがあるのでしょうか。

生前に理解されなかったとされるガロア理論も、数十年後にリューヴィユによって解明されています。

未解決問題が何世紀かのちに解決されることはありますけど、証明がきちんと書かれている理論で、

数学者の間でも)理解されるのに何世紀もかかる理論は聞いたことがありません。

例えば、地動説も、コペルニクス以後理解されるのに時間がかかっているわけだし、

数学理論が他と比べて理解しにくいという捉え方はおかしい。

2008-10-31

http://anond.hatelabo.jp/20081031222722

タイトルリンクを張った増田さんのコメントは、「君」という言葉コメントに出てくることから、書き手が元増田の私一人を相手に書いているように推測されるので、返答してみます。

http://anond.hatelabo.jp/20081031114504

http://anond.hatelabo.jp/20081031121513

http://anond.hatelabo.jp/20081031160755

以上を書いた元増田です。とりあえず、今の学年を言っておくと修士2年です。

他の専攻の内容知らないし、勉強しなかったの反省しているから、他分野の専攻の人の感情を害さないように気をつけて発言しているつもりなのですが・・・

結論から言うと、俺は物理をはじめ、他専攻を舐めていないし、むしろ、知らないから怖がってすらいます。

私が物理についてコメントしたのは、

情報科学は、物理以上に数学が必要な分野だと思う。

物理化学なら、数学ダメでも実験おもしろい成果が出せることもある。

これだけだと思います。

これは、理系全般に話を持っていこうとした人がいたので、「数学をどれぐらい使うかは専攻や研究室によって違うから、勝手理系全般に話を広げないでくれ」っていう背景で書きました。

別に、「情報数学使うけど、物理化学実験で成果が出るから数学使わなくていいなぁ」って言っているわけじゃなかったのですが、もう一回読み直してみましたが、どう見ても、そう読めますね。

ただ、物理化学をはじめ、どの分野でも、科学である以上、「数学をそこまで使わなくても実験結果がおもしろければ評価される研究がある」ことは事実だと思います。

物理化学なら、数学ダメでも実験おもしろい成果が出せることもある。

これは、何がいいたかったのかというと、「数学が全てってわけじゃないよね。実験やっている人は実験やっている人で、毎日深夜まで残って大変だよね」というように、実験やっている人に配慮したつもりだったのですが、今見ると、どう見てもそうは読めませんね。すみません。

数値解析も確率過程も物理で使いまくる(というか物理ルーツとさえ言える)し、情報幾何で出てくる幾何学の知識なんてたとえば一般相対論を学ぶのに必要な知識に比べたらたかが知れてるんだけど。

数値解析や確率過程を物理で使わない、と発言した覚えはありません。

情報幾何で出てくる幾何学の知識が、一般相対論を学ぶのに必要な知識に比べたらたかが知れている」

というのは、情報幾何も一般相対論もやったことがないので知りませんでした。

たとえば君、ホモロジー論わかる?ガロア理論わかる?関数解析わかる?この辺は数学科の3年後期レベルだけど、たぶん勉強したことないんじゃないの?

端的に言えば、あなたから見れば、「何もやっていないに等しい」ということだと思います。

一応、群の定義ぐらいはわかります。ホモロジーはやったことありません。

関数解析は、授業は一応聞いていましたが、理解してないし切ってしまったので、問題が解ける気がしません。

プラス物理生物化学やなどが必要になってくるけど,基本的に数学科並みに数学が必要。情報科学って一応応用数学だからね。

これを発言したのは私ではありません。

あんまり「俺は偉い」みたいなこと言わない方がいい。第一線の研究者学問の垣根なんて平気で踏み越えていくらでも勉強してる。はっきり言って君は並の量しか勉強してないし、それで「俺は数学科並に数学ができる」なんて言ったら馬鹿にされるだけだよ。

俺自身、学部時代は専門以外の時間数学ばかり勉強してたから、その辺は一応忠告しておくけど。

「俺は偉い」とか、「数学科並に数学ができる」なんて思ったことも言ったこともありません。

むしろ、「僕は数学ができない」と回りに言いまくってます。最初の書き込みを見ていただければ、「数学ができる人はいいなぁ、自分は数学ができなくて損をしているなぁ」というニュアンスで発言しているのが分かっていただけると思います。「君は並の量しか勉強してないし」は、そうだと思います。

自分は、数学勉強しても演習問題が解けない人です。

どの本にも、大抵、理解したかどうかをチェックするために、演習問題がついていますよね。あれが、解けないんです。

言っていることはわかるし、解答を見れば理解した気にはなれるのですが、演習問題が解けないんです。

「解けないってことは、本当に理解していないのだ」といわれてしまったら、それは、その通りだと思います。

結局、最終的に自分の専門にどう生かせるのかが、問題に出会った時に思い浮かばないと、学ぶ意味がないですよね。

学部のうちは、「この知識は、本当に将来使うのか?」ということに拘って知識を取捨選別してしまいました。

授業もそうやって選んでいたわけですし。当時は、なんとなく、「将来、時間があって必要なときに覚えればいい」みたいに思っていたのです。

実際に修士になってみて、激しく後悔しました。本当に専門以外のことを勉強する余裕がない。数学は、演習問題ぐらい解けるようにならないと、理解したことにはならないし、自分の専門にも応用できなくて勉強した甲斐がなくなってしまうのに、演習問題を解く時間がない。

学部のうちは、専門以外の勉強をちゃんとやっておくべきだったのだなぁ、と思っています。

http://anond.hatelabo.jp/20081031160755

応用数学屋から情報屋に転向した者だけど、やっぱり物理舐めすぎ。

数値解析も確率過程も物理で使いまくる(というか物理ルーツとさえ言える)し、情報幾何で出てくる幾何学の知識なんてたとえば一般相対論を学ぶのに必要な知識に比べたらたかが知れてるんだけど。

プラス物理生物化学やなどが必要になってくるけど,基本的に数学科並みに数学が必要。情報科学って一応応用数学だからね。

数学科も舐めすぎ。はっきり言って情報関係で必要な数学数学科の3年前期レベルまでで事足りる。要するに他の理系と変わらない。

たとえば君、ホモロジー論わかる?ガロア理論わかる?関数解析わかる?この辺は数学科の3年後期レベルだけど、たぶん勉強したことないんじゃないの?

あんまり「俺は偉い」みたいなこと言わない方がいい。第一線の研究者学問の垣根なんて平気で踏み越えていくらでも勉強してる。はっきり言って君は並の量しか勉強してないし、それで「俺は数学科並に数学ができる」なんて言ったら馬鹿にされるだけだよ。

俺自身、学部時代は専門以外の時間数学ばかり勉強してたから、その辺は一応忠告しておくけど。

 
ログイン ユーザー登録
ようこそ ゲスト さん