2020-09-02

anond:20200827182934

ユークリッド幾何学学校で教える必要がある

公理から初めて論述によって命題を示すという手法現代数学の基本

代数微分積分などは計算だけできれば解けてしまうが

ユークリッド幾何学では厳密な論証を学ぶことができる

公理から論述命題を示す手法現代数学の基本であって

もしユークリッド幾何学を学ばなければ抽象代数学などが理解できなくなることは明らか

現代数学である群論ガロア理論公理から初めて命題を導く

微分積分などだけを教えていると群論ガロア理論などが理解できなくなってしま

ガロア理論では作図が主に扱われるからユークリッド幾何学応用になっている

から元増田の役に立たない論は明らかに間違い

ユークリッド幾何学はまず中初等教育において論述を教える題材として適している

代数などはただの計算であって厳密ではないがユークリッド幾何学公理から始めて曖昧さな命題を示す

これは現代数学の基本であって群論ガロア理論を学ぶ際に必要能力

代数では多項式とは?集合とは?などが厳密に説明されていないがユークリッド幾何学には曖昧さは無い

ユークリッド幾何学が扱う題材は図形であって初等教育にも馴染みやす

現代数学を厳密に展開するには公理集合論まで遡らねばならないが

ユークリッド幾何学公理中学生でも理解できて完全

このような条件を満たす単元は他には無い

群論ガロア理論などの抽象代数学はユークリッド幾何学の考えを継承している

これらが確立されたのは18世紀であり微分積分などはそれよりも大分昔の理論から厳密性がない

ユークリッド幾何学現代数学モデルであるから論述を教えることができる

群論ガロア理論対称性を扱う数学対称性とは回転や相似変換などの一般化だから

やはりユークリッド幾何学を学ぶことは群論ガロア理論を学ぶことに役立つ

特に群論では、群の正規群(特異点を持たない群)による商で対称性を分類する

この割り算にはユークリッドの互除法アルゴリズムを用いることができるからユークリッド幾何学の応用になっている

群論の一部であるリー群ではユークリッド空間の回転である直交群を扱うからこれもユークリッド幾何学が直接役に立つ

ユークリッド幾何学では公理から始めて命題証明するがこれは現代数学の基本

群論ガロア理論もこのスタイル継承していてユークリッド幾何学を学ばないと抽象代数学が理解できない

ガロア理論ユークリッド幾何学と同様に、対称性公理から作図可能性を論ずる

これはいくつかの公理から始めて可能な手順の組み合わせを厳密に論述することで様々な図形を作図していく

ヒルベルト提唱した円積問題などもこの応用であって、現代数学において極めて重要

ユークリッド幾何学公理から始めて論述のみによって命題証明する

これは現代数学の基本であってガロア理論ヒルベルト理論などがその手法を受け継いでいる

これは現代数学において極めて重要

代数微分積分はただの計算であって論述を教えていないか

ユークリッド幾何学をやらないと抽象代数学などを理解できなくなってしま

ガロア理論は作図を扱うからユークリッド幾何学知識必須

代数などでは計算しかやらず概念定義曖昧だがユークリッド幾何学論述には曖昧さが一切無く

ユークリッド幾何学は図形を扱うから中高生にも理解やす

初等教育論述を教える題材として適しており他にこのような条件を満たす題材は無い

記事への反応 -
  • ここでいう「ユークリッド幾何学」とは、座標空間、ベクトル、三角関数、微分積分などの解析的手法を用いないいわゆる総合幾何学のことです(*1)。2020年8月現在の高校数学のカリキュ...

    • ユークリッド幾何学は学校で教える必要がある 公理から初めて論述によって命題を示すという手法は現代数学の基本 代数や微分積分などは計算だけできれば解けてしまうが ユークリッ...

    • これは常識で考えても分かると思います。

    • 公準などから出発して厳密にやる幾何は不要(中高大学すべて) 中高でどこまでやるか(不要も含め)、の議論になってると思うんですけど 中学で座標、方程式や三角関数を使わない...

    • 実際未だにユークリッドによるユークリッド幾何学をやってるのは日本くらいなのでは? ユークリッド幾何学という大きな括りで言えば、アメリカの中学はBirkhoff's axiomsによるユークリ...

      • 定規と分度器で各公理を実験できるBirkhoff's axiomsが座標を使った幾何学より直感的ということにはあまり異存はないでしょう Birkhoff's axioms方式を推奨されてるようなので質問します 面...

    • 現行のカリキュラムやるくらいなら数Aは丸々いらないまである データの分析と統計もいらん 中高の数学は広く浅くやりすぎ 大学以降の数学やる上で身にならない ベクトルだとか行列...

      • 高校数学の解析は言うて完成度高いから変えなくていい 曖昧にされてるのは極限の定義、中間値、平均値、極限の準同型性の証明くらいのもんで、どれも十分直感的には明らかだし

      • でも文系だと大学入ってからいきなり統計を詰め込まれるのがつらいって話もあるからなあ 理系だと基本的な数学力高いから高校でやってない部分もなんとかできる人が多いみたいなの...

    • 行列を一次変換まで教えていた  数学Ⅰ 数学ⅡB 数学Ⅲの最後の10年  基礎解析 代数幾何などの世代 この20年間が高校数学指導要領のベスト この後のABCとかになってから高校教育...

    • 数学の記述としては座標系を入れないのは不自然というのは同意するよ 一旦入れた後で取り払って公理系を作ったりしないといけないのだろうし ただ、数学の自然な記述が人間の原始...

      • 国民一般(中学、高校)向け数学教育、教科としての数学は、 一般教養として数学の応用価値と実用性(算術、数式、図形)の観点を 学ぶことを重視すべきだろうけど、 ある意味それ...

        • 全くその通りで、だからアメリカなどはユークリッド幾何学の公理を洗練させてその元で論証を行う だからそれを否定する人が日本の数学徒に多いとしたら、それは日本の数学の教育が...

    • 「ユークリッド距離」という理論上も実用上も重要な概念が、 教科としての数学の一単元(「図形」に関する半ば物理学の単元) として、人類が理解し納得するために、  「ユークリ...

      • 何ゆうちょるんかさっぱわからんちん。。w

      • 横だけど、ユークリッド距離という概念はベクトルのノルムとして理解したら良くて、技巧的な図形問題を解けるようになる必要はないって主張でしょ 図形パズルで遊ぶよりベクトルの...

    • 180とか360って中途半端だから、円を1000度として、半円を500度でいいじゃん。といったらどうする?

      • ちなみに180というのは2パイ ぱいぱいであるが 4*90というのは4*3*3*10でもある。

    • 易経とニーモック表を小学生に教えちゃえばいいんだよ。 個人的には小学生の時点で詭弁論理学逆説論理学が一人で読める地頭がある子供に 中学上がる冬休みにゲーデルエッシャーバ...

      • 同意 現代数学のルーツがガロア理論にあることは間違いないが中学で作図などを教えたら 飛び級入学を許して、ゲーデルの不完全性定理やラッセルの論理学などどんどん読み進めるのが...

    • ユークリッド幾何学不要派のような知識だけを得て万能感に浸っているのは愚者だと思う ガロアによる方程式の不可解性定理や作図不可能性定理、ゲーデルの不完全性定理などにより 知...

記事への反応(ブックマークコメント)

ログイン ユーザー登録
ようこそ ゲスト さん