はてなキーワード: 関数とは
2. モジュラスの計算: N = p * q
3. オイラーのトーシェント関数: φ(N) = (p-1)(q-1) を計算する。
4. 公開鍵と秘密鍵の生成: 公開鍵は (N, e) であり、e は gcd(e, φ(N)) = 1 を満たす整数である。秘密鍵は d であり、d * e ≡ 1 (mod φ(N)) を満たす。
RSA暗号の安全性は、合成数 N の素因数分解が計算的に困難であることに依存している。具体的には、次の問題が考えられる:
N = p * q
ショアのアルゴリズムは、量子コンピュータ上で動作する効率的な素因数分解アルゴリズムである。以下にその主要なステップを示す。
任意の整数 a を選択し、N に対して次の条件を満たすことを確認する:
整数 a の順序 r を求める。順序とは、次の条件を満たす最小の整数である:
a^r ≡ 1 (mod N)
量子フーリエ変換は、状態ベクトルを重ね合わせて次のように表現される:
|x⟩ = Σ(k=0 to N-1) |k⟩
ここで、量子フーリエ変換を適用することで周期性に関する情報が得られる。具体的には、
QFT |x⟩ = (1/√N) Σ(j=0 to N-1) Σ(k=0 to N-1) e^(2πi jk / N) |j⟩
得られた状態から測定を行うことで周期情報が得られる。この周期情報を用いて次の式を考える:
x = a^(r/2) - 1
y = a^(r/2) + 1
これらが非自明な因子である場合、p と q を次のように計算できる:
p = gcd(x, N)
q = gcd(y, N)
ショアのアルゴリズムは確率的であり、成功率は高いものの100%ではない。そのため、誤り訂正技術や複数回実行することで成功確率を向上させる必要がある。
まず、超弦理論におけるランドスケープ空間を高次元多様体 M と仮定し、その点 v ∈ M が観測可能な物理的真空状態を定める。
各真空 v には物理的パラメータベクトル λ(v) ∈ R^n が付随し、宇宙の諸定数および構造(カラビ-ヤウ多様体の形状、膜の巻き込みパラメータ等)を特徴づける。
人間原理によって、観測者の存在が可能となる真空状態を唯一選択することを数学的に表現するため、次のような制約集合を定義する:
M_H = { v ∈ M | Φ(λ(v)) = 0 },
ここで、Φ: R^n → R は観測者の存在に必要な物理的条件を反映する制約関数である。
したがって、Φ(λ(v)) = 0 なる条件を満たす v が人間原理に適合する唯一の状態とみなされる。
ランドスケープ空間 M 内において、制約集合 M_H ⊆ M の構造が重要である。
ここで、M_H が単一の点 v_* に収束する場合、人間原理は確率的ではなく決定論的に唯一の宇宙 v_* を選択する。
この一意性は次の数理的要請によって確保される:
1. 収束の一意性:制約集合 M_H が単一の極大成分 {v_*} を含む。
2. 位相的閉性:M_H がランドスケープ空間 M において位相的に閉であること。
このような位相的構造を持つことで、観測者の存在条件はランドスケープ全体における唯一の解 v_* を定めることができ、これによって観測可能な宇宙が一意に決まる。
ランドスケープ空間 M 内で観測者存在可能な真空状態が唯一の解 v_* に収束することを示すため、制約充足問題として以下の条件を考える:
∃ ! v_* ∈ M such that Φ(λ(v_*)) = 0.
この解の一意性条件に基づき、ランドスケープ空間上で観測者の存在可能な真空が他にないことを保障する。さらに、制約充足の観点から、Φ がランドスケープ空間において単調減少的または収束的性質を持つと仮定することにより、真空状態が唯一の極小点に収束し、ランドスケープの大規模な空間が人間原理の下で自動的に一意の宇宙 v_* へと選ばれる。
このようにして、ランドスケープ空間 M は観測者存在の制約 Φ(λ(v)) = 0 によって一意の真空 v_* を選択することができる。
この解は確率論を伴わずに、人間原理が自然に一意な観測可能な宇宙 v_* のみを選択するという決定論的なモデルを提供する。
このモデルでは、ランドスケープの可能な多様性が、観測者の存在条件という数学的制約により唯一の解へと集約される構造を持つ。
RSA暗号は、代数的構造、特に合同算術および整数環における準同型写像を用いた公開鍵暗号である。
RSAの安全性は、環の自己同型写像の一方向性と、有限生成群の元の分解が困難であることに基づいている。
この暗号方式は整数環 Z/NZ(N = p・q)上の準同型写像の一方向性を活用する。
まず、RSAにおける鍵生成は、代数的に以下のように構築される:
互いに素な大きな素数 p および q を選び、合成数 N = p・q を作成する。
これにより、商環 Z/NZ が定義される。ここで、N はRSAにおける「モジュラス」として機能する。
この商環は、全体として単位的な環であり、RSA暗号の計算基盤となる。
オイラーのトーシェント関数 φ(N) を次のように計算する:
φ(N) = (p - 1)(q - 1)
これは環 Z/NZ の単数群 (Z/NZ)* の位数を表し、RSAの準同型構造における指数の計算に用いられる。
単数群 (Z/NZ)* は、φ(N) を位数とする巡回群であり、一般に生成元 g ∈ (Z/NZ)* を持つ。
RSAでは、この群の生成元から得られる公開指数 e は、φ(N) と互いに素な整数として選ばれる。公開指数 e はRSAの「公開鍵指数」となる。
e・d ≡ 1 (mod φ(N))
これは、e に対する逆元 d の存在を保証し、秘密指数として機能する。ここで d はユークリッド互除法により効率的に求められる。
以上により、公開鍵 (N, e) と秘密鍵 (N, d) が生成される。これらの鍵は、合同算術と商環上の準同型写像によって定義される。
RSA暗号は、モジュラー演算によるべき乗写像を使用した暗号化および復号過程である。この操作は、(Z/NZ)* 上の自己同型写像に基づいている。
任意のメッセージ M ∈ Z/NZ に対し、公開鍵 (N, e) を用いて次の準同型写像を作用させる:
C = σ(M) = M^e (mod N)
ここで σ: M → M^e は (Z/NZ)* の自己同型写像として作用し、得られた C は暗号文となる。
この写像はモジュラ指数写像として同型写像であるが、一方向的であるため暗号化に適している。
暗号文 C を受け取った受信者は、秘密指数 d を用いて復号を行う。具体的には次のように計算する:
M = C^d (mod N) = (M^e)^d (mod N) = M^(e・d) (mod N)
ここで e・d ≡ 1 (mod φ(N)) であるため、e・d = kφ(N) + 1(整数 k)と表すことができ、したがって
M^(e・d) = M^(kφ(N) + 1) = (M^(φ(N)))^k・M ≡ 1^k・M ≡ M (mod N)
により、元のメッセージ M を復元することができる。ここでオイラーの定理に基づき、(M^(φ(N))) ≡ 1 (mod N) が成り立つため、この復号化が成立する。
RSA暗号は、Z/NZ の構成において N = p・q の因数分解が困難であることを仮定する。
合成数 N の素因数分解問題は、現在の計算アルゴリズムにおいて指数時間に近い計算量が必要であり、代数的には解読が非常に難しい問題であるとされる。
RSA暗号における暗号化は群の自己同型写像によって構成されるが、逆写像を求めることは一般に困難である。
これはRSAの一方向性を保証し、現実的に解読不可能な構造を形成している。
RSA暗号の解読は逆写像としてのべき乗の逆操作を計算することに相当し、これを効率的に解決する手段が存在しないことが安全性の根拠となる。
RSA暗号の構造は合同算術に基づく準同型性を有し、M → M^e (mod N) というモジュラ指数写像によりメッセージ空間上の一対一対応を実現する。
この準同型性により計算効率が保証されつつも一方向性を持ち、安全な暗号化が可能である。
以上より、RSA暗号は合同算術、準同型写像、群の生成元と逆元の難解さに基づく暗号であり計算量理論と抽象代数からその安全性が保証されている。
RSA暗号の解読可能性は準同型写像の逆像を効率的に求める方法が存在しないことに基づいており数学的にはこの逆像問題の困難性がRSA安全性を支えているといえる。
M理論は、弦理論の進化形であり、最終理論の候補として位置づけられている。
特に、M理論は11次元の時空を基盤としており、5種類の超弦理論がこの11次元時空で統合される特性を持つ。
これらの理論には、M2膜と呼ばれる2次元膜や、M5膜と呼ばれる5次元膜が含まれる。
M2膜とM5膜上の場の理論の自由度は、それぞれ膜の枚数 N に依存し、具体的には:
この関係は、特に行列模型の解析において重要であり、自由エネルギーの評価にも影響を与える。例えば、M2膜の場合、自由エネルギー F は次のように表される:
F ∝ N^(3/2)
ABJM理論は、M2膜を記述するための3次元理論であり、超対称チャーン・サイモンズ理論を基盤としている。
この理論では行列模型が用いられ、分配関数の計算が行われる。ABJM行列模型における分配関数 Z は以下の形をとる:
Z = ∫ ∏(i=1 to N) dμ_i ∏(j=1 to N) dν_j (∏(i < j) sinh^2((μ_i - μ_j)/2) sinh^2((ν_i - ν_j)/2)) / (∏(i,j) cosh((μ_i - ν_j)/2))
さらに、インスタントン効果と呼ばれる非摂動的な効果にも焦点が当てられている。
これらは膜インスタントンと弦インスタントンとして分類され、特定のパラメータ空間で発散が相殺されることが示されている。
膜インスタントンと弦インスタントンの寄与は次のように表される:
e^(-S_膜) + e^(-S_弦)
- 6次元のAモデルとBモデル(トポロジカルストリング理論)。
- Ω = ρ + i · ŕ
- V_S(σ) = ∫_M √(384^{-1} · σ^{a₁a₂b₁b₂}σ^{a₃a₄b₃b₄}σ^{a₅a₆b₅b₆} · ε_{a₁a₂a₃a₄a₅a₆} · ε_{b₁b₂b₃b₄b₅b₆})
- ここで、ε_{a₁...a₆} は6次元のレヴィ・チヴィタテンソルです。
- V₇(Φ) = ∫_X √(det(B))
- ここで、計量 g は次のように3-フォーム Φ から導かれます:
- g_{ij} = B_{ij} · det(B)^{-1/9}
- B_{jk} = - (1/144) Φ^{ji₁i₂} Φ^{ki₃i₄} Φ^{i₅i₆i₇} ε_{i₁...i₇}
- V₇(G) = ∫_X G ∧ *G
【注意喚起】電ホビのサイトで「日本語表記がおかしい」「中国語から日本語への翻訳を確認される」などのケースについて | 電撃ホビーウェブ
https://b.hatena.ne.jp/entry/s/hobby.dengeki.com/news/2378448/
WordPressでHTMLタグの中のlang=""が空になってしまう原因は、通常、サイトの言語設定が正しく指定されていないか、テーマやプラグインの不具合によるものです。
以下の要因が考えられます。
WordPress管理画面の「設定」→「一般」メニューで、サイトの言語を確認してください。ここで言語が正しく設定されていない場合、lang=""が空白のままになることがあります。
使用しているテーマがlang属性を正しく出力していない可能性があります。特にカスタムテーマや古いテーマを使用している場合、テーマファイル内のheader.phpで言語属性が正しく設定されているか確認する必要があります。例えば、<html lang="<?php language_attributes(); ?>">のようにlanguage_attributes()関数を使用していることが推奨されます。
特定のプラグインがWordPressの言語設定に影響を与えている場合も考えられます。特に多言語対応プラグイン(WPML、Polylangなど)が正しく動作していない場合、lang属性が空になることがあります。一度プラグインを無効化して、問題が解決するかどうか確認してください。
キャッシュが原因で、言語設定の変更が反映されないこともあります。キャッシュプラグインを使っている場合、キャッシュのクリアを行ってみてください。
正社員で事務職、新卒で入った会社から続けている。隣の席には、中途で入った一回り年上の女性職員がいる。
うちの部署はデータを取り扱うことが多く、エクセルは必須なのだが、彼女はエクセルが非常に苦手である。
SUM関数と四則演算がせいぜいで、他の関数は全く使えない。覚える気もない。
でも、平成ギャルの心を20年ほど続けているおかげで、コミュニケーションが得意で、自我が強く、主張が激しい。
対して私は、コミュニケーションより関数を組む方が楽しく、かつ部署内では一番得意だ。
女としては大失敗である。
部長未満の管理職の方々とはうまくやっているが、ボーナスのランクづけを決めるのは部長なので、おそらく彼女の方が上だろうな。
愛嬌で上の人に取り入るなんて昔から苦手だったから今更気にしないが、悲しい気持ちはずっとある。
おしゃべりしているだけじゃデータの処理は終わらないんですよ…
1年以上もChatGPTをプログラミングに使ってて定義もできない定義した関数も呼び出せない初心者なんてあり得るか?
ChatGPTのコーディング性能で?
内容なんて聞いてないんだよ
誰の話?
この文章の著者は、ChatGPTを1年以上プログラミングに使用しているにもかかわらず、基本的なプログラミングスキル(関数の定義や呼び出し)を習得できていない人がいることに対して懐疑的な見解を示しています。著者の主張は以下のようにまとめられます:
・ChatGPTの性能を考えると、それを1年以上使用してもプログラミングの基本が理解できないのは考えにくい。
・ChatGPTに「0から100まで頼り切る」(すべてを依存する)のは現実的ではない。
・もし本当にそのような人がいるとすれば、その人はAIツールの使用に関して特殊な才能を持っているのではないか、という皮肉めいた指摘。
著者は、プログラミング学習においてAIツールを使用することは有用であるが、それだけでは不十分であり、ユーザー自身の理解と努力も必要だと示唆しています。また、長期間AIを使用しても基本的なスキルが身につかないのは、AIの使い方に問題があるか、あるいは学習への取り組み方に課題があるのではないかと暗に批判しています。
計算機科学は、情報の理論的基盤から実用的な応用まで、広範な領域をカバーする学問です。以下に、計算機科学の主要な分野と、特にネットワークに関連するトピックを体系的にまとめます。
プログラミングパラダイム: 手続き型、オブジェクト指向、関数型、論理型など。
プロセス管理: CPUのスケジューリングとマルチタスキング。
機械学習アルゴリズム: 教師あり学習、教師なし学習、強化学習。
深層学習: ニューラルネットワークによる高度なパターン認識。
ネットワークは、情報の共有と通信を可能にする計算機科学の核心的な分野です。
OSI参照モデル: ネットワーク通信を7つのレイヤーに分割し、それぞれの機能を定義。
プレゼンテーション層: データ形式の変換。
アプリケーション層: ユーザーアプリケーションが使用するプロトコル。
TCP/IPモデル: 現実のインターネットで使用される4層モデル。
リング型: 各ノードが一方向または双方向に隣接ノードと接続。
IP(Internet Protocol): データのパケット化とアドレッシング。
TCP(Transmission Control Protocol): 信頼性のある通信を提供。
UDP(User Datagram Protocol): 信頼性よりも速度を重視した通信。
ルーター: 異なるネットワーク間のパケット転送とルーティング。
IDS/IPS(侵入検知/防止システム): ネットワーク攻撃の検出と防御。
VPN(仮想プライベートネットワーク): 安全なリモートアクセスを提供。
SDN(Software-Defined Networking): ネットワークの柔軟な管理と制御。
IoTプロトコル: MQTT、CoAPなどの軽量プロトコル。
SNMP(Simple Network Management Protocol): ネットワークデバイスの管理。
ネットワークトラフィック分析: パフォーマンスとセキュリティの最適化。
ネットワークオーケストレーション: 自動化された設定と管理。
AIによるトラフィック最適化: パフォーマンスの向上と障害予測。
マイクロセグメンテーション: ネットワーク内部の細かなアクセス制御。
『コンピュータネットワーク』 アンドリュー・S・タネンバウム著
『ネットワークはなぜつながるのか』 戸根勤著
Coursera: 「コンピュータネットワーク」、「ネットワークセキュリティ」コース
edX: 「Computer Networking」、「Cybersecurity Fundamentals」
IETF(Internet Engineering Task Force): ietf.org
IEEE Communications Society: comsoc.org
W3C(World Wide Web Consortium): w3.org
消費者集合:N = {1, 2, ..., n}
消費ベクトル:各消費者 i の消費ベクトルを X_i ∈ X_i ⊆ ℝ^(k_i) とする。
個人効用は自分の消費 X_i と政府支出の使用用途 G に依存する。
税収:T ∈ ℝ_+
国債発行額:B ∈ ℝ_+
政府支出の配分:G = (G_1, G_2, ..., G_m) ∈ G ⊆ ℝ_+^m
政策空間:P = { (T, B, G) ∈ ℝ_+ × ℝ_+ × G }
予算制約:
Σ_(j=1)^m G_j = T + B
可処分所得:消費者 i の可処分所得 Y_i は、所得税 t_i によって決まる。
Y_i = Y_i^0 - t_i
T = Σ_(i=1)^n t_i
p_i · X_i ≤ Y_i
目的:政府は社会的厚生 W を最大化するために、以下の政策変数を決定する。
国債発行額 B
政府支出の配分 G = (G_1, G_2, ..., G_m)
制約:
消費者の最適化:政府の政策 (t_i, G) を所与として、各消費者 i は効用を最大化する。
最大化 U_i(X_i, G)
X_i ∈ X_i
制約条件:p_i · X_i ≤ Y_i
結果:各消費者の最適な消費選択 X_i*(G) が決定される。
W(U_1, U_2, ..., U_n) は個々の効用を社会的厚生に集約する。
合成関数:
W(U_1(X_1*(G)), ..., U_n(X_n*(G)))
最大化 W(U_1(X_1*(G)), ..., U_n(X_n*(G)))
{ t_i }, B, G
制約条件:
Σ_(j=1)^m G_j = Σ_(i=1)^n t_i + B
t_i ≥ 0 ∀i, B ≥ 0, G_j ≥ 0 ∀j
X_i*(G) = arg max { U_i(X_i, G) | p_i · X_i ≤ Y_i } ∀i
X_i ∈ X_i
政府の役割:公共財の配分 G と税制 { t_i } を決定する。
消費者の反応:消費者は政府の決定を受けて、最適な消費 X_i*(G) を選択する。
(b) 力学系の特徴
スタックルベルクゲーム:政府(リーダー)と消費者(フォロワー)の間の戦略的相互作用。
最適反応関数:消費者の最適な消費行動は政府の政策に依存する。
(c) 一階条件の導出
L = W(U_1(X_1*), ..., U_n(X_n*)) - λ ( Σ_(j=1)^m G_j - Σ_(i=1)^n t_i - B ) - Σ_(i=1)^n μ_i (p_i · X_i* - Y_i)
微分:政策変数 t_i, B, G_j に関する一階条件を計算する。
チェーンルール:消費者の最適反応 X_i* が G に依存するため、微分時に考慮する。
(a) 公共財の種類
公共財ベクトル:G = (G_1, G_2, ..., G_m)
例えば、教育 G_edu、医療 G_health、インフラ G_infra など。
U_i(X_i, G) = U_i(X_i, G_1, G_2, ..., G_m)
各公共財 G_j が個人効用にどのように影響するかをモデル化。
将来への影響:国債発行は将来の税負担に影響するため、長期的な視点が必要。
制約:債務の持続可能性に関する制約をモデルに組み込むことも可能。
(c) 公共財の最適配分
優先順位の決定:社会的厚生を最大化するための公共財への投資配分。
政府の決定問題:消費者の反応を予測しつつ、最適な { t_i }, B, G を決定。
情報の非対称性:消費者の選好や行動に関する情報を完全に知っていると仮定。
消費者の行動:政府の政策を所与として、効用最大化問題を解く。
結果のフィードバック:消費者の選択が社会的厚生に影響し、それが政府の次の政策決定に反映される可能性。
(a) モデルの意義
包括的な政策分析:政府の税制、国債発行、公共財の使用用途を統合的にモデル化。
最適な税制と支出配分:社会的厚生を最大化するための政策設計の指針。
一般性の確保:特定の経済状況やパラメータに依存しないモデル。
政府は、税制 { t_i }、国債発行額 B、そして公共財の配分 G を戦略的に決定することで、消費者の効用 U_i を最大化し、社会的厚生 W を高めることができる。
このモデルでは、政府の政策決定と消費者の消費行動という2つのステップの力学系を考慮し、公共財の使用用途も組み込んでいる。