「正規部分群」を含む日記 RSS

はてなキーワード: 正規部分群とは

2020-06-05

Galois拡大って何?

分離的かつ正規代数拡大のことです。

集合Kが2つの二項演算+: K×K→K、*: K×K→Kを持ち、以下の性質を満たすとき、Kは体であるという。

  1. 任意のa, b, c∈Kに対して、(a + b) + c = a + (b + c)
  2. ある元0∈Kが存在して、任意のa∈Kに対して、a + 0 = 0 + a = a
  3. 任意のa∈Kに対して、ある元-a∈Kが存在して、a + (-a) = (-a) + a = 0
  4. 任意のa, b∈Kに対して、a + b = b + a
  5. 任意のa, b, c∈Kに対して、(ab)c = a(bc)
  6. 任意のa, b, c∈Kに対して、a(b + c) = ab + ac、(a + b)c = ac + bc
  7. ある元1∈Kが存在して、任意のa∈Kに対して、1a = a1 = a
  8. 任意のa∈K\{0}に対して、ある元a^(-1)∈Kが存在して、aa^(-1) = a^(-1)a = 1
  9. 任意のa, b∈Kに対して、ab = ba

体の例
  • 有理数全体の集合Q、実数全体の集合R、複素数全体の集合Cは、通常の和と積について体になる。一方、整数全体の集合Zは体にはならない。
  • 素数pについて、整数をpで割ったあまりの集合Z/pZ := {0, 1, ..., p-1}は、自然な和と積によって体になる。

代数拡大

K, Lを体とする。K⊂Lとなるとき、LをKの拡大体という。L/Kが拡大であるともいう。もちろん、これはLの部分群Kによる剰余群のことではない。

C/Rや、C/Qは体の拡大の例である。K(X)/K(X^2)なども体の拡大の例である

L/Kを体の拡大とする。任意のa∈Lに対して、K係数の多項式f(X)存在して、f(a)=0となるとき、LをKの代数拡大体、またはL/Kは代数拡大であるという。

そのような多項式存在しない元が存在するとき、LはKの超越拡大体、またはL/Kは超越拡大であるという。

代数拡大の例

C/Rは代数拡大である

なぜならば、任意のz∈Cはz = x + yi (x, y∈R)と表わせ、z* = x - yiとおくと、zは二次方程式

X^2 -(z + z*)X + zz* = 0

の解だから

Kを体とする。K上の任意多項式F(X)に対して、Fの根を全て含む体Lが存在する。言い換えれば、FはLで

F(X) = a(X - a1)...(X - an)

と一次の積に分解する。このようなLのうち最小のもの存在し、Fの(最小)分解体という。Fの分解体はKの代数拡大体である

最後の一文を証明する。

LをFの分解体とする。Lの部分環Vを

K[X1, ..., Xn]→L (f(X1, ..., Xn)→f(a1, ..., an))

の像とすると、VはK上のベクトル空間である。各aiはn次多項式の根であるからaiのn次以上の式はn-1次以下の式に等しくなる。従って、VはK上高々n^2次元の有限次元ベクトル空間である

Vは整域であるから、0でない元による掛け算は、VからVへの単射線形写像である。したがって、線形写像の階数と核の次元に関する定理から、この写像全射である。よって、Vの0でない任意の元には逆元が存在する。つまり、Vは体である

Lは、Kと各aiを含む最小の体であり、V⊂Lなので、L=Vである

さて、Lの元でK上のいかなる多項式の根にならないもの存在したとし、それをαとおくと、無限個の元1, α, α^2, ...は、K上一次独立となる。これはVが有限次元であることに矛盾する。□

上の証明から特に、KにFの1つの根αを添加した体K(α)は、Kの代数拡大体である。このような拡大を単拡大という。


拡大次数と自己同型群

L/Kを代数拡大とする。LはK上のベクトル空間となる。その次元をL/Kの拡大次数といい、[L : K]で表す。[L : K]が有限のとき、L/Kは有限拡大といい、無限大のとき無限代数拡大という(上の証明でみたとおり、超越拡大は必ず無限次拡大である)。

M/K、L/Mがともに有限拡大ならば、L/Kも有限拡大であり、[L : K] = [L : M] [M : K]。

α∈Lとする。K上の多項式fでf(α)=0をみたすもののうち、次数が最小のものが定数倍を除いて存在し、それをαの最小多項式という。

[K(α) : K]は、αの最小多項式の次数に等しい。なぜならば、その次数をnとするとαのn次以上の式はすべてn-1次以下の式になるため、[K(α) : K]≦n。1, α, ..., α^(n-1)が一次従属だとすると、n-1次以下の多項式でαを根に持つもの存在することになるので、[K(α) : K]≧n。よって、[K(α) : K]=n。

Lの自己同型σでKの元を固定するもの、つまり任意のa∈Kに対してσ(a)=aとなるもの全体のなす群をAut(L/K)と書く。

任意の有限拡大L/Kに対して、#Aut(L/K) ≦ [L : K]。


Galois拡大

L/Kを有限拡大とする。#Aut(L/K) = [L : K]が成り立つとき、L/KをGalois拡大という。L/KがGalois拡大のとき、Aut(L/K)をGal(L/K)と書き、L/KのGalois群という。

Galois拡大の例

L/Kを有限拡大、[L : K] = 2とする。#Aut(L/K) ≦ [L : K] = 2なので、Aut(L/K)に恒等写像以外の元が存在することを示せばよい。

[L : K] = 2なので、α∈L\Kが存在して、1, α, α^2は一次従属。したがって、α^2 - aα + b = 0となるa, b∈Kが存在する。解と係数の関係から、α, a - α∈Lは、2次方程式X^2 - aX + b = 0の異なる2解。

α∉Kより、K⊕KαはK上2次元ベクトル空間で、K⊕Kα⊂LなのでL=K⊕Kα。

σ: L→Lをσ(1)=1, σ(α)=a-αとなるK線形写像とすれば、σは全単射であり、Kの元を固定する体の準同型でもあるので、σ∈Aut(L/K)。□

C/RはGalois拡大。

Gal(C/R)={id, σ: z→z*}

平方因子のない有理数αに対して、Q(√α)/QはGalois拡大。

Gal(Q(√α)/Q) = {id, σ: 1→1, √α→-√α}。


正規拡大

L/Kを有限拡大とする。任意のα∈Lに対して、αのK上の最小多項式が、Lで1次式の積に分解するとき、L/Kを正規拡大という。

L=K(α)とすると、L/Kが正規拡大であるのは、αの最小多項式がLで一次の積に分解するときである

K(α)/Kが正規拡大で、さらにαの最小多項式重根を持たなければ、αを他の根に写す写像がAut(K(α)/K)の元になるから、Aut(K(α)/K) = αの最小多項式の次数 = [K(α) : K]となり、K(α)/KはGalois拡大になる。

nを自然数として、ζ_n = exp(2πi/n)とする。ζ_nの最小多項式は、Π[0 < m < n, gcd(m, n)=1](X - (ζ_n)^m)であり、Q(ζ_n)/QはGalois拡大である


分離拡大

L/Kを有限拡大とする。任意のα∈Lの最小多項式重根を持たないとき、L/Kは分離拡大という。

体Kに対して、1を1に写すことで一意的に定まる環準同型f: Z→Kがある。fの像は整域だから、fの核はZの素イデアルである。fの核が(0)のとき、Kの標数は0であるといい、fの核が(p)であるとき、fの標数はpであるという。


Q, R, Cの標数は0である。Z/pZの標数はpである

標数0の体および有限体の代数拡大はすべて分離拡大である

F_2 = Z/2Zとする。F_2係数の有理関数体F_2(X)/F_2(X^2)は分離拡大ではない。

実際、XのF_2(X^2)上の最小多項式は、T^2 - X^2 = (T - X)(T + X) = (T - X)^2となり、重根を持つ。

Galois拡大であることの言い換え

有限拡大L/KがGalois拡大であるためには、L/Kが分離拡大かつ正規拡大となることが必要十分である


Galois拡大の性質

L/KをGalois拡大、Gal(L/K)をGalois群とする。

K⊂M⊂Lとなる体Mを、L/Kの中間体という。

部分群H⊂Gal(L/K)に対して、L^H := {a∈L| 任意のσ∈Hに対してσ(a)=a}は、L/Kの中間体になる。

逆に、中間体K⊂M⊂Lに対して、Aut(L/M)はGal(L/K)の部分群になる。

次のGalois理論の基本定理は、L/Kの中間体がGalois群で決定されることを述べている。

L/KをGalois拡大とする。L/Kの中間体と、Gal(L/K)の部分群の間には、以下で与えられる1対1対応がある。

  • 部分群H⊂Gal(L/K)に対して、K⊂L^H⊂L
  • 中間体Mに対して、Aut(L/M)⊂Gal(L/K)

さらに、以下の性質を満たす。

  • H'⊂H⊂Gal(L/K)ならば、K⊂L^H⊂L^H'⊂L
  • K⊂M⊂M'⊂Lならば、Aut(L/M')⊂Aut(L/M)⊂Gal(L/K)
  • 中間体K⊂M⊂Lに対して、#Aut(L/M)=[L : M]。つまり、L/MはGalois拡大
  • 部分群H⊂Gal(L/K)に対して、#H = [L : L^H]、#Gal(L/K)/H = [L^H : K]
  • 中間体K⊂M⊂Lに対して、M/Kが正規拡大(L/Kは分離的なのでM/Kも分離的であり、従ってGalois拡大)であることと、Gal(L/M)がGal(L/K)の正規部分群であることが同値であり、Gal(L/K)/Gal(L/M)〜Gal(M/K)。同型はσ∈Gal(L/K)のMへの制限で与えられる。

K=Q, L=Q(√2, √3)とすると、Gal(L/K)はσ√2→-√2とする写像σと、√3→-√3とする写像τで生成される位数4の群Z/2Z×Z/2Zである

この部分群は{id}, {id, σ}, {id, τ}, {id, στ}, {id, σ, τ, στ}の5種類があり、それぞれ中間体L, Q(√2), Q(√3), Q(√6), Kに対応する。

2014-04-15

「『数学ガール ガロア理論』第10章」の解説

数学ガール ガロア理論』の第10章(最終章)がそれまでの章に比べて難しくて挫折するという感想がけっこうあるようなので、その補足的な解説を試みます。『ガロア理論』第10章はガロアの第一論文を解説しているので、解説の解説ということになります

定理4までと定理5を分ける

10章でおこなわれるガロアの第一論文の説明は、

と進んでいきますが、ミルカさんはその途中で何度も、ガロアの第一論文テーマが「方程式代数的に解ける必要十分条件であることを確認します。

なぜ何度も確認するかといえば、最後定理5(方程式代数的に解ける必要十分条件)以外は、一見したところでは「方程式の可解性」に関わることが見て取れないので、途中で確認を入れないと簡単に道に迷ってしまうからでしょう。定理2(≪方程式ガロア群≫の縮小)や定理3(補助方程式のすべての根の添加)は、目的方程式を解くときに利用する補助方程式に関わる話ですが、やはり定理を見ただけでは「方程式の可解性」との繋がりはよく見えません。

そこで逆に、いったん「方程式の可解性」の話から離れて定理5を除外して、それ以外だけに注目します。

方程式の可解性」から離れて見たとき定理1から定理4までで何をやっているかというと、

ということ(ガロア対応と呼ばれます)を示していますミルカさんの言葉を使えば(p.362)、体と群の二つの世界に橋を架けています

この体と群の対応関係を図で見ると、10.6節「二つの塔」の図(p.413、p.415、p.418)、あるいは

http://hooktail.sub.jp/algebra/SymmetricEquation/Joh-GaloisEx31.gif

http://f.hatena.ne.jp/lemniscus/20130318155010

のようになります(この体と群の対応関係は常に成り立つわけではなく、第8章「塔を立てる」で説明された「正規拡大」のときに成り立ちます)。

体と群に対応関係があること(定理1~定理4)を踏まえて、定理5を見ます

方程式代数的に解く」というのは「体の拡大」に関係する話です。

方程式の係数体から最小分解体まで、冪根の添加でたどりつくことが、方程式代数的に解くことなのだ」

(第7章「ラグランジュ・リゾルベント秘密」p.254)(ただし、必要なだけの1のn乗根を係数体が含んでいるという条件のもとで)

そこから、「体と群の対応」を利用して、方程式の解の置き換えに関する「群」の話に持っていくのが、定理5になるわけです(なお「方程式を解くこと」と「解の置き換え」が関係していることは、すでに第7章に現れていました)。

「≪群を調べる≫って≪体を調べる≫よりも(...)」

「いつも楽とは限らない。でも方程式の可解性研究のためには、群を調べるほうが楽だ」

(第10章「ガロア理論」p.394)

「解の置き換えの群」を定義したい

ここまでの話で、定理4までで行いたいことが「≪体の世界≫と≪群の世界≫の対応関係」だということが分かりました。

しかしこの対応を示すためには、まず、この対応関係における≪群の世界≫というのがいったい何なのかをきちんと定義しないといけません。

≪体の世界≫というのは「体の拡大」で、これは8章「塔を立てる」で説明されています

一方、その「体の拡大」に対応する「群」は「方程式の解の置き換え方の可能な全パターン」なのですが、これが正確にどんなものなのかは10章以前には定義されていません。

「解の置き換え方」であるための必要条件

(以下、4次方程式の例をいくつかあげますが、面倒なら流し読みでさらっと進んでください)

たとえば一般3次方程式では、解α、β、γの置き換え方は全部で6通り(3×2×1)あります(第7章p.252)。同様に考えると、一般4次方程式では、解α、β、γ、δの置き換え方は全部で24通り(4×3×2×1)あることが分かります

ところが、x4+x3+x2+x+1=0という4次方程式を考えてみます。これは5次の円分方程式です(第4章「あなたくびきをともにして」)。

x5-1 = (x-1)(x4+x3+x2+x+1)なので、この方程式の解α、β、γ、δは1の5乗根のうちの1以外のものだと分かります。したがって、解の順番を適当に選ぶとβ=α2、γ=α3、δ=α4という関係が成り立ちます

これについての解の置き換え方を考えると、αを、α、β、γ、δのうちのどれに置き換えるかを決めると、それに連動して、β、γ、δがどの解に置き換わるかも自動的に決まってしまます。たとえばαをβ(=α2)に置き換えると、(β、γ、δ)=(α2、α3、α4)は、

(β、γ、δ) = (α2、α3、α4)

↓ αをβに置き換える

2、β3、β4) = ((α2)2、(α2)3、(α2)4) = (α4、α6、α8) = (α4、α1、α3) = (δ、α、γ)

となるので、

(α、β、γ、δ) → (β、δ、α、γ)

のように置き換わります。αの置き換え方は4通り(α、β、γ、δの4つ)なので、この4次方程式x4+x3+x2+x+1=0の解の置き換え方は次の4通りとなります

(α、β、γ、δ) → (α、β、γ、δ)  = (α、α2、α3、α4)

(α、β、γ、δ) → (β、δ、α、γ)  = (α2、α4、α6、α8)

(α、β、γ、δ) → (γ、α、δ、β)  = (α3、α6、α9、α12)

(α、β、γ、δ) → (δ、γ、β、α)  = (α4、α8、α12、α16)

あるいはx4-5x2+6=(x2-2)(x2-3)=0 という方程式を考えます。解は√2、-√2、√3、-√3の4つですが、この場合「√2と-√2の置き換え」や「√3と-√3の置き換え」は許されますが、「√2と√3の置き換え」は許されません。

なぜかというと、(√2)2 -2 = 0、という式を考えると分かります。この式で√2を√3に置き換えると、左辺は(√3)2 -2 = 1となり、一方、右辺は0のままです。このような等式を破壊してしまうような解の置き換え方は認められません。そのため、可能な解の置き換え方は4通りになります。ただし、4通りの置き換え方のパターン(解の置き換えの「群」)は、5次円分方程式ときの4通りの置き換えパターンとは異なっています。(α、β、γ、δ) = (√2、-√2、√3、-√3)と置くと、可能な置き換え方は

(α、β、γ、δ) → (α、β、γ、δ)  = ( √2、-√2、 √3、-√3)

(α、β、γ、δ) → (β、α、γ、δ)  = (-√2、 √2、 √3、-√3)

(α、β、γ、δ) → (α、β、δ、γ)  = ( √2、-√2、-√3、 √3)

(α、β、γ、δ) → (β、α、δ、γ)  = (-√2、 √2、-√3、 √3)

となります

では、「認められる置き換え方」であるためにはどのような条件を満たす必要があるのかというと、それは

  • 「解の置き換えをおこなうとき、解は、共役元のどれかに移らなければならない」

というものです。つまり解θの最小多項式f(x)とすると、解の置き換えをしたときに、θはf(x)の根θ1、...、θnのどれか(この中にはθ自身も入っています)に移らなければなりません。この条件を満たしていれば、等式に対して解の置き換えをおこなっても、等式が破壊されることはありません。

簡単な場合帰着させる

解の置き換えであるための必要条件が出ましたが、この条件だけではx4+x3+x2+x+1=0のときのような、解の置き換えで複数の解の動きが連動しているような場合をどう考えればいいのかは、まだ分かりません。x4+x3+x2+x+1=0のときは一つの解の動きを決めれば他の解の動きが決まりましたが、方程式によっては解の間の関係もっとずっと複雑にもなりえます

しかしそれは、たくさんの解を一度に考えるから解の間の関係が複雑になって混乱するのです。

もしもx4+x3+x2+x+1=0のときの解αのように、ただ一つの解の動きだけを考えて全ての置き換えが決まってしまうならば、話はずっと簡単になります

そして、その「一つの解の動きだけを考える」ようにしているのが、

です。

体に注意を向けたほうがいい。添加体を考えれば、補題3の主張は一行で書ける」

K(α1、α2、α3、...、αm) = K(V)

(10.3.3節「補題3(Vを根で表す)」p.369)

これによって、「解α1、α2、α3、...、αmの置き換え」ではなく、ただひとつの「Vの置き換え」だけを考えればいいことになります

これと、解の置き換えの必要条件「解の置き換えをおこなったとき、解は、共役元のどれかに移らなければならない」を合わせると、「解の置き換え方の可能な全パターン」とは、「Vから、Vの共役への置き換えのうちで、可能なものすべて」となります

そして補題4(Vの共役)は、「Vの(共役への)置き換え」をすると、もとの多項式f(x)の根α1、α2、α3、...、αmの間の置き換えが発生するという性質を述べています。つまり「Vの置き換え」によって「方程式f(x)=0の解の、可能な置き換えが実現される」わけです。

この考えにもとづいて「解の置き換えの群」を定義しているのが、定理1(≪方程式ガロア群≫の定義)の説明の途中の、10.4.4節「ガロア群の作り方」です。

(ガロアは正規拡大の場合にだけ「解の置き換えの群」を定義したので、正規拡大のときの「解の置き換えの群」を「ガロア群」と呼びます)

体と群の対応関係証明する

前節で、証明のかなめとなるVと「解の置き換えの群」が定義されました。Vの最小多項式fV(x)の次数をnとすると、次が成り立ちます(最小多項式は既約で、既約多項式は重根を持たないので、Vの共役の個数は最小多項式の次数nと一致することに注意する)。

  • K(α1、α2、α3、...、αm) = K(V) の拡大次数はnである
  • (Vの共役はちょうどn個あるので)「解の置き換え方の可能な全パターン」の個数は、n以下である

※1 考えている体K(V)に含まれない数へのVの置き換えは「解の置き換え」には認められないので、「解の置き換え方の個数」と「共役の個数」は一致するとは限りません。

※2 「最小多項式」は8.2.8節「Q(√2+√3)/Q」と8.2.9節「最小多項式」で説明されていますが、最小多項式が既約であることと一意に決まること(8.2.9節p.282)は、定義(可約と既約)と補題1(既約多項式性質)から証明されます

そして、

  • K(V) (=K(α1、α2、α3、...、αm) ) が正規拡大の場合、「解の置き換え方の全パターン」は、ちょうどn個ある(なぜなら、正規拡大ではVの共役がすべてK(V)に入っているため、VからVのどの共役への置き換えも「解の置き換え」として認められるので)。

したがって正規拡大のときには、

  • K(α1、α2、α3、...、αm)の拡大次数 = 「解の置き換えの群」の要素数 = n

という等式が成り立ちます。この関係が「体と群の対応」の第一歩目になります

このとき(つまり正規拡大のとき)、

が成り立ちます。実のところこの性質1と性質2は

  • ≪体の塔≫と≪群の塔≫の一番下の段が、互いに対応している

ことを主張しています

そして定理2(≪方程式ガロア群≫の縮小)と定理4(縮小したガロア群の性質)で、

  • ≪体の塔≫と≪群の塔≫の中間の段が、互いに対応している

ことを主張しています

定理3(補助方程式のすべての根を添加)と定理4で、

ことを主張しています

このように定理1、定理2、定理3、定理4によって、体と群の対応が示されます

定理5(方程式代数的に解ける必要十分条件)に進む

方程式代数的に(つまり冪乗根によって)解けるかという問題は

と言い換えられます。そして、

  • 「1の原始p乗根が最初から係数体Kの元にあるとする」(p.403)と、Kに冪乗根「p√a」を添加したK(p√a)は、Kの正規拡大になる

ので、「適切な冪乗根が存在するか」という問題は「適切な正規拡大が存在するか」という問題になり、体と群の対応により

という問題になります。この「適切な正規部分群があるかどうか」をもっと詳しく正確に述べたのが定理5です。

まとめ

まとめると、第10章の流れは次のようになっています

  1. 補題1(既約多項式性質)
  2. 補題2(根で作るV)、補題3(Vを根で表す)
    • すべての根α1、α2、α3、...、αmの添加を、ただひとつの要素Vの添加に帰着させる。
  3. 定理1の説明(10.4.4「ガロア群の作り方」) + 補題4(Vの共役)
    • (添加したVを使って)ガロア群(「解の置き換えの群」)を定義する。
  4. 定理1(≪方程式ガロア群≫の定義)、定理2(≪方程式ガロア群≫の縮小)、定理3(補助方程式のすべての根の添加)、定理4(縮小したガロア群の性質)
  5. 定理5(方程式代数的に解ける必要十分条件)

それでは改めて第10章を読んでいきましょう。



(追記: 数式の間違いの指摘ありがとうございます。訂正しました)

 
ログイン ユーザー登録
ようこそ ゲスト さん