「トポス」を含む日記 RSS

はてなキーワード: トポスとは

2024-11-22

とうとうかっちゃった

フレーム, シートポスト,サドル, ハンドル, ステム, フォークが全部カーボンなのに

ホイールもCにしていい??

タイヤも買わなきゃ。今度こそパナレースに!

チューブ井上一択

2024-11-12

カーボンホイール前後セットで45000円か?

ハンドルフォーク+ステム+フレーム+シートポスト+サドル=36,000円

こっちより高いんだな。

Elvesのフレームセットが15万円で、ホイールセットが14万円くらいっていう話きいたことある

これならコンパ( ^ω^)・・・

2024-09-29

anond:20240929050427

目標:与えられた高度な数学概念(高次トポス理論、(∞,1)-カテゴリー、L∞-代数など)をフルに活用して、三平方の定理程度の簡単定理証明します。

定理1次元トーラス上の閉曲線のホモトピー類は整数と一対一に対応する

背景:

高次トポス理論ホモトピー論を高次元一般化し、空間位相構造抽象的に扱うための枠組み。

(∞,1)-カテゴリー対象と射だけでなく、高次の同値ホモトピー)を持つカテゴリー

L∞-代数リー代数の高次元一般化であり、物理学微分幾何学対称性や保存量を記述する。

証明

1次元トーラス T¹ の構成

トーラス

𝑇

1

T

1

は、円周

𝑆

1

S

1

同値であり、単位区間

[

,

1

]

[0,1] の両端を同一視して得られる。

(∞,1)-トポスにおけるトーラスの解釈

𝑇

1

T

1

を高次トポス理論の枠組みで扱うために、位相空間ホモトピータイプとして考える。

これは、1つの0次元セルと1つの1次元セルを持つCW複体としてモデル化できる。

閉曲線のホモトピー類:

𝑇

1

T

1

上の閉曲線は、連続写像

𝛾

:

𝑆

1

𝑇

1

γ:S

1

→T

1

で表される。

2つの閉曲線

𝛾

1

,

𝛾

2

γ

1

2

ホモトピックであるとは、ある連続変形(ホモトピー)によって互いに移り合うことを意味する。

基本群の計算

トーラス

𝑇

1

T

1

の基本群

𝜋

1

(

𝑇

1

)

π

1

(T

1

) は整数全体のなす加法

𝑍

Z と同型である

これは、高次トポス理論においても同様であり、(∞,1)-カテゴリーにおける自己同型射として解釈できる。

ホモトピー類と整数対応

各閉曲線

𝛾

γ に対し、そのホモトピー類は整数

𝑛

n(トーラスを巻く回数)に対応する。

この対応は、ホモトピータイプ理論(HoTT)の基礎に基づいて厳密に定式化できる。

L∞-代数による解釈

円周

𝑆

1

S

1

ループ空間のL∞-代数構造を考えると、ホモトピー類の加法性質代数的に記述できる。

まり、2つの曲線の合成に対応するホモトピー類は、それらの巻数の和に対応する。

結論

高次トポス理論とL∞-代数の枠組みを用いることで、

𝑇

1

T

1

上の閉曲線のホモトピー類が整数と一対一に対応することを証明した。

解説

この証明では、与えられた高度な数学概念を用いて、基本的トポロジーの結果を導き出しました。具体的には、トーラス上の閉曲線の分類というシンプル問題を、高次トポス理論とL∞-代数を使って厳密に定式化し、証明しました。

高次トポス理論は、空間ホモトピー性質を扱うのに適しており、基本群の概念一般化できます

(∞,1)-カテゴリー言葉で基本群を考えると、対象自己同型射のホモトピー類として理解できます

L∞-代数を使うことで、ホモトピー類の代数構造を詳細に記述できます

まとめ:

このように、高度な数学的枠組みを用いて、基本的定理を新たな視点から証明することができます。これにより、既存数学的知見を深めるだけでなく、新たな一般化や応用の可能性も見えてきます

俺の感想

三平方の定理程度の簡単定理?????????????????????????????????

2024-09-25

シーブの迷宮

「シーブの迷宮」と呼ばれる不思議空間がある。この迷宮トポス概念を基に作られており、以下のルール適用される:

1. 迷宮には複数の部屋があり、各部屋には真理値(真または偽)が割り当てられている。

2. 部屋間の通路は射として機能し、真理値を変換する。

3. 通路を通過するたびに、真理値は反転する可能性がある。

4. 迷宮全体で成り立つ「大域的な整合性」が存在する。

 

パズル

迷宮には5つの部屋(A, B, C, D, E)があり、以下の情報が与えられている:

 

質問

1. 部屋Eの真理値は何か?

2. この迷宮システム矛盾はあるか?あるとすれば、どこに矛盾があるか?

 

回答:

1. 部屋Eの真理値:偽

2. このシステムには矛盾がある。

 

説明

1. A(真) → B(偽) → C(偽) → D(真) → E(真)

これにより、AからEへの長い経路では、Eは「真」となる。

2. しかし、AからEへの直接の通路では真理値が反転するため、

A(真) → E(偽) となるはずである

3. この矛盾は、トポス重要概念である圏論整合性」に違反している。

すべての経路(射の合成)が同じ結果をもたらすべきだが、この場合そうなっていない。

4. この矛盾解決するには、いずれかの通路性質を変更するか、

または「大域的な整合性」を保つための新たなルールを導入する必要がある。

2024-09-24

"It from bit"の定式化

ジョン・ホイーラーの "it from bit" 仮説の数学的定式化を行う。

まず、圏論的基礎として量子情報圏 Q を定義する。Q の対象は完備von Neumann代数であり、射は完全正写像である。次に、古典情報圏 C を定義する。C の対象は可測空間であり、射は確率である

量子-古典対応表現するために、量子-古典関手 F: Q → C を導入する。この関手は量子系の観測過程表現する。

情報理論構造を捉えるために、エントロピー関手 S: Q → Vec を定義する。ここで Vec は実ベクトル空間の圏である。S(A) = (S_von(A), S_linear(A), S_max(A)) と定義し、S_von はvon Neumannエントロピー、S_linear は線形エントロピー、S_max は最大エントロピーを表す。

トポス理論解釈として、量子論トポス T を構築する。T の対象は量子命題の束であり、部分対象分類子 Ω は量子確率値を取る。

"It from Bit" の数学的定式化として、以下の定理提示する:

定理 1 (It from Bit): 任意の量子系 A ∈ Ob(Q) に対して、以下が成り立つ:

∃ {Bi}i∈I ⊂ Ob(C), ∃ {φi: F(A) → Bi}i∈I :

A ≅ lim←(Bi, φi)

ここで、≅ は Q における同型を、lim← は逆極限を表す。

証明は以下の手順で行う:

1. A の純粋状態の集合を P(A) とする。

2. 各 p ∈ P(A) に対して、射影測定 Mp: A → C({0,1}) を定義する。

3. {Mp}p∈P(A) から誘導される射 φ: A → ∏p∈P(A) C({0,1}) を構築する。

4. 普遍性により、A ≅ lim←(C({0,1}), πp∘φ) が成り立つ。

ここで πp は積からの射影である

系 1 として、S(A) = lim→ S(F(Bi)) が成り立つ。

この定理と系は、任意の量子系が古典的な二値観測無限の組み合わせとして再構成可能であり、そのエントロピー古典観測エントロピーの極限として表現できることを示している。

一般化として、n-圏 Qn を導入し、高次元量子相関を捉える。予想として、Qn の対象も同様に古典観測の極限として表現可能であると考えられる。

2024-09-21

幾何学ラングランズ・プログラムと M 理論超弦理論関係

幾何学ラングランズ・プログラムと M 理論超弦理論関係を、抽象数学を用いて厳密に数理モデル化する。

1. 基本設定

まず、以下のデータを考える。

2. モジュライスタック

- 𝑋 上の主 𝐺-束の同型類全体からなる代数スタック

- このスタックアルティンスタックであり、代数幾何学的な手法で扱われる。

- 𝑋 上の ᴸ𝐺-局所系(つまり、平坦 ᴸ𝐺-束)の同型類全体のスタック

- これは、基本群 π₁(𝑋) の表現のモジュライスタックと同一視できる。

3. 幾何学ラングランズ対応

幾何学ラングランズ予想は、以下のような圏の同値を主張する。

𝐷ᵇ\_ℎₒₗ(𝐵𝑢𝑛\_𝐺(𝑋)) ≃ 𝐷ᵇ\_𝑐ₒₕ(𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋))

ここで、

  • 𝐷ᵇ\_ℎₒₗ(𝐵𝑢𝑛\_𝐺(𝑋)) は 𝐵𝑢𝑛\_𝐺(𝑋) 上のホロノミック 𝐷-加群有界導来圏。
  • 𝐷ᵇ\_𝑐ₒₕ(𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋)) は 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋) 上の連接層の有界導来圏。

この同値は、フーリエ–ムカイ変換に類似した核関手を用いて構成されると予想されている。

4. 核関手フーリエ–ムカイ変換

関手 𝒫 を 𝐵𝑢𝑛\_𝐺(𝑋) × 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋) 上の適切な対象として定義し、それにより関手

Φ\_𝒫: 𝐷ᵇ\_ℎₒₗ(𝐵𝑢𝑛\_𝐺(𝑋)) → 𝐷ᵇ\_𝑐ₒₕ(𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋))

定義する。この関手は、以下のように具体的に与えられる。

Φ\_𝒫(ℱ) = 𝑅𝑝₂ₓ(𝑝₁∗ ℱ ⊗ᴸ 𝒫)

ここで、

  • 𝑝₁ と 𝑝₂ はそれぞれ射影

𝑝₁: 𝐵𝑢𝑛\_𝐺(𝑋) × 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋) → 𝐵𝑢𝑛\_𝐺(𝑋), 𝑝₂: 𝐵𝑢𝑛\_𝐺(𝑋) × 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋) → 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋)

問題点は、この核 𝒫 を具体的に構成することが難しく、これが幾何学ラングランズ予想の核心的な課題となっている。

5. ヒッチンファイブレーション可積分系

ヒッチン写像を導入する。

ℎ: ℳₕ(𝐺) → 𝒜 = ⨁ᵢ₌₁ʳ 𝐻⁰(𝑋, Ωₓᶦᵈⁱ)

ここで、ℳₕ(𝐺) は 𝐺-ヒッグス束のモジュライ空間、ᶦᵈⁱ は 𝐺 の基本不変式の次数。

完全可積分系: ヒッチンファイブレーション ℎ は完全可積分系定義し、そのリウヴィル可積分性がモジュライ空間のシンプレクティック構造関係する。

6. ミラー対称性ホモロジカルミラー対称性

Kontsevich のホモロジカルミラー対称性予想に基づく。

  • 予想:

𝐷ᵇ\_𝑐ₒₕ(ℳₕ(𝐺)) ≃ 𝐷ᵖⁱ 𝐹ᵘₖ(ℳₕ(ᴸ𝐺))

ここで、

- 𝐷ᵇ\_𝑐ₒₕ は連接層の有界導来圏。

- 𝐷ᵖⁱ 𝐹ᵘₖ はフカヤ圏のコンパクト対象からなる導来圏。

この同値は、ヒッチンファイブレーションを介してシンプレクティック幾何と複素幾何の間の双対性を示唆する。

7. 非可換ホッジ理論

リーニュの非可換ホッジ対応を考える。

𝐷ᵇ(𝐹ₗₐₜ\_𝐺(𝑋)) ≃ 𝐷ᵇ(𝐻ᵢ₉₉ₛ\_𝐺(𝑋))

ここで、

- 𝐹ₗₐₜ\_𝐺(𝑋) は 𝑋 上の平坦 𝐺-束のモジュライスタック

- 𝐻ᵢ₉₉ₛ\_𝐺(𝑋) は 𝑋 上の 𝐺-ヒッグス束のモジュライスタック

作用素:

8. M 理論物理対応

M 理論におけるブレーンの配置:

  • M5 ブレーンを考える。
  • 配置: 11 次元の時空 ℝ¹,¹⁰ において、M5 ブレーンを ℝ¹,³ × Σ × 𝒞 に配置する。ここで、

- ℝ¹,³ は 4 次元の時空。

- Σ は曲線 𝑋。

- 𝒞 はさらコンパクト化された空間

物理的な効果:

9. 高次圏論と ∞-カテゴリー

∞-カテゴリーの枠組みで圏の同値を考える。

Lurie の高次圏論:

10. 総合的な数学モデル

圏論アプローチ:

関手の合成と双対性:

11. 結論

幾何学ラングランズ・プログラムと M 理論超弦理論関係は、以下の数学構造を通じてモデル化される。

これらの数学構造を組み合わせることで、幾何学ラングランズ・プログラムと M 理論超弦理論関係性をモデル化できる。

2024-09-20

数学宇宙仮説の定式化

マックス・テグマーク数学宇宙仮説は、物理的実在数学構造のものであると主張する。これを厳密かつ抽象的な数学の枠組みで表現する。

1. 基礎設定

1.1 数学構造クラス
1.2 物理的実在カテゴリ

2. 数学構造物理的実在関係

2.1 関手定義
2.2 関手性質

3. 数学宇宙仮説の定式化

定義数学宇宙仮説)

数学宇宙仮説は、以下の主張を含む。

1. 存在論同一性Ob(Str) ≅ Ob(Phys) すなわち、数学構造対象物理的実在対象が一対一に対応する。

2. 構造保存性:∀ S₁, S₂ ∈ Str, Mor_{Str}(S₁, S₂) ≅ Mor_{Phys}(F(S₁), F(S₂)) すなわち、数学構造間の射は物理的実在間の射と対応する。

4. トポス理論による高度な抽象

4.1 トポスの導入
4.2 トポス間の同値

5. 論理的側面からアプローチ

5.1 モデル理論適用
5.2 物理法則数学理論の同一視

6. カテゴリ同値の具体的な定式化

6.1 双対性
6.2 アジャント関手存在

7. まとめ

以上の抽象数学的枠組みを用いて、テグマーク数学宇宙仮説を次のように定式化できる。

解説

この定式化では、集合論カテゴリ論、トポス理論モデル理論などの抽象数学を用いて、数学宇宙仮説を表現した。

特に数学構造物理的実在の間の圏同値トポス同値を強調することで、両者が数学的に同一視できることを示している。

また、関手アジャント関手概念を導入することで、数学構造から物理的実在への情報対応関係形式的に捉えている。

これにより、テグマークが主張する「宇宙数学のもの」という考えを抽象数学表現した。

2024-09-18

エレメンタリートポスによるモデル

エレメンタリートポスの枠組みを用いることで、情報存在関係数学的にモデル化できる。このモデルでは、存在トポス対象として、情報をその間の射や、内部論理における命題として表現する。

定義1(圏)

- 対象クラスOb(𝓔)。

- 射の集合:任意対象 A, B ∈ Ob(𝓔) に対し、射の集合 Hom𝓔(A, B)。

- 合成写像:∘ : Hom𝓔(B, C) × Hom𝓔(A, B) → Hom𝓔(A, C)。

- 恒等射:各対象 A に対し、idA ∈ Hom𝓔(A, A)。

- 合成の結合律:f ∘ (g ∘ h) = (f ∘ g) ∘ h。

- 恒等射の単位性:idB ∘ f = f、f ∘ idA = f。

定義2(エレメンタリートポス)

  • 圏 𝓔 がエレメンタリートポスであるとは、以下の条件を満たすことを指す。

1. 有限極限の存在:𝓔 は有限極限(特に、積と等化子)を持つ完備な圏である

2. 指数対象存在任意対象 A, B ∈ 𝓔 に対し、指数対象 BA存在し、以下の自然同型が成り立つ。

Hom𝓔(C × A, B) ≅ Hom𝓔(C, BA)

3. 部分対象分類子の存在特別対象 Ω ∈ 𝓔 と単射 true: 1 → Ω が存在し、任意のモノ射(単射) m: U ↪ A に対し、一意的な射(特性射) χU: A → Ω が存在して以下の可換図式を満たす。

U ↪ A

↓ ↓

1 → Ω

ここで、! は終対象 1 から U への唯一の射である

存在モデル

情報モデル

1. 射としての情報存在間の関係や変換を表す射 f: A → B は、存在 A から存在 B への情報の伝達や変換をモデル化する。

2. 部分対象としての情報対象 A の部分対象 m: U ↪ A は、存在 A の特定性質や部分構造情報)を表す。これはモノ射として表現される。

3. 特性射と命題:部分対象 m: U ↪ A に対応する特性射 χU: A → Ω は、存在 A の要素が部分対象 U に属するかどうかを示す情報提供する。

内部論理による情報論理構造

トポス 𝓔 の内部では、高階直観主義論理が展開される。ここで、以下の対応が成立する。

- 論理積(AND):P ∧ Q は積対象を用いて、χP∧Q = ⟨χP, χQ⟩ : A → Ω × Ω → Ω。

- 論理和(OR):P ∨ Q は余積(和)を用いて表現される。

- 含意(IMPLIES):P ⇒ Q は指数対象を用いて、χP⇒Q: A → ΩΩ。

- 否定(NOT):¬P は、χ¬P = χP⇒⊥ として表され、⊥ は偽を表す部分対象である

ヨネダの補題による存在情報の同一視

ヨネダの補題

シーブと層による情報の集約

  • シーブ(sheaf):圏 𝓔 上の前層 F: 𝓔opSet であり、貼り合わせ可能性と一致性の条件を満たすもの
  • 層の条件:

1. 一致性:開被覆 { fi: Ui → U } に対し、各 F(Ui) の要素が F(Ui ×U Uj) 上で一致するなら、それらは F(U) の要素から誘導される。

2. 貼り合わせ可能性:F(U) の要素は、その制限が各 F(Ui) の要素に一致する。

統一的なモデルの構築

以上の構造を組み合わせることで、情報存在関係統一的にモデル化できる。

- 射 f: A → B は存在間の情報の伝達や変換を示す。

- 部分対象 m: U ↪ A は存在部分的情報性質を示す。

- 特性射 χU: A → Ω は存在に関する命題情報)を表す。

M理論とIIA型超弦理論双対性

以下は、M理論超弦理論幾何学抽象化した数学的枠組みでのモデル化について述べる。

∞-圏論と高次ホモトピー理論

まず、物理対象である弦や膜を高次の抽象構造としてモデル化するために、∞-圏論を用いる。ここでは、物理プロセスを高次の射や2-射などで表現する。

∞-圏 𝒞 は、以下を持つ:

  • 対象Ob(𝒞)
  • 1-射(またはモルフィズム):対象間の射 f: A → B
  • 2-射:1-射間の射 α: f ⇒ g
  • n-射:高次の射 β: α ⇒ γ など

これらの射は、合成や恒等射、そして高次の相互作用を満たす。

デリーブド代数幾何学と高次スタック

次に、デリーブド代数幾何学を用いて、空間場の理論モデル化する。ここでは、デリーブドスタック使用する。

デリーブドスタック 𝒳 は、デリーブド環付き空間の圏 𝐝𝐀𝐟𝐟 上の関手として定義される:

𝒳 : 𝐝𝐀𝐟𝐟ᵒᵖ → 𝐒

ここで、𝐒 は∞-グルーポイドの∞-圏(例えば、単体集合のホモトピー圏)である

物理的なフィールドパーティクルのモジュライ空間は、これらのデリーブドスタックとして表現され、コホモロジーデリーブドファンクターを通じてその特性を捉える。

非可換幾何学とスペクトラルトリプル

非可換幾何学では、空間を非可換代数 𝒜 としてモデル化する。ここで、スペクトラルトリプル (𝒜, ℋ, D) は以下から構成される:

作用素 D のスペクトルは、物理的なエネルギーレベルや粒子状態対応する。幾何学的な距離や曲率は、𝒜 と D を用いて以下のように定義される:

高次トポス

∞-トポス論は、∞-圏論ホモトピー論を統合する枠組みである。∞-トポス ℰ では、物理的な対象フィールドは内部のオブジェクトとして扱われる。

フィールド φ のグローバルセクション(物理的な状態空間)は、次のように表される:

Γ(φ) = Homℰ(1, φ)

ここで、1 は終対象である物理的な相互作用は、これらのオブジェクト間の射としてモデル化される。

L∞-代数と高次ゲージ理論

ゲージ対称性やその高次構造表現するために、L∞-代数を用いる。L∞-代数 (L, {lₖ}) は次元付きベクトル空間 L = ⊕ₙ Lₙ と多重線形写像の族 lₖ からなる:

lₖ : L⊗ᵏ → L, deg(lₖ) = 2 - k

これらは以下の高次ヤコ恒等式を満たす:

∑ᵢ₊ⱼ₌ₙ₊₁ ∑ₛᵢgₘₐ∈Sh(i,n-i) (-1)ᵉ⁽ˢⁱᵍᵐᵃ⁾ lⱼ ( lᵢ(xₛᵢgₘₐ₍₁₎, …, xₛᵢgₘₐ₍ᵢ₎), xₛᵢgₘₐ₍ᵢ₊₁₎, …, xₛᵢgₘₐ₍ₙ₎) = 0

ここで、Sh(i,n-i) は (i, n - i)-シャッフル、ε(sigma) は符号関数である

これにより、高次のゲージ対称性や非可換性を持つ物理理論モデル化できる。

安定ホモトピー理論スペクトラム

安定ホモトピー理論では、スペクトラム基本的対象として扱う。スペクトラム E は、位相空間やスペースの系列 {Eₙ} と構造写像 Σ Eₙ → Eₙ₊₁ からなる。

スペクトラムホモトピー群は以下で定義される:

πₙˢ = colimₖ→∞ πₙ₊ₖ(Sᵏ)

ここで、Sᵏ は k-次元球面である。これらの群は、物理理論における安定な位相特性を捉える。

ホモロジカル場の理論

物理的な相関関数は、コホモロジー類を用いて以下のように表現される:

⟨𝒪₁ … 𝒪ₙ⟩ = ∫ₘ ω𝒪₁ ∧ … ∧ ω𝒪ₙ

ここで、ℳ はモジュライ空間、ω𝒪ᵢ は観測量 𝒪ᵢ に対応する微分形式またはコホモロジーである

M理論における定理の導出

先に述べた抽象数学的枠組みを用いて、M理論重要定理であるM理論とIIA型超弦理論双対性を導出する。この双対性は、M理論11次元での理論であり、円 S¹ に沿ってコンパクト化するとIIA型超弦理論等価になることを示している。

1. デリーブド代数幾何学によるコンパクト化の記述

空間の設定:

コホモロジー計算

Künnethの定理を用いて、コホモロジー計算する。

H•(ℳ₁₁, ℤ) ≅ H•(ℳ₁₀, ℤ) ⊗ H•(S¹, ℤ)

これにより、11次元コホモロジー10次元コホモロジーと円のコホモロジーテンソル積として表される。

2. C-場の量子化条件とM理論の場の構造

C-場の量子化条件:

M理論の3形式ゲージ場 C の場の強度 G = dC は、整数係数のコホモロジー類に属する。

[G] ∈ H⁴(ℳ₁₁, ℤ)

デリーブドスタック上のフィールド

デリーブド代数幾何学では、フィールド C はデリーブドスタック上のコホモロジー類として扱われる。

3. 非可換幾何学によるコンパクト化の非可換性の考慮

非可換トーラスの導入:

円 S¹ のコンパクト化を非可換トーラス 𝕋θ としてモデル化する。非可換トーラス上の座標 U, V は以下の交換関係を満たす。

UV = e²ᵖⁱθ VU

ここで、θ は非可換性を表す実数パラメータである

非可換K-理論適用

非可換トーラス上のK-理論群 K•(𝕋θ) は、Dブレーンのチャージを分類する。

4. K-理論によるブレーンのチャージの分類

M理論のブレーンのチャージ

  • M2ブレーン:K⁰(ℳ₁₁)
  • M5ブレーン:K¹(ℳ₁₁)

IIA型超弦理論のDブレーンのチャージ

  • D0ブレーンからD8ブレーン:K-理論群 K•(ℳ₁₀) で分類

チャージ対応関係

コンパクト化により、以下の対応が成立する。

K•(ℳ₁₁) ≅ K•(ℳ₁₀)

5. 安定ホモトピー理論によるスペクトラム同値

スペクトラム定義

スペクトラム同値性:

安定ホモトピー理論において、以下の同値性が成立する。

𝕊ₘ ≃ Σ𝕊ᵢᵢₐ

ここで、Σ はスペクトラムの懸垂(suspension)函手である

6. 定理の導出と結論

以上の議論から、以下の重要定理が導かれる。

定理M理論とIIA型超弦理論双対性

デリーブド代数幾何学、非可換幾何学、および安定ホモトピー理論の枠組みを用いると、11次元M理論を円 S¹ 上でコンパクト化した極限は、IIA型超弦理論数学的に等価である

7. 証明の要点

(a) コホモロジー対応

(b) 非可換性の考慮

(c) スペクトラム同値

2024-09-16

情報存在関係

情報存在関係を数理化するために、高次圏論ホモトピー型理論、および量子場の理論統合した形式化を提案する。

まず、(∞,∞)-圏 C を考える。この圏の n-射は n 次元情報構造表現し、これらの間の高次の関係性を捉える。存在表現するために、この (∞,∞)-圏上の (∞,∞)-シーフを考える。

(∞,∞)-シーフ F: C^op → (∞,∞)-Cat を定義し、これを「存在の超シーフ」と呼ぶ。ここで、(∞,∞)-Cat は (∞,∞)-圏の (∞,∞)-圏であるF(X)対象 X に関連付けられた存在可能性の (∞,∞)-圏を表す。

このシーフ F は以下の超層条件を満たす:

任意対象 X と X 上の ∞-被覆 {U_i → X}_i に対して、以下の ∞-極限図式が (∞,∞)-圏の同値となる:

F(X) ≃ lim[∏_i F(U_i) ⇉ ∏_{i,j} F(U_i ×_X U_j) ⇛ ... ]

ここで、多重矢印は無限次元コホモロジー操作を表す。

次に、ホモトピー型理論 (HoTT) の拡張として、∞-累積階層理論 (∞-CUT) を導入する。これにより、以下の型構成子を定義する:

1. Π^∞(x:A)B(x): 無限次元依存積型

2. Σ^∞(x:A)B(x): 無限次元依存和型

3. Id^∞_A(a,b): 無限次元同一性

さらに、高次 univalence 公理採用し、以下を仮定する:

(A ≃^n B) ≃^(n+1) (A =^n B)

ここで、≃^n は n 次の同値関係を、=^n は n 次の同一性型を表す。

量子場理論概念を取り入れるために、圏値場の理論拡張し、(∞,∞)-圏値場 Φ: Bord^(∞,∞) → (∞,∞)-Cat を導入する。ここで、Bord^(∞,∞) は無限次元ボルディズム圏である。この場は以下の公理的場論の条件を満たす:

Φ(M ∐ N) ≃ Φ(M) ⊗ Φ(N)

Φ(∅) ≃ 1

Φ(M^op) ≃ Φ(M)^*

ここで、⊗ は (∞,∞)-圏の対称モノイダ構造を、* は双対を表す。

情報存在の動的な相互作用を捉えるために、導来高次代数概念を用いる。C の導来 (∞,∞)-圏 D(C) を考え、F の導来関手 LF: D(C)^op → D((∞,∞)-Cat) を定義する。情報の流れに沿った存在進化は、以下の超越的余極限として表現される:

hocolim^∞_i LF(X_i)

ここで {X_i} は D(C) 内の無限次元図式である

最後に、情報存在の根源的な関係を捉えるために、トポス理論無限次元拡張した ∞-トポス概念を導入する。∞-トポス E = Sh^∞(C) 内で、存在を表す対象 Ω^∞ を定義し、これを無限次元部分対象分類子とする。

2024-08-19

物理学形式化についての概要

都市伝説によれば、かつてアインシュタイン古典的重力理論一般相対性理論」を理解していたのは3人だけだったと言われている。

それが真実かどうかは別として、その3人のうちの1人がダフィッド・ヒルベルトである。彼は、今日の初学者でも一般相対性理論理解できるように、それを数学で明確かつ正確(すなわち厳密)に形式化した。

古典的アインシュタイン重力は、時空上の擬リーマン計量のモジュライ空間上のスカラー曲率密度汎関数積分臨界点の研究にすぎない。

物理学基本的理論数学での基本的な定式化を持つべきだと信じたことで、ヒルベルト本質的アインシュタインを先取りすることができた。そのため、この汎関数現在アインシュタインヒルベルト作用汎関数と呼ばれている。

ヒルベルトは、1900年の有名なヒルベルト問題の一環として、この一般的アイデアを以前から提唱していた。ここでヒルベルトの第6問題は、物理学理論公理を見つけることを数学者に求めている。

それ以来、そのような公理化のリストが見つかっている。例えば、

物理学数学
力学シンプレクティック幾何学
重力リーマン幾何学
ゲージ理論チェルン・ヴェイユ理論
量子力学作用代数
ポロジカル局所量子場理論モノイダル(∞,n)-カテゴリ理論

このリストには注目すべき2つの側面がある。一方で、数学の最高の成果が含まれており、他方で、項目が無関係で断片的に見えることだ。

学生時代ウィリアム・ローヴィアは「合理的熱力学」と呼ばれる熱力学公理化の提案に触れた。彼は、そのような連続物理学基本的な基盤は、まず微分幾何学自体の良い基盤を必要とすることに気づいた。彼の生涯の出版記録を見てみると、彼が次の壮大な計画を追求していたことがわかる。

ローヴィアは、最初の2つの項目(圏論論理、初等トポス理論代数理論SDG)への画期的な貢献で有名になった。なぜか、このすべての動機である3番目の項目は広く認識されていないが、ローヴィアはこの3番目の点を継続的に強調していた。

この計画は壮大だが、現代基準では各項目において不十分である

現代数学自然トポス理論/型理論ではなく、高次トポス理論/ホモトピー型理論に基づいている。

現代幾何学は「変数集合」(層)だけでなく、「変数ホモトピー型」、「幾何学ホモトピー型」、「高次スタック」に関する高次幾何学である

現代物理学古典的連続物理学を超えている。高エネルギー(小さな距離)では、古典物理学は量子物理学特に量子場理論によって精緻化される。

したがって、高次トポス理論で定式化された高次微分幾何学における高エネルギー物理学の基礎が必要である

anond:20240819140536

まり、(モデル理論における)「数学構造」の形式的定義と同型性の形式的定義があり、そして実際、これは新しい主張でもなければ、洞察でもないのだが、この意味での数学構造のすべてのタイプは、形式論理学意味での理論である

物理学いかなる形式化された理論も、この意味での理論である(あるいはそうなるであろう)。これは数理論理学の基本中の基本である

ここで主張されているように、数理論理学意味でのすべての理論物理学理論と呼ぶべきかどうかは別の問題である

より興味深いのは、形式論理学理論物理学理論として適格であるかどうかの特徴付けであろう。この種の問題に生涯を通じて取り組んできた一人に、ウィリアム・ローヴィア(William Lawvere)がいる。

http://ncatlab.org/nlab/show/William+Lawvere#MotivationFromFoundationsOfPhysics

Lawvereは、例えば、連続力学で遭遇するような運動方程式の定式化を認めるある種の無限理論運動法則トポスhttp://ncatlab.org/nlab/show/Toposes+of+laws+of+motionについて述べている。これは少し改良して、局所的な場の量子論 http://ncatlab.org/nlab/show/Higher+toposes+of+laws+of+motion も捉えることができる。

いずれにせよ、これらは形式理論、つまり数学構造」の一種であり、現代物理学の大部分を形式化することができる。ここでの同型性の概念は明確であり、議論余地はない。問題は、物理学のどの部分が形式化されるかである

数学宇宙仮説についての考察

数学宇宙仮説を説明するには、宇宙をどのようにモデル化するかを考え、各理論役割を明確にする必要がある。

以下に、各概念説明し、物理宇宙数学的にどのように捉えるかを示す。

数学構造

数学宇宙仮説の中心にあるのは、宇宙数学構造のものであるという考え方である数学構造は、集合とその上で定義される関係演算の組み合わせである

具体例として、微分多様体を考える。微分多様体は、局所的にユークリッド空間に似た構造を持ち、滑らかな関数定義できる空間である物理学では、時空を微分多様体としてモデル化し、一般相対性理論の基盤としている。このように、宇宙全体を一つの巨大な数学構造として捉え、その性質研究する。

集合論

集合論は、数学の基礎を形成する理論であり、すべての数学対象を集合として扱う。特に、Zermelo-Fraenkel集合論(ZFC)は、集合の存在とその性質定義する公理である数学宇宙仮説では、宇宙を集合として捉え、その集合上の関係演算物理法則表現していると考える。

モデル理論

モデル理論は、形式的論理体系が具体的な構造としてどのように実現されるかを研究する。数学宇宙仮説では、物理宇宙がある論理体系のモデルである仮定する。具体的には、物理法則公理とする論理体系のモデルとして宇宙を捉える。これは、ペア算術公理系のモデルとして自然数存在するのと類似している。

カテゴリ理論

カテゴリ理論は、対象オブジェクト)とそれらの間の射(モルフィズム)を扱う理論であるカテゴリ 𝒞 は次のように定義される:

  • 対象の集合 Ob(𝒞)
  • 射の集合 Hom(A, B) (対象 A, B ∈ Ob(𝒞) 間の射)

射は合成可能であり、合成は結合的であるさらに、各対象に対して恒等射が存在する。

数学宇宙仮説では、宇宙を一つのカテゴリとして捉えることができる。カテゴリ対象は異なる数学構造であり、射はそれらの間の変換や関係を表す。これにより、異なる「宇宙」間の関係性を数学的に探求することが可能になる。

トポス理論

トポス理論は、集合論一般化であり、論理空間概念統一する枠組みであるトポスは、論理体系のモデルとして機能し、異なる数学構造統一的に扱うことができる。

数学宇宙仮説では、宇宙トポスとして捉えることができる。トポスは、論理体系のモデルであり、異なる物理現実表現するための柔軟な枠組みを提供する。トポス理論を用いることで、宇宙数学性質をより深く理解することが可能になる。

まとめ

数学宇宙仮説を抽象数学説明するためには、数学構造公理系、集合論モデル理論カテゴリ理論トポス理論といった数学概念を用いることが必要である

これにより、物理現実数学的に厳密に記述し、数学物理の深い関係を探求することができる。

この仮説は、数学対象物理実体として存在するという新しい視点提供するが、現時点では哲学的命題としての性格が強く、数学的に証明可能定理ではない。

2024-07-18

ZFCの哲学

ZFC (Zermelo-Fraenkel set theory with the Axiom of Choice) の哲学は、数学基礎論における中心的な位置を占め、その含意は数理論理学モデル理論証明論にまで及ぶ。

ZFCの存在論的基盤は、von Neumann–Bernays–Gödel (NBG) 集合論との比較において明確になる。NBGがクラス概念を導入するのに対し、ZFCは純粋に集合のみを扱う。この違いは、大規模基数の存在に関する議論において重要意味を持つ。例えば、到達不能基数の存在は、ZFCでは公理として追加する必要があるが、NBGではより自然に扱える。

ZFCの哲学重要性は、その一階述語論理に基づく形式化にある。これにより、完全性定理適用可能となり、モデル理論手法を用いた相対的矛盾証明可能になる。特にゲーデルのL構造構成可能全体)とコーエン強制法は、ZFCの独立性結果を示す上で本質的役割を果たす。

ZFCの公理系、特に置換図式の導入は、フレーゲ論理主義崩壊後の数学基礎論の再構築において重要役割を果たした。置換図式は、ラッセルパラドックス回避しつつ、十分な数学対象存在保証する。

選択公理 (AC) の哲学的含意は特に深い。ACは、トポロジーベクトル空間におけるハーン・バナッハの定理や、測度論におけるバナッハ・タルスキのパラドックスなど、数学の広範な領域に影響を及ぼす。ACの非構成性質は、直観主義数学構成数学との緊張関係を生む。

ZFCの哲学は、大規模基数公理研究と密接に関連する。イナクセシブル基数、マーロ基数、超コンパクト基数などの大規模基数の存在は、ZFCの無矛盾性を強化し、数学宇宙階層構造示唆する。これらの基数の存在は、プラトニズム的な数学観を支持するように見えるが、形式主義的解釈可能である

ゲーデル不完全性定理のZFCへの適用は、数学的真理の本質に関する深遠な問いを提起する。特に、第二不完全性定理は、ZFCがその自身の無矛盾性を証明できないことを示し、ヒルベルトプログラム限界を明らかにした。

ZFCの哲学的含意は、数学構造主義との関連でも重要であるブルバキ学派の構造主義的アプローチは、ZFCを基盤として数学構造定義し、分析する。一方、カテゴリー論的基礎づけは、ZFCに代わる代替的なアプローチ提供し、トポス概念を通じて数学宇宙多様性示唆する。

内部モデル理論特にゲーデルのL構造研究は、ZFCの哲学に新たな視点をもたらす。V=L(すべての集合が構成可能である)という仮定は、連続体仮説一般連続体仮説肯定するが、同時に多くの大規模基数の存在否定する。これは、数学宇宙の「薄さ」と「厚さ」の間の哲学的緊張を生む。

結論として、ZFCの哲学は、数学存在論認識論真理論交差点位置し、現代数学の基礎に関する最も深遠な問題を提起する。その影響は、数学哲学にとどまらず、論理学計算理論量子力学の基礎にまで及ぶ。ZFCの哲学探究は、数学知識本質限界に関する我々の理解を深化させ、数学哲学境界を絶えず再定義しているのである

2023-12-27

anond:20231227140306

源氏物語なんて中学生時代居眠りしてたやつすら名前ぐらい覚えてそうなものに対して、

それをいうならでそうして神学とかそれより絶対マイナーなのがが持ち出されるのかよくわからんのだが。

どういう比較トポス思考してるのか教えてほしい。

2023-01-26

anond:20230125140244

自転車のこと何も知らない素人にパーツをいちから組んで、しかも手組みホイールを勧めるショップなんだかなぁ?という気はする。

結論として本人が満足ならそれでいいんだろうけど、そもそもこの彼は自転車のこと詳しくない人なのでどこまでそれを肯定していいのか分からん

基本的自転車は、同じ性能の自転車であれば1からパーツを選んで組み立てるよりパッケージとして売られてる完成車を買ったほうが安い。

この完成車とイチから組み立ての価格差は、まず組み立て工賃の存在がある。

フレームにパーツを組み付ける工賃は2万円から3万が相場。あとホイール手組みとなると前後で1万円になる。

あとは各パーツの値段。

シートポストとかステムとかハンドルとかあんまり性能に関係ないパーツを、完成車メーカー大量購入でタダ同然で仕入れることができるからというのがある。

あるいはデカ資本力のあるメーカーだと安い自社で作った製品を付けてたりする。

フレームが7万円で組み立て工賃が4万円とすると残り14万円でハンドルから変速機から選ぶことになる。

リムにこだわって、さらサドルに1万円ハンドル8000円とかかなり金額掛けてるので、おそらく変速とか駆動系やブレーキの性能が犠牲になっていると思われる。

もしも彼が買った組み立て自転車メーカー完成車で似たような性能のパーツ構成の完成車を探せばおそらく18万円とかそのくらいで手に入ったはずだと思う。

ハンドルサドルの値段を考えるともっと安いモデルになったかもしれない。

もちろん「こだわったわたしだけ1台だけの自転車」というのは素晴らしいんだけど、自転車のことをわからない彼が何をこだわったのか謎ではあるのでなんとも言えない部分はある。

自転車に何をもとめるか?というのは人それぞれでしかも乗ってみないとわからないのだ。

レーシーな走りを求める人は高いホイールを買うだろうし、ツーリングを楽しみたいなら改造はそこそこに旅費に資金を充てるだろう。

基本的自転車は安く買って乗りながら改造するのがベターだと思う。

彼が完成車を買っていれば浮いた5万円か6万円であとから選択肢を増やせたのでは?と思ってしまう。

自転車の選び方に正解はないけど、いきなり上限いっぱいブチ込むみたいな買い方は一般的よろしくないと思うので書いてみた。

2022-10-15

[]

通勤に使ってる古い奴のお世話してたので、新しいほうは あまり進まなかった。いい天気だったのがよかった。カーボンを削る系の作業は外で行いたい。それが理由。パーツを買い集めて組み立ててるところから行ってる。自分でもなぜ組み立ててるのか理由がわからなくなってきた。

クラウンレースを圧入した。塩ビパイプをちょうどいい長さに切った。ぶちっ。どかどか圧入。割入っているタイプなので、それで簡単に入っていった。メリメリ。

斜め切りしてしまってどうにも不細工だったコラムも、ととのえた。切口を仕上げた。カーボン削る系作業!!これでいいはず。

フォーク、ステム、ハンドルその他もろもろをフレームに結合。合体してみた!!逆さにした。これでホイールをたやすくつけられるはずだ。

チェーンの長さは?まだやってない。これは難関だよな

ボトムブラケットアダプターの締め上げを先送りしていたが、行った。トルクレンチが40N-m弱で。カクッてなるの快感だって言ってる人いたけど、分かる気がした。

シートポストにフェンダー取付けた。これは仮組的意味合い

アウターの切断やらなきゃ。週末にシフトチェンジするところまでこぎつけたい。自転車系の作業って楽しい。自宅の車庫で、オートバイいじっている人とかいるけど、あの気持ちがわかる気がする。

2022-07-17

anond:20220717101724

そういえばシートポストにモーター仕込んでる話はどうなったんよ

2021-11-03

anond:20211103091950

ぼくはトポス屋上のちっちゃいゆうえんちで仲見世で買っておいた大判焼きを食べながら日向ぼっこするね!

2021-09-16

anond:20210915185133

そういうたとえを出すってことはつまり洋服について(アリと象の大小比較で例えてる方)のみ自明だと思ってるんだよな。

かにアリと象はどちらか劣ってるかといっても「劣ってる」の捉え方次第で結論が変わる。

でもそれと、会話と文章とではどちらの比率が高いか(そしてそれ故に重要とみなせるか)はトポスとして同等ではない。

だって比率が高い」というのは「大小」と同じように数量的な事柄から。捉え方次第で結果が変わるというものじゃない。

からそういうたとえをもってきてこちらに悪印象を持たせるのは詭弁だ。

私が言いたいのは、洋服着てる人の方が多いということとと会話の比率の方が高いということは「自明」という共通点で結ばれている。

片方に対してディベート不要というのならば、もう片方に対しても不要だとしなければダブスタだと言いたいだけだ。

2021-07-01

anond:20210701205115

そんなことよりシートポストとかにモーターを仕込む疑惑はどうなってんの?

2019-10-09

35万円の自転車を買った

今までは20万円のロードバイクに乗ってた。

パーツを一つ一つ選んで"なぜこのハンドルなのか"を話せるくらいこだわって35万円の自転車が完成したのだけど凄い。

まず思ったとおりに自転車が動く。

今までは「自転車を操縦してる」感があったのが、自分の手足のように動く。

そしてそれが楽しい

よくバイクや車のインプレッションで「運転する楽しみ」という表現があって、あれがよくわからなかったがこういうことか

と驚いた。

長い距離ゆっくり走りたいのでそういうフレーム・パーツ構成したこともあって

100km走っても疲労度が少ないのがいい。

今回わかったのは、この「走って楽しい」を実現するのに最低限必要金額が35万円になると思う。

コレ以下だとパーツ選定に妥協せざるを得なくなって今の乗り心地は多分無理。

まだ納得していない部分もあるのでさらに改造するとトータル50万いきそうなきがする。

追記:知らん間にブックマーク増えてる。

簡単ですけど以下にパーツ構成です。

(構成パーツ:ブランド「パーツ名」)

フレーム: オールティ 「ZIGZAG」

コンポ:105(ディスクブレーキ)

ヘッドパーツ:クリスキング

BBクリスキング

シートポスト:トムソンエリート

サドル:WTBボルト プロ

ハンドル:ディズナ「ニーザーハンドル

ホイール:ショップ手組み

一部既存マシンから流用パーツあり

2019-05-17

どこに通報すればいいの?

アトピーで苦しんでいる人達

無料相談フォーム(炎症部位・お顔・家族などの写真撮影相談内容

https://www.atoppos.co.jp/html/benben.html

http://www.atoppos-kensa.com/profile.html

こういう如何わしい事をしているWebサイト通報先ってどこなんだろう?



赤嶺 福海

赤嶺福海(あかみねふくみ)

1955年 大分県別府市まれ。1987年 原因不明の病(体重39Kg 全身白髪睾丸片方直径5センチまり白髪状態、、見た目老人化し、五感感覚殆どなかった)に倒れ、余命1週間の命を薬を捨て、ただひたすらに、味のしない「ごはんみそ汁」を食べたことで救われる。※(当時は、20メートルくらいあるナースステーションの声が傍で聞こえていた。「赤嶺さんもあと1週間だね」と、担当医師が言っていた)

それ以来、人間の体に興味を持ち腸内細菌という不思議システム出会い研究を開始する。途中、奇妙な病気アレルギー」と「腸内細菌」の関係に携わることになり、アトピーの方々の腸内細菌異常を目の当たりにして、奥深くのめり込んでゆく。

アトピー克服には、腸内細菌ミネラル、皮膚phが大きく関与していることを確立し、アトピーで悩む皆様方を一人一人助けることと、インターネット講演会等で多くの皆様にも研究、実績を情報公開している。

「次代をになう子供達に健康な体と心を」をテーマに、各団体と協力して21世紀総アレルギー時代に待ったをかけるべき活動を行っている。

現在   一般社団法人トポスSP  代表理事

     アレルギーを考える会 フローラクラブ金沢 主宰

     各会社顧問役員兼務

ログイン ユーザー登録
ようこそ ゲスト さん