はてなキーワード: トポスとは
目標:与えられた高度な数学的概念(高次トポス理論、(∞,1)-カテゴリー、L∞-代数など)をフルに活用して、三平方の定理程度の簡単な定理を証明します。
定理:1次元トーラス上の閉曲線のホモトピー類は整数と一対一に対応する
背景:
高次トポス理論:ホモトピー論を高次元で一般化し、空間や位相的構造を抽象的に扱うための枠組み。
(∞,1)-カテゴリー:対象と射だけでなく、高次の同値(ホモトピー)を持つカテゴリー。
L∞-代数:リー代数の高次元一般化であり、物理学や微分幾何学で対称性や保存量を記述する。
証明:
トーラス
𝑇
1
T
1
は、円周
𝑆
1
S
1
[
,
1
]
[0,1] の両端を同一視して得られる。
𝑇
1
T
1
を高次トポス理論の枠組みで扱うために、位相空間のホモトピータイプとして考える。
これは、1つの0次元セルと1つの1次元セルを持つCW複体としてモデル化できる。
閉曲線のホモトピー類:
𝑇
1
T
1
上の閉曲線は、連続写像
𝛾
:
𝑆
1
→
𝑇
1
γ:S
1
→T
1
で表される。
2つの閉曲線
𝛾
1
,
𝛾
2
γ
1
,γ
2
がホモトピックであるとは、ある連続変形(ホモトピー)によって互いに移り合うことを意味する。
基本群の計算:
トーラス
𝑇
1
T
1
の基本群
𝜋
1
(
𝑇
1
)
π
1
(T
1
𝑍
Z と同型である。
これは、高次トポス理論においても同様であり、(∞,1)-カテゴリーにおける自己同型射として解釈できる。
各閉曲線
𝛾
𝑛
この対応は、ホモトピータイプ理論(HoTT)の基礎に基づいて厳密に定式化できる。
円周
𝑆
1
S
1
のループ空間のL∞-代数構造を考えると、ホモトピー類の加法的性質を代数的に記述できる。
つまり、2つの曲線の合成に対応するホモトピー類は、それらの巻数の和に対応する。
結論:
𝑇
1
T
1
上の閉曲線のホモトピー類が整数と一対一に対応することを証明した。
解説:
この証明では、与えられた高度な数学的概念を用いて、基本的なトポロジーの結果を導き出しました。具体的には、トーラス上の閉曲線の分類というシンプルな問題を、高次トポス理論とL∞-代数を使って厳密に定式化し、証明しました。
高次トポス理論は、空間のホモトピー的性質を扱うのに適しており、基本群の概念を一般化できます。
(∞,1)-カテゴリーの言葉で基本群を考えると、対象の自己同型射のホモトピー類として理解できます。
L∞-代数を使うことで、ホモトピー類の代数的構造を詳細に記述できます。
まとめ:
このように、高度な数学的枠組みを用いて、基本的な定理を新たな視点から証明することができます。これにより、既存の数学的知見を深めるだけでなく、新たな一般化や応用の可能性も見えてきます。
「シーブの迷宮」と呼ばれる不思議な空間がある。この迷宮はトポスの概念を基に作られており、以下のルールが適用される:
1. 迷宮には複数の部屋があり、各部屋には真理値(真または偽)が割り当てられている。
パズル:
迷宮には5つの部屋(A, B, C, D, E)があり、以下の情報が与えられている:
質問:
1. 部屋Eの真理値は何か?
2. この迷宮システムに矛盾はあるか?あるとすれば、どこに矛盾があるか?
回答:
1. 部屋Eの真理値:偽
説明:
1. A(真) → B(偽) → C(偽) → D(真) → E(真)
2. しかし、AからEへの直接の通路では真理値が反転するため、
A(真) → E(偽) となるはずである。
3. この矛盾は、トポスの重要な概念である「圏論的整合性」に違反している。
すべての経路(射の合成)が同じ結果をもたらすべきだが、この場合そうなっていない。
ジョン・ホイーラーの "it from bit" 仮説の数学的定式化を行う。
まず、圏論的基礎として量子情報圏 Q を定義する。Q の対象は完備von Neumann代数であり、射は完全正写像である。次に、古典情報圏 C を定義する。C の対象は可測空間であり、射は確率核である。
量子-古典対応を表現するために、量子-古典関手 F: Q → C を導入する。この関手は量子系の観測過程を表現する。
情報理論的構造を捉えるために、エントロピー関手 S: Q → Vec を定義する。ここで Vec は実ベクトル空間の圏である。S(A) = (S_von(A), S_linear(A), S_max(A)) と定義し、S_von はvon Neumannエントロピー、S_linear は線形エントロピー、S_max は最大エントロピーを表す。
トポス理論的解釈として、量子論理トポス T を構築する。T の対象は量子命題の束であり、部分対象分類子 Ω は量子確率値を取る。
"It from Bit" の数学的定式化として、以下の定理を提示する:
定理 1 (It from Bit): 任意の量子系 A ∈ Ob(Q) に対して、以下が成り立つ:
∃ {Bi}i∈I ⊂ Ob(C), ∃ {φi: F(A) → Bi}i∈I :
A ≅ lim←(Bi, φi)
ここで、≅ は Q における同型を、lim← は逆極限を表す。
証明は以下の手順で行う:
2. 各 p ∈ P(A) に対して、射影測定 Mp: A → C({0,1}) を定義する。
3. {Mp}p∈P(A) から誘導される射 φ: A → ∏p∈P(A) C({0,1}) を構築する。
4. 普遍性により、A ≅ lim←(C({0,1}), πp∘φ) が成り立つ。
系 1 として、S(A) = lim→ S(F(Bi)) が成り立つ。
この定理と系は、任意の量子系が古典的な二値観測の無限の組み合わせとして再構成可能であり、そのエントロピーが古典的観測のエントロピーの極限として表現できることを示している。
一般化として、n-圏 Qn を導入し、高次元の量子相関を捉える。予想として、Qn の対象も同様に古典的観測の極限として表現可能であると考えられる。
幾何学的ラングランズ・プログラムと M 理論・超弦理論の関係を、抽象数学を用いて厳密に数理モデル化する。
まず、以下のデータを考える。
- このスタックはアルティンスタックであり、代数幾何学的な手法で扱われる。
- 𝑋 上の ᴸ𝐺-局所系(つまり、平坦 ᴸ𝐺-束)の同型類全体のスタック。
- これは、基本群 π₁(𝑋) の表現のモジュライスタックと同一視できる。
幾何学的ラングランズ予想は、以下のような圏の同値を主張する。
𝐷ᵇ\_ℎₒₗ(𝐵𝑢𝑛\_𝐺(𝑋)) ≃ 𝐷ᵇ\_𝑐ₒₕ(𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋))
ここで、
この同値は、フーリエ–ムカイ変換に類似した核関手を用いて構成されると予想されている。
核関手 𝒫 を 𝐵𝑢𝑛\_𝐺(𝑋) × 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋) 上の適切な対象として定義し、それにより関手
Φ\_𝒫: 𝐷ᵇ\_ℎₒₗ(𝐵𝑢𝑛\_𝐺(𝑋)) → 𝐷ᵇ\_𝑐ₒₕ(𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋))
Φ\_𝒫(ℱ) = 𝑅𝑝₂ₓ(𝑝₁∗ ℱ ⊗ᴸ 𝒫)
ここで、
𝑝₁: 𝐵𝑢𝑛\_𝐺(𝑋) × 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋) → 𝐵𝑢𝑛\_𝐺(𝑋), 𝑝₂: 𝐵𝑢𝑛\_𝐺(𝑋) × 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋) → 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋)
問題点は、この核 𝒫 を具体的に構成することが難しく、これが幾何学的ラングランズ予想の核心的な課題となっている。
ヒッチン写像を導入する。
ℎ: ℳₕ(𝐺) → 𝒜 = ⨁ᵢ₌₁ʳ 𝐻⁰(𝑋, Ωₓᶦᵈⁱ)
ここで、ℳₕ(𝐺) は 𝐺-ヒッグス束のモジュライ空間、ᶦᵈⁱ は 𝐺 の基本不変式の次数。
完全可積分系: ヒッチンファイブレーション ℎ は完全可積分系を定義し、そのリウヴィル可積分性がモジュライ空間のシンプレクティック構造と関係する。
Kontsevich のホモロジカルミラー対称性予想に基づく。
𝐷ᵇ\_𝑐ₒₕ(ℳₕ(𝐺)) ≃ 𝐷ᵖⁱ 𝐹ᵘₖ(ℳₕ(ᴸ𝐺))
ここで、
- 𝐷ᵇ\_𝑐ₒₕ は連接層の有界導来圏。
- 𝐷ᵖⁱ 𝐹ᵘₖ はフカヤ圏のコンパクト対象からなる導来圏。
この同値は、ヒッチンファイブレーションを介してシンプレクティック幾何と複素幾何の間の双対性を示唆する。
𝐷ᵇ(𝐹ₗₐₜ\_𝐺(𝑋)) ≃ 𝐷ᵇ(𝐻ᵢ₉₉ₛ\_𝐺(𝑋))
ここで、
- 𝐹ₗₐₜ\_𝐺(𝑋) は 𝑋 上の平坦 𝐺-束のモジュライスタック。
- 𝐻ᵢ₉₉ₛ\_𝐺(𝑋) は 𝑋 上の 𝐺-ヒッグス束のモジュライスタック。
作用素:
M 理論におけるブレーンの配置:
- ℝ¹,³ は 4 次元の時空。
- Σ は曲線 𝑋。
Lurie の高次圏論:
幾何学的ラングランズ・プログラムと M 理論・超弦理論の関係は、以下の数学的構造を通じてモデル化される。
これらの数学的構造を組み合わせることで、幾何学的ラングランズ・プログラムと M 理論・超弦理論の関係性をモデル化できる。
マックス・テグマークの数学的宇宙仮説は、物理的実在が数学的構造そのものであると主張する。これを厳密かつ抽象的な数学の枠組みで表現する。
1. 存在論的同一性:Ob(Str) ≅ Ob(Phys) すなわち、数学的構造の対象と物理的実在の対象が一対一に対応する。
2. 構造保存性:∀ S₁, S₂ ∈ Str, Mor_{Str}(S₁, S₂) ≅ Mor_{Phys}(F(S₁), F(S₂)) すなわち、数学的構造間の射は物理的実在間の射と対応する。
以上の抽象数学的枠組みを用いて、テグマークの数学的宇宙仮説を次のように定式化できる。
この定式化では、集合論、カテゴリ論、トポス理論、モデル理論などの抽象数学を用いて、数学的宇宙仮説を表現した。
特に、数学的構造と物理的実在の間の圏同値やトポス同値を強調することで、両者が数学的に同一視できることを示している。
エレメンタリートポスの枠組みを用いることで、情報と存在の関係を数学的にモデル化できる。このモデルでは、存在をトポスの対象として、情報をその間の射や、内部論理における命題として表現する。
- 射の集合:任意の対象 A, B ∈ Ob(𝓔) に対し、射の集合 Hom𝓔(A, B)。
- 合成写像:∘ : Hom𝓔(B, C) × Hom𝓔(A, B) → Hom𝓔(A, C)。
- 恒等射:各対象 A に対し、idA ∈ Hom𝓔(A, A)。
- 合成の結合律:f ∘ (g ∘ h) = (f ∘ g) ∘ h。
- 恒等射の単位性:idB ∘ f = f、f ∘ idA = f。
1. 有限極限の存在:𝓔 は有限極限(特に、積と等化子)を持つ完備な圏である。
2. 指数対象の存在:任意の対象 A, B ∈ 𝓔 に対し、指数対象 BA が存在し、以下の自然同型が成り立つ。
Hom𝓔(C × A, B) ≅ Hom𝓔(C, BA)
3. 部分対象分類子の存在:特別な対象 Ω ∈ 𝓔 と単射 true: 1 → Ω が存在し、任意のモノ射(単射) m: U ↪ A に対し、一意的な射(特性射) χU: A → Ω が存在して以下の可換図式を満たす。
U ↪ A
↓ ↓
1 → Ω
1. 射としての情報:存在間の関係や変換を表す射 f: A → B は、存在 A から存在 B への情報の伝達や変換をモデル化する。
2. 部分対象としての情報:対象 A の部分対象 m: U ↪ A は、存在 A の特定の性質や部分構造(情報)を表す。これはモノ射として表現される。
3. 特性射と命題:部分対象 m: U ↪ A に対応する特性射 χU: A → Ω は、存在 A の要素が部分対象 U に属するかどうかを示す情報を提供する。
トポス 𝓔 の内部では、高階直観主義論理が展開される。ここで、以下の対応が成立する。
- 論理積(AND):P ∧ Q は積対象を用いて、χP∧Q = ⟨χP, χQ⟩ : A → Ω × Ω → Ω。
- 論理和(OR):P ∨ Q は余積(和)を用いて表現される。
- 含意(IMPLIES):P ⇒ Q は指数対象を用いて、χP⇒Q: A → ΩΩ。
- 否定(NOT):¬P は、χ¬P = χP⇒⊥ として表され、⊥ は偽を表す部分対象である。
1. 一致性:開被覆 { fi: Ui → U } に対し、各 F(Ui) の要素が F(Ui ×U Uj) 上で一致するなら、それらは F(U) の要素から誘導される。
2. 貼り合わせ可能性:F(U) の要素は、その制限が各 F(Ui) の要素に一致する。
以上の構造を組み合わせることで、情報と存在の関係を統一的にモデル化できる。
- 射 f: A → B は存在間の情報の伝達や変換を示す。
以下は、M理論と超弦理論の幾何学を抽象化した数学的枠組みでのモデル化について述べる。
まず、物理的対象である弦や膜を高次の抽象的構造としてモデル化するために、∞-圏論を用いる。ここでは、物理的プロセスを高次の射や2-射などで表現する。
∞-圏 𝒞 は、以下を持つ:
これらの射は、合成や恒等射、そして高次の相互作用を満たす。
次に、デリーブド代数幾何学を用いて、空間や場の理論をモデル化する。ここでは、デリーブドスタックを使用する。
デリーブドスタック 𝒳 は、デリーブド環付き空間の圏 𝐝𝐀𝐟𝐟 上の関手として定義される:
𝒳 : 𝐝𝐀𝐟𝐟ᵒᵖ → 𝐒
ここで、𝐒 は∞-グルーポイドの∞-圏(例えば、単体集合のホモトピー圏)である。
物理的なフィールドやパーティクルのモジュライ空間は、これらのデリーブドスタックとして表現され、コホモロジーやデリーブドファンクターを通じてその特性を捉える。
非可換幾何学では、空間を非可換代数 𝒜 としてモデル化する。ここで、スペクトラルトリプル (𝒜, ℋ, D) は以下から構成される:
作用素 D のスペクトルは、物理的なエネルギーレベルや粒子状態に対応する。幾何学的な距離や曲率は、𝒜 と D を用いて以下のように定義される:
∞-トポス論は、∞-圏論とホモトピー論を統合する枠組みである。∞-トポス ℰ では、物理的な対象やフィールドは内部のオブジェクトとして扱われる。
フィールド φ のグローバルセクション(物理的な状態空間)は、次のように表される:
Γ(φ) = Homℰ(1, φ)
ここで、1 は終対象である。物理的な相互作用は、これらのオブジェクト間の射としてモデル化される。
ゲージ対称性やその高次構造を表現するために、L∞-代数を用いる。L∞-代数 (L, {lₖ}) は次元付きベクトル空間 L = ⊕ₙ Lₙ と多重線形写像の族 lₖ からなる:
lₖ : L⊗ᵏ → L, deg(lₖ) = 2 - k
∑ᵢ₊ⱼ₌ₙ₊₁ ∑ₛᵢgₘₐ∈Sh(i,n-i) (-1)ᵉ⁽ˢⁱᵍᵐᵃ⁾ lⱼ ( lᵢ(xₛᵢgₘₐ₍₁₎, …, xₛᵢgₘₐ₍ᵢ₎), xₛᵢgₘₐ₍ᵢ₊₁₎, …, xₛᵢgₘₐ₍ₙ₎) = 0
ここで、Sh(i,n-i) は (i, n - i)-シャッフル、ε(sigma) は符号関数である。
これにより、高次のゲージ対称性や非可換性を持つ物理理論をモデル化できる。
安定ホモトピー理論では、スペクトラムを基本的な対象として扱う。スペクトラム E は、位相空間やスペースの系列 {Eₙ} と構造写像 Σ Eₙ → Eₙ₊₁ からなる。
πₙˢ = colimₖ→∞ πₙ₊ₖ(Sᵏ)
ここで、Sᵏ は k-次元球面である。これらの群は、物理理論における安定な位相的特性を捉える。
物理的な相関関数は、コホモロジー類を用いて以下のように表現される:
⟨𝒪₁ … 𝒪ₙ⟩ = ∫ₘ ω𝒪₁ ∧ … ∧ ω𝒪ₙ
ここで、ℳ はモジュライ空間、ω𝒪ᵢ は観測量 𝒪ᵢ に対応する微分形式またはコホモロジー類である。
先に述べた抽象数学的枠組みを用いて、M理論の重要な定理であるM理論とIIA型超弦理論の双対性を導出する。この双対性は、M理論が11次元での理論であり、円 S¹ に沿ってコンパクト化するとIIA型超弦理論と等価になることを示している。
時空間の設定:
H•(ℳ₁₁, ℤ) ≅ H•(ℳ₁₀, ℤ) ⊗ H•(S¹, ℤ)
これにより、11次元のコホモロジーが10次元のコホモロジーと円のコホモロジーのテンソル積として表される。
C-場の量子化条件:
M理論の3形式ゲージ場 C の場の強度 G = dC は、整数係数のコホモロジー類に属する。
[G] ∈ H⁴(ℳ₁₁, ℤ)
デリーブド代数幾何学では、フィールド C はデリーブドスタック上のコホモロジー類として扱われる。
非可換トーラスの導入:
円 S¹ のコンパクト化を非可換トーラス 𝕋θ としてモデル化する。非可換トーラス上の座標 U, V は以下の交換関係を満たす。
UV = e²ᵖⁱθ VU
非可換トーラス上のK-理論群 K•(𝕋θ) は、Dブレーンのチャージを分類する。
K•(ℳ₁₁) ≅ K•(ℳ₁₀)
𝕊ₘ ≃ Σ𝕊ᵢᵢₐ
ここで、Σ はスペクトラムの懸垂(suspension)函手である。
デリーブド代数幾何学、非可換幾何学、および安定ホモトピー理論の枠組みを用いると、11次元のM理論を円 S¹ 上でコンパクト化した極限は、IIA型超弦理論と数学的に等価である。
(b) 非可換性の考慮
情報と存在の関係を数理化するために、高次圏論、ホモトピー型理論、および量子場の理論を統合した形式化を提案する。
まず、(∞,∞)-圏 C を考える。この圏の n-射は n 次元の情報構造を表現し、これらの間の高次の関係性を捉える。存在を表現するために、この (∞,∞)-圏上の (∞,∞)-シーフを考える。
(∞,∞)-シーフ F: C^op → (∞,∞)-Cat を定義し、これを「存在の超シーフ」と呼ぶ。ここで、(∞,∞)-Cat は (∞,∞)-圏の (∞,∞)-圏である。F(X) は対象 X に関連付けられた存在の可能性の (∞,∞)-圏を表す。
このシーフ F は以下の超層条件を満たす:
任意の対象 X と X 上の ∞-被覆 {U_i → X}_i に対して、以下の ∞-極限図式が (∞,∞)-圏の同値となる:
F(X) ≃ lim[∏_i F(U_i) ⇉ ∏_{i,j} F(U_i ×_X U_j) ⇛ ... ]
次に、ホモトピー型理論 (HoTT) の拡張として、∞-累積階層理論 (∞-CUT) を導入する。これにより、以下の型構成子を定義する:
さらに、高次 univalence 公理を採用し、以下を仮定する:
(A ≃^n B) ≃^(n+1) (A =^n B)
ここで、≃^n は n 次の同値関係を、=^n は n 次の同一性型を表す。
量子場理論の概念を取り入れるために、圏値場の理論を拡張し、(∞,∞)-圏値場 Φ: Bord^(∞,∞) → (∞,∞)-Cat を導入する。ここで、Bord^(∞,∞) は無限次元ボルディズム圏である。この場は以下の公理的場論の条件を満たす:
Φ(M ∐ N) ≃ Φ(M) ⊗ Φ(N)
Φ(∅) ≃ 1
Φ(M^op) ≃ Φ(M)^*
ここで、⊗ は (∞,∞)-圏の対称モノイダル構造を、* は双対を表す。
情報と存在の動的な相互作用を捉えるために、導来高次代数の概念を用いる。C の導来 (∞,∞)-圏 D(C) を考え、F の導来関手 LF: D(C)^op → D((∞,∞)-Cat) を定義する。情報の流れに沿った存在の進化は、以下の超越的余極限として表現される:
hocolim^∞_i LF(X_i)
最後に、情報と存在の根源的な関係を捉えるために、トポス理論を無限次元に拡張した ∞-トポスの概念を導入する。∞-トポス E = Sh^∞(C) 内で、存在を表す対象 Ω^∞ を定義し、これを無限次元部分対象分類子とする。
都市伝説によれば、かつてアインシュタインの古典的重力理論「一般相対性理論」を理解していたのは3人だけだったと言われている。
それが真実かどうかは別として、その3人のうちの1人がダフィッド・ヒルベルトである。彼は、今日の初学者でも一般相対性理論を理解できるように、それを数学で明確かつ正確(すなわち厳密)に形式化した。
古典的なアインシュタインの重力は、時空上の擬リーマン計量のモジュライ空間上のスカラー曲率密度汎関数の積分の臨界点の研究にすぎない。
物理学の基本的な理論は数学での基本的な定式化を持つべきだと信じたことで、ヒルベルトは本質的にアインシュタインを先取りすることができた。そのため、この汎関数は現在、アインシュタイン・ヒルベルト作用汎関数と呼ばれている。
ヒルベルトは、1900年の有名なヒルベルトの問題の一環として、この一般的なアイデアを以前から提唱していた。ここでヒルベルトの第6問題は、物理学の理論の公理を見つけることを数学者に求めている。
それ以来、そのような公理化のリストが見つかっている。例えば、
物理学 | 数学 |
力学 | シンプレクティック幾何学 |
重力 | リーマン幾何学 |
ゲージ理論 | チェルン・ヴェイユ理論 |
量子力学 | 作用素代数 |
トポロジカル局所量子場理論 | モノイダル(∞,n)-カテゴリ理論 |
このリストには注目すべき2つの側面がある。一方で、数学の最高の成果が含まれており、他方で、項目が無関係で断片的に見えることだ。
学生時代、ウィリアム・ローヴィアは「合理的熱力学」と呼ばれる熱力学の公理化の提案に触れた。彼は、そのような連続体物理学の基本的な基盤は、まず微分幾何学自体の良い基盤を必要とすることに気づいた。彼の生涯の出版記録を見てみると、彼が次の壮大な計画を追求していたことがわかる。
ローヴィアは、最初の2つの項目(圏論的論理、初等トポス理論、代数理論、SDG)への画期的な貢献で有名になった。なぜか、このすべての動機である3番目の項目は広く認識されていないが、ローヴィアはこの3番目の点を継続的に強調していた。
この計画は壮大だが、現代の基準では各項目において不十分である。
現代数学は自然にトポス理論/型理論ではなく、高次トポス理論/ホモトピー型理論に基づいている。
現代の幾何学は「変数集合」(層)だけでなく、「変数ホモトピー型」、「幾何学的ホモトピー型」、「高次スタック」に関する高次幾何学である。
現代物理学は古典的連続体物理学を超えている。高エネルギー(小さな距離)では、古典物理学は量子物理学、特に量子場理論によって精緻化される。
つまり、(モデル理論における)「数学的構造」の形式的定義と同型性の形式的定義があり、そして実際、これは新しい主張でもなければ、洞察でもないのだが、この意味での数学的構造のすべてのタイプは、形式論理学の意味での理論である。
物理学のいかなる形式化された理論も、この意味での理論である(あるいはそうなるであろう)。これは数理論理学の基本中の基本である。
ここで主張されているように、数理論理学の意味でのすべての理論を物理学の理論と呼ぶべきかどうかは別の問題である。
より興味深いのは、形式論理学の理論が物理学の理論として適格であるかどうかの特徴付けであろう。この種の問題に生涯を通じて取り組んできた一人に、ウィリアム・ローヴィア(William Lawvere)がいる。
http://ncatlab.org/nlab/show/William+Lawvere#MotivationFromFoundationsOfPhysics
Lawvereは、例えば、連続体力学で遭遇するような運動方程式の定式化を認めるある種の無限理論の運動法則のトポスhttp://ncatlab.org/nlab/show/Toposes+of+laws+of+motionについて述べている。これは少し改良して、局所的な場の量子論 http://ncatlab.org/nlab/show/Higher+toposes+of+laws+of+motion も捉えることができる。
いずれにせよ、これらは形式理論、つまり「数学的構造」の一種であり、現代物理学の大部分を形式化することができる。ここでの同型性の概念は明確であり、議論の余地はない。問題は、物理学のどの部分が形式化されるかである。
数学的宇宙仮説を説明するには、宇宙をどのようにモデル化するかを考え、各理論の役割を明確にする必要がある。
以下に、各概念を説明し、物理宇宙を数学的にどのように捉えるかを示す。
数学的宇宙仮説の中心にあるのは、宇宙が数学的構造そのものであるという考え方である。数学的構造は、集合とその上で定義される関係や演算の組み合わせである。
具体例として、微分多様体を考える。微分多様体は、局所的にユークリッド空間に似た構造を持ち、滑らかな関数が定義できる空間である。物理学では、時空を微分多様体としてモデル化し、一般相対性理論の基盤としている。このように、宇宙全体を一つの巨大な数学的構造として捉え、その性質を研究する。
集合論は、数学の基礎を形成する理論であり、すべての数学的対象を集合として扱う。特に、Zermelo-Fraenkel集合論(ZFC)は、集合の存在とその性質を定義する公理系である。数学的宇宙仮説では、宇宙を集合として捉え、その集合上の関係や演算が物理法則を表現していると考える。
モデル理論は、形式的な論理体系が具体的な構造としてどのように実現されるかを研究する。数学的宇宙仮説では、物理宇宙がある論理体系のモデルであると仮定する。具体的には、物理法則を公理とする論理体系のモデルとして宇宙を捉える。これは、ペアノ算術の公理系のモデルとして自然数が存在するのと類似している。
カテゴリ理論は、対象(オブジェクト)とそれらの間の射(モルフィズム)を扱う理論である。カテゴリ 𝒞 は次のように定義される:
射は合成可能であり、合成は結合的である。さらに、各対象に対して恒等射が存在する。
数学的宇宙仮説では、宇宙を一つのカテゴリとして捉えることができる。カテゴリの対象は異なる数学的構造であり、射はそれらの間の変換や関係を表す。これにより、異なる「宇宙」間の関係性を数学的に探求することが可能になる。
トポス理論は、集合論の一般化であり、論理と空間の概念を統一する枠組みである。トポスは、論理体系のモデルとして機能し、異なる数学的構造を統一的に扱うことができる。
数学的宇宙仮説では、宇宙をトポスとして捉えることができる。トポスは、論理体系のモデルであり、異なる物理的現実を表現するための柔軟な枠組みを提供する。トポス理論を用いることで、宇宙の数学的性質をより深く理解することが可能になる。
数学的宇宙仮説を抽象数学で説明するためには、数学的構造、公理系、集合論、モデル理論、カテゴリ理論、トポス理論といった数学的概念を用いることが必要である。
これにより、物理的現実を数学的に厳密に記述し、数学と物理の深い関係を探求することができる。
この仮説は、数学的対象が物理的実体として存在するという新しい視点を提供するが、現時点では哲学的な命題としての性格が強く、数学的に証明可能な定理ではない。
ZFC (Zermelo-Fraenkel set theory with the Axiom of Choice) の哲学は、数学基礎論における中心的な位置を占め、その含意は数理論理学、モデル理論、証明論にまで及ぶ。
ZFCの存在論的基盤は、von Neumann–Bernays–Gödel (NBG) 集合論との比較において明確になる。NBGがクラスの概念を導入するのに対し、ZFCは純粋に集合のみを扱う。この違いは、大規模基数の存在に関する議論において重要な意味を持つ。例えば、到達不能基数の存在は、ZFCでは公理として追加する必要があるが、NBGではより自然に扱える。
ZFCの哲学的重要性は、その一階述語論理に基づく形式化にある。これにより、完全性定理が適用可能となり、モデル理論的手法を用いた相対的無矛盾性証明が可能になる。特に、ゲーデルのL構造(構成可能全体)とコーエンの強制法は、ZFCの独立性結果を示す上で本質的な役割を果たす。
ZFCの公理系、特に置換図式の導入は、フレーゲの論理主義の崩壊後の数学基礎論の再構築において重要な役割を果たした。置換図式は、ラッセルのパラドックスを回避しつつ、十分な数学的対象の存在を保証する。
選択公理 (AC) の哲学的含意は特に深い。ACは、トポロジー的ベクトル空間におけるハーン・バナッハの定理や、測度論におけるバナッハ・タルスキのパラドックスなど、数学の広範な領域に影響を及ぼす。ACの非構成的性質は、直観主義数学や構成的数学との緊張関係を生む。
ZFCの哲学は、大規模基数公理の研究と密接に関連する。イナクセシブル基数、マーロ基数、超コンパクト基数などの大規模基数の存在は、ZFCの無矛盾性を強化し、数学的宇宙の階層構造を示唆する。これらの基数の存在は、プラトニズム的な数学観を支持するように見えるが、形式主義的解釈も可能である。
ゲーデルの不完全性定理のZFCへの適用は、数学的真理の本質に関する深遠な問いを提起する。特に、第二不完全性定理は、ZFCがその自身の無矛盾性を証明できないことを示し、ヒルベルトプログラムの限界を明らかにした。
ZFCの哲学的含意は、数学的構造主義との関連でも重要である。ブルバキ学派の構造主義的アプローチは、ZFCを基盤として数学的構造を定義し、分析する。一方、カテゴリー論的基礎づけは、ZFCに代わる代替的なアプローチを提供し、トポスの概念を通じて数学的宇宙の多様性を示唆する。
内部モデルの理論、特にゲーデルのL構造の研究は、ZFCの哲学に新たな視点をもたらす。V=L(すべての集合が構成可能である)という仮定は、連続体仮説や一般化連続体仮説を肯定するが、同時に多くの大規模基数の存在を否定する。これは、数学的宇宙の「薄さ」と「厚さ」の間の哲学的緊張を生む。
結論として、ZFCの哲学は、数学的存在論、認識論、真理論の交差点に位置し、現代数学の基礎に関する最も深遠な問題を提起する。その影響は、数学哲学にとどまらず、論理学、計算理論、量子力学の基礎にまで及ぶ。ZFCの哲学的探究は、数学的知識の本質と限界に関する我々の理解を深化させ、数学と哲学の境界を絶えず再定義しているのである。
自転車のこと何も知らない素人にパーツをいちから組んで、しかも手組みホイールを勧めるショップはなんだかなぁ?という気はする。
結論として本人が満足ならそれでいいんだろうけど、そもそもこの彼は自転車のこと詳しくない人なのでどこまでそれを肯定していいのか分からん。
基本的に自転車は、同じ性能の自転車であれば1からパーツを選んで組み立てるよりパッケージとして売られてる完成車を買ったほうが安い。
この完成車とイチから組み立ての価格差は、まず組み立て工賃の存在がある。
フレームにパーツを組み付ける工賃は2万円から3万が相場。あとホイール手組みとなると前後で1万円になる。
あとは各パーツの値段。
シートポストとかステムとかハンドルとかあんまり性能に関係ないパーツを、完成車メーカーは大量購入でタダ同然で仕入れることができるからというのがある。
あるいはデカい資本力のあるメーカーだと安い自社で作った製品を付けてたりする。
フレームが7万円で組み立て工賃が4万円とすると残り14万円でハンドルから変速機から選ぶことになる。
リムにこだわって、さらにサドルに1万円ハンドルに8000円とかかなり金額掛けてるので、おそらく変速とか駆動系やブレーキの性能が犠牲になっていると思われる。
もしも彼が買った組み立て自転車をメーカー完成車で似たような性能のパーツ構成の完成車を探せばおそらく18万円とかそのくらいで手に入ったはずだと思う。
ハンドルやサドルの値段を考えるともっと安いモデルになったかもしれない。
もちろん「こだわったわたしだけ1台だけの自転車」というのは素晴らしいんだけど、自転車のことをわからない彼が何をこだわったのか謎ではあるのでなんとも言えない部分はある。
自転車に何をもとめるか?というのは人それぞれでしかも乗ってみないとわからないのだ。
レーシーな走りを求める人は高いホイールを買うだろうし、ツーリングを楽しみたいなら改造はそこそこに旅費に資金を充てるだろう。
基本的に自転車は安く買って乗りながら改造するのがベターだと思う。
通勤に使ってる古い奴のお世話してたので、新しいほうは あまり進まなかった。いい天気だったのがよかった。カーボンを削る系の作業は外で行いたい。それが理由。パーツを買い集めて組み立ててるところから行ってる。自分でもなぜ組み立ててるのか理由がわからなくなってきた。
クラウンレースを圧入した。塩ビパイプをちょうどいい長さに切った。ぶちっ。どかどか圧入。割入っているタイプなので、それで簡単に入っていった。メリメリ。
斜め切りしてしまってどうにも不細工だったコラムも、ととのえた。切口を仕上げた。カーボン削る系作業!!これでいいはず。
フォーク、ステム、ハンドルその他もろもろをフレームに結合。合体してみた!!逆さにした。これでホイールをたやすくつけられるはずだ。
チェーンの長さは?まだやってない。これは難関だよな
ボトムブラケットアダプターの締め上げを先送りしていたが、行った。トルクレンチが40N-m弱で。カクッてなるの快感だって言ってる人いたけど、分かる気がした。
アウターの切断やらなきゃ。週末にシフトチェンジするところまでこぎつけたい。自転車系の作業って楽しい。自宅の車庫で、オートバイいじっている人とかいるけど、あの気持ちがわかる気がする。
そういうたとえを出すってことはつまり洋服について(アリと象の大小比較で例えてる方)のみ自明だと思ってるんだよな。
確かにアリと象はどちらか劣ってるかといっても「劣ってる」の捉え方次第で結論が変わる。
でもそれと、会話と文章とではどちらの比率が高いか(そしてそれ故に重要とみなせるか)はトポスとして同等ではない。
だって「比率が高い」というのは「大小」と同じように数量的な事柄だから。捉え方次第で結果が変わるというものじゃない。
だからそういうたとえをもってきてこちらに悪印象を持たせるのは詭弁だ。
私が言いたいのは、洋服着てる人の方が多いということとと会話の比率の方が高いということは「自明」という共通点で結ばれている。
パーツを一つ一つ選んで"なぜこのハンドルなのか"を話せるくらいこだわって35万円の自転車が完成したのだけど凄い。
まず思ったとおりに自転車が動く。
今までは「自転車を操縦してる」感があったのが、自分の手足のように動く。
そしてそれが楽しい。
よくバイクや車のインプレッションで「運転する楽しみ」という表現があって、あれがよくわからなかったがこういうことか
と驚いた。
長い距離をゆっくり走りたいのでそういうフレーム・パーツ構成にしたこともあって
100km走っても疲労度が少ないのがいい。
今回わかったのは、この「走って楽しい」を実現するのに最低限必要な金額が35万円になると思う。
コレ以下だとパーツ選定に妥協せざるを得なくなって今の乗り心地は多分無理。
無料相談フォーム(炎症部位・お顔・家族などの写真を撮影し相談内容
https://www.atoppos.co.jp/html/benben.html
http://www.atoppos-kensa.com/profile.html
こういう如何わしい事をしているWebサイトの通報先ってどこなんだろう?
25年の研究・開発・相談・サポート。
10000人以上の再発の無い完全克服を実践してきた理論は、
①アトピーの子供が生まれない方法
②生まれて間もないお子様の1年以内の克服方法
③今困っている方々(子供・成人)が3年以内に克服できる方法
メール相談はこちら→https://t.co/SkO4r8TTR8 pic.twitter.com/ZOESkcjYQi— 赤嶺福海 アトピーの正体を暴く アトポスSP (@umi293293) February 6, 2019
赤嶺 福海
赤嶺福海(あかみねふくみ)
1955年 大分県別府市生まれ。1987年 原因不明の病(体重39Kg 全身白髪、睾丸片方直径5センチあまりの白髪狸状態、、見た目老人化し、五感の感覚が殆どなかった)に倒れ、余命1週間の命を薬を捨て、ただひたすらに、味のしない「ごはん・みそ汁」を食べたことで救われる。※(当時は、20メートルくらいあるナースステーションの声が傍で聞こえていた。「赤嶺さんもあと1週間だね」と、担当医師が言っていた)
それ以来、人間の体に興味を持ち腸内細菌という不思議なシステムに出会い、研究を開始する。途中、奇妙な病気「アレルギー」と「腸内細菌」の関係に携わることになり、アトピーの方々の腸内細菌異常を目の当たりにして、奥深くのめり込んでゆく。
アトピー克服には、腸内細菌、ミネラル、皮膚phが大きく関与していることを確立し、アトピーで悩む皆様方を一人一人助けることと、インターネット、講演会等で多くの皆様にも研究、実績を情報公開している。
「次代をになう子供達に健康な体と心を」をテーマに、各団体と協力して21世紀総アレルギー時代に待ったをかけるべき活動を行っている。