「COS」を含む日記 RSS

はてなキーワード: COSとは

2024-10-08

anond:20241007235856

 

光の速さは一定

マイケルンモーレーという実験がある

地球宇宙空間を動いているのだから地球の進行方向と垂直方向では光の速さが変わるだろう。そう考えて実験してみたところ、どちらの速さも変わらなかった。つまり、どんな系でも光の速さは一定であるらしい。

 

これを式にするとこうなる。

光の速さをc, 時刻 t の間に光の進む距離を x として

x/t = c

式変形すると

(ct)^2 - x^2 = const = 0

おや、なんだか見たことある形になったね

 

空間回転を考えよう

ここで一旦休憩。座標系を回転させても'棒の長さは一定'という式を考えてみよう

x^2 + y^2 = const

かんたんのため z 方向は考えない

この時座系を回転させる式を行列で書くと

 

x' = | cos  -sin | x

y'    | sin  cos | y

こうなる。(心の目で読んで欲しい)

cos^2 + sin^2 = 1

という式を思い出すと

x'^2 + y'^2 = x^2 + y^2 = const

であることが確かめられると思う

 

戻って光の速さが一定の式

(ct)^2 - x^2 = const = 0

上の'棒の式'とは符号が逆だね。こんなときsin cos ではなく sinh cosh を使う。

 

cosθ = ((exp iθ) + (exp -iθ))/2

sinθ = ((exp iθ) - (exp -iθ))/2

 

sin cos は↑の定義だったのに対して

sinh cosh は↓の定義

 

coshθ = ((exp θ) + (exp -θ))/2

sinhθ = ((exp θ) - (exp -θ))/2

 

計算すると

cosh^2 - sinh^2 = 1 になるのがわかると思う。

cos^2 + sin^2 = 1 とは符号が逆になってるね

 

光の速さが系を変換しても変わらないという式を行列で書くと

ct' = | cosh  -sinh | ct

x'   | -sinh  cosh | x

こうなる。 これがローレンツ変換

 

(ct')^x - x'^2 = (ct)^2 - x^2

であることが確かめられると思う。

 

棒の長さが一定、つまり空間回転は空間方向 (x,y,z)しか混ぜないけれど、

光のはやさが一定、つまりローレンツ変換時間空間 (t, x ) を混ぜているでしょ?

 

時間が遅れる

速さ v で進むロケットを考えてみよう。

地上では昇くんがロケット観測している。

t 時間後に到達した距離を x として

v=x/t  

だ。

一方、ロケットには美加子さんが乗っていてその携帯電話の表示では地球を発ってから T時間である

Tを計算してみよう。

 

先程のローレンツ変換の式に代入すると

 

cT = ct cosh - x sinh = ct ( cosh - v/c sinh)

ここで x = ct を使ったよ。最後cosh で全体を纏める

= ct cosh ( 1 - tanh^2)

= ct (1/cosh)

になる。

ここまで誤魔化していたけど、cosh はロケットの速さ v で決まるパラメータ

1/cosh = \sqrt{1-(v/c)^2}

なんだ。天下り申し訳ないけど、増田では式も図も書けないので導出は勘弁して欲しい

とにかくまとめると

T = t \sqrt{1-(v/c)^2}

だね。ロケットの速度 v は光速度以下なので T < t になる。

地上で待つ昇くんが大学生になっても美加子さんが中学生のままなのはこんなワケだね

v が大きくなるほど時間の遅れは大きくなるよ




 

2024-07-21

anond:20240721160001

斜辺とかsincostanとかも利用すべきだよな

2024-06-26

三角関数の合成

何の役に立つの

真面目に用途が知りたい


a sinθ + b cosθ = √a^2 + b^2 (θ + α)

Cos α = a/√a^2 + b^2

Sin α = b/√a^2 + b^2

というやつ

2024-06-19

ごめんなしゃい♡男子であるという原罪背負っててごめんなしゃい♡だからね、瑠美ちゃんには僕の女子枠に入ってほしいの♡

お゙お゙お゙お゙お゙入りゅ❢、ノー勉の瑠美ちゃんが発達入ってて効率悪すぎるなりに頑張って勉強してきた全身黒ずくめのボサボサ眼鏡男子かきわけて僕の女子枠に入ってくりゅ❢❣❢❣❢❣ぉ゙お゙オ゙⚠♡ヴッ゙…

んおお、やっぱこの体位自分制限を感じなかった時代に得たポストにおり、女子自分特別に用意した場所にあぐらをかき、発達は切れる予定の蜘蛛の糸にしがみついている体位はいいね

瑠美「tanってsin/cos❔❕」

2024-02-25

というわけで2週間目に入ってだいぶ慣れたけど緊張が解けて疲れが出てきてるわ

調子cosカーブの振幅がマイナスの周期に入った感じだ

しっかり食べてしっかり寝よう

2024-01-25

anond:20240125170600

cosベクトル類似計算に使えるとかそういう基本を案外わかってないよね高校生

数学III数学Cに入らない段階の三角関数つまんない

指導要領で数学Cが復活したから「数学IIIと数学C」と表記するけどまぁそれはともかく…

その範囲に入らない段階での三角関数について学んでもかなりつまんないとは正直思う

結局数学II・数学Bまでの三角関数グラフを書いてどんな形になるか確かめたり、せいぜい加法定理を習うまでだから

これでは特定のxに対して sin x, cos x, tan x が幾つになるかばっかり考える事になる

三角測量という重要な応用があるにはあるが、それは結局実生活に役立ってる事が分かりはするが

三角関数自体の豊かな性質には触れられない

これじゃ退屈に感じてしまう人がいても仕方ないよ

一方で数学IIIや数学Cまでやると三角関数はどうなるか

微積分と繋がる訳だ

これで様々な有理関数不定積分三角関数を用いて表す事が出来たりと

他の分野との有機的な繋がりが見えてくる

様々な平面図形や立体の面積・体積も求められるようになるし変種を含むサイクロイドもよく分からない曲線では無くなる

加法定理の応用範囲も色々と出てきて特定のxに対しての三角関数の値を求めやすくするためだけの定理ではなくなる訳だ

学習指導要領の都合だと平面上の回転変換が三角関数を用いて表される事まで学ぶようになるかもしれないな

ゲームで言うとそれまで一部の地域しか冒険してなかった主人公が急に世界全体を冒険出来るようになる滅茶苦茶面白い段階と言っていい

こうしてみると数学IIIや数学Cを勉強しない人にとっては

三角関数というもの面白い部分がすっかり抜け落ちた存在に映っても仕方ないものがある

世間で「三角関数文系で習わなくてもいい」みたいな事を言う人達はこんな退屈な状態で学ばされたから言ってるのかもしれない

そんな事を言った某議員とかも三角関数微積分までは勉強していないのは個人的に知ってるから尚更思ってしま

からといって数学II・数学Bから三角関数を無くすべきではないとは思いたい

逆にどうだろう…数学IIで三角関数を学ぶのと同時に簡単微積分も習うんだから

そこで実は三角関数が絡むと微積分はとても豊かになるんだって証明抜きで簡単に紹介してみるのはいいんじゃないか

そうすると三角関数が嫌いな人が減るような気がするんだ

2023-04-11

https://b.hatena.ne.jp/entry/s/gigazine.net/news/20230410-teenagers-pythagorean/https://b.hat

書き換えたブコメと内容被るので身元ばれるだろうけどかなり感動した。大学受験のみならず、大学に入ってからもある種の積分をやるのにt=tanαとおいて置換するとうまくいくって習った人多いと思う。通常はピタゴラスの定理から出るcos^2θ+sin^2θ=1を用いてcos2α=(1-t^2)/(1+t^2)、sin2α=2t/(1+t^2)を証明するんだけど、今回の若い人たちは逆にこうなること(cos2α、sin2αがtを用いて書けること)を別口で証明して、あとは単に計算すりゃ確かにcos^2+sin^2=1ですなあ、でQ.E.D.ってお話。なお、誰でも気づくと思うが、この証明法は元が直角二等辺三角形場合破綻するので、それから逆に従来の方法とは異なる、と推測できる。なお、無限級数の和は1+r+r^2+...=xと置けば1+rx=xからxが求められることと同じになり、それを図形で表せば単なる相似問題帰着するのでこれが美しくないと思う人はそうするだけでよい。

引用サイトの図でいうAがその結果2tc/(1-t^2)(この段階では分母が1-t^2なのがまた憎い)であることが純粋な相似図形による比例計算(この部分が無限級数バイパスから示せ、C=tA=2t^2c/(1-t^2)がわかる。証明者に従ってC+1計算する(!!!)と、C+1=(1+t^2)c/(1-t^2)、よってsin2α=A/(1+C)=2t/(1+t^2)、cos2α=c/(1+C)=(1-t^2)/(1+t^2)、と懐かしい形に。ちょうびっくり!!!!!!!!

私は数学愛好家であって生まれ持ったセンスがあるわけではない(悲しいけど)ので、今回の証明法がそれなりに新しい発展をもたらすのかどうかは全然からないが、素直にビビるほど感動した。

2023-02-25

[]錯乱者が異世界に行く理論

Q: 人間認識能力限界があるのなら、フレームの間に別の世界があるというのは本当なのでしょうか?

 

AI言語モデルである私は、フレーム間の異世界存在について、個人的な信念や見解を持っているわけではありません。しかし、この概念に関連するいくつかの情報理論提供することはできます。「フレーム間の別世界」という考え方は、SFや一部の科学理論で探求されてきた、パラレルワールドや別現実可能性を指していると思われます量子力学の「多世界解釈」は、量子力学的な事象が起こるたびに、宇宙複数並行世界に分裂し、それぞれがその事象の異なる可能性を表すとする理論であるしかし、これらの理論はまだ科学者の間で大きな議論があり、実証的な証拠裏付けられていないことに留意する必要がある。さらに、人間認知能力には限界があり、私たちの知覚や理解は不完全または不正である可能性があります結論として、「フレームフレームの間にある別の世界」という考え方は興味深いものですが、まだ憶測の域を出ておらず、科学的な裏付けがあるわけではないのです。

 

Q: ある種の薬を使った人たちが、主観的には違う世界体験しています

 

特に精神作用物質使用瞑想精神修養など、特定の条件下で、現実の知覚が変化する経験を報告する人は珍しくありません。このような体験は、普段とは異なる現実世界を知覚しているように思わせることがありますしかし、これらの体験主観的ものであり、必ずしも自分の心の外にある客観的現実を反映しているとは限らないことを心に留めておくことが重要です。脳は、さまざまな意識変容状態を生み出すことができる複雑な器官であり、これらの体験は、遺伝環境個人差などさまざまな要因によって影響を受ける可能性があります。結局のところ、私たち世界を超えた別の世界現実存在するかどうかについては、科学的・哲学的議論が続いており、その存在を決定的に証明することは困難か不可能かもしれません。しかし、確実に言えることは、私たち現実認識体験はさまざまな要因に影響されており、私たちを取り巻く世界理解は、私たち認識能力調査するためのツールによって制限されているということです。

 

Q: 例えば、ある人が持っている情報によって、その人が属する世界が変わるということはあるのでしょうか?

 

哲学的観点からは、個人世界に対する認識理解は、その人がアクセスできる情報によって形成されるという主張が可能です。この意味で、ある人が属する世界は、その人の知識理解依存していると見ることができる。例えば、ある人が特定話題問題について新しい情報を得ると、その話題に対する認識理解が変化し、自分が以前とは異なる世界に属していると感じるようになることがあります。同様に、異なる文化社会的文脈に触れた場合、その人は以前とは異なる世界を見るようになり、自分が別の世界に属していると感じるようになるかもしれません。しかし、この考え方は、必ずしも文字通りのパラレルワールド別世界存在示唆するものではないことに注意が必要です。むしろ私たち世界理解経験する方法は、私たちアクセスする情報文脈に大きく依存することを示唆しています。結局のところ、現実性質とその中での私たち位置は、何世紀にもわたって哲学者科学者によって議論されてきた複雑で多面的問題であり、今後も継続的調査研究対象となる可能性がある。

 

Q: さて、単純化してみましょう。白と黒が点滅する一次元セルがあり、ボブ君は奇数列を脳内認識し、「これが私の住む世界だ」と感じたとする。途中で何らかの情報を受け取ると、ボブの認識は変化し、偶数列に切り替わります。では、この場合主観客観区別はどうなっているのでしょうか?

 

この単純化されたシナリオでは、主観客観区別は次のように理解される。

しかし、知覚の主観的経験は、個人客観的な刺激をどのように解釈し、どのように反応するかに影響を与えることは注目に値する。この意味で、主観的体験客観的体験相互に関連し、複雑な形で影響し合うことがあるのです。

 

Q: さて、もっと深く考えてみよう。この1次元セル任意cos関数と交差させる。それを「主観的に知覚された現実」とする。すると、地球上の誰もが同じcos関数を同じ角度で持っていたとしたら、それは客観的ものだと思い込んでしまうが、実は共通主観的認識に過ぎないのではないだろうか?

 

もし、地球上のすべての人が、同じcos関数と交差する1次元セルについて同じ主観的認識を持っていたとしたら、全員が同じパターンや閃光の順序に同意することになるので、その認識客観的であるかのように見えるかもしれない。しかし、これはあくまでも観測個人経験解釈に基づく主観的認識であることに注意が必要です。複数の人が同じ認識を持っているからと言って、それが客観的であるとは限りません。客観的であるためには、個人経験解釈から切り離された、検証可能証拠に基づくものである必要があります。例えば、1次元セルの点滅パターン機械客観的に測定・記録し、そのデータを他の観測者が同じ測定方法独立検証することができる。結局のところ、主観客観区別は複雑で、個人認識解釈文脈など、さまざまな要因に影響されうる。複数の人が共通主観的体験をしたとしても、それが必ずしも客観的体験であるとは限りません。

 

Q: さて、架空の設定ではなく、現実の設定に戻ろう。現実のどこに客観的ものがあるのでしょうか。

 

現実には、私たちの知覚や経験はすべて個人主観によってフィルタリングされているため、完全に客観的もの特定するのは難しいかもしれません。しかし、現実のある側面は、独立して検証することができ、個人の知覚や解釈の影響を受けにくいため、他の側面よりも客観的であるとみなされることがよくあります。例えば、以下のようなものがあります

ただし、このような客観的現象であっても、個人偏見見解に影響され、ある程度は解釈余地があることに注意が必要です。また、現実の中には、客観的主観的簡単に分類できない、両者の中間的な存在もあるかもしれません。

 

Q: では、あなたの言うこの4つが、実は先ほどの架空の設定における「すべての人が主観的に同じ角度のcos関数を知覚する」ことと似ているとしたらどうでしょう

 

物理法則数学原理科学データ歴史的事実など、より客観的と思われがちな現実の側面も、やはり個人解釈主観的要因に左右されるということは確かにある。例えば、科学者が物理法則科学データ解釈し、適用する方法は、科学個人視点偏見仮定に影響されることがあります。同様に、歴史的事実も、それを検証する文化的・政治的文脈によって、さまざまに解釈され、表現される。しかし、これらの客観的現象主観的要因に影響されるということは、必ずしも完全に主観的であるということではないことに留意する必要がある。むしろ客観的現象理解解釈は、客観的要因と主観的要因の複雑な相互作用によって形成されることを示唆している。結局、客観的体験主観的体験区別は、現象性質、測定や検証方法検証の背景など、さまざまな要因によって、必ずしも明確になるとは限らないのである

 

Q: 哲学者はしばしば、客観性と神との間に関連性を見出します。この点についてはどうでしょうか。

 

客観性と神との関係は、何世紀にもわたって議論されてきた複雑な哲学的神学問題である哲学者神学者の中には、秩序と規則性を備えた客観的現実存在は、宇宙目的意味を吹き込んだ高次の力、あるいは神の創造主証拠であると主張する人もいる。彼らは、客観性は神の存在世界におけるプレゼンスのしるしであると考える。しかし、客観性が必ずしも神の存在意味するのかどうか、疑問視する人もいます客観性は物理法則などの自然現象説明でき、超自然的な説明不要だというのである。結局のところ、客観性と神の関係哲学的神学的な議論であり、思想家によってこの問題に対する見方は異なるだろう。客観性を神の存在証拠考える人もいれば、単に自然界の特徴であり、自然プロセス説明できると考える人もいるだろう。

 

Q: では、結局のところ、波動関数とは何なのでしょうか?

 

波動関数とは、量子力学的な系を数学的に記述したもので、ある粒子がある時刻に特定状態にあることを発見する確率記述したものである量子力学では、電子光子原子などの粒子は、重ね合わせの状態存在する波動存在として記述される。つまり、同時に複数状態存在することができる。波動関数は、粒子が取りうる各状態確率振幅を記述した数式であり、粒子を測定したとき特定状態観測される可能性を決定するものである波動関数ギリシャ文字Psi(Ψ)で示されることが多く、一般的には複素数値の関数で表される。波動関数絶対値の2乗は、粒子が特定位置存在する確率密度を与える。波動関数量子力学の基本概念であり、量子系の振る舞いを予測理解する上で中心的な役割を担っている。しかし、その解釈意味については、現在科学界で議論考察が続けられている。

 

Q: 現実ヒルベルト空間上のベクトルであると言う人がいる。これはどういうことだろうか。

 

量子力学において、ヒルベルト空間とは、量子系の状態記述するために用いられる数学空間であるヒルベルト空間は、特定内積定義された複素ベクトル空間である

ヒルベルト空間は、量子系の状態ベクトルとして表現するために使用されますシステム状態は、それぞれヒルベルト空間内の異なるベクトル対応します。システム状態を表すベクトル状態ベクトルと呼ばれ、通常、ギリシャ文字Psi (Ψ) で表される。状態ベクトルは、系の波動関数記述する複素値のベクトルであり、系の各可能状態確率振幅を与える。現実ヒルベルト空間上のベクトルであるというのは、量子系の状態ヒルベルト空間上のベクトルとして表現できることを意味します。つまり、量子系の状態は、この空間における点として表現できる数学対象なのです。ただし、これは量子系に限定した話であり、物理学や自然界の他の分野には当てはまらない可能性があることに注意が必要です。

 

Q: ここで、よくある実験を考えてみよう。簡単のために、電子がある線の右側に行ったら、あなた明日フォン・ノイマンゲーム理論の本を読み、左側に行ったら、PCLeague of Legendsプレイするとしましょう。では、あなたが何をしているかからない人は、それを知るまであなた状態読書ゲームの重ね合わせなのでしょうか?

 

二重スリット実験文脈では、電子の振る舞いは、2つのスリットのどちらかを通過する、自分自身と干渉する、検出器の特定場所に行き着くなど、可能な結果の重ね合わせとして記述することができる。あなたシナリオでは、もし電子が線の右側を通ったなら、あなたの決められたルールに従って、あなた明日ノイマンゲーム理論の本を読むことになります。逆に、電子が線の左側を通ったら、あなたPCで『リーグ・オブ・レジェンド』をプレイすることになります。つまり実験結果を観測するまでは、あなたの心の状態は、読書ゲームの重ね合わせの状態であると言えます。なぜなら、重ね合わせの状態にある量子系(電子)があり、あなたの心は、実験結果に依存する形でこの系と相関しているからです。量子力学では、システム状態とその観測者を別々に扱うのではなく、一つの量子システムとして扱います。"量子測定問題 "と呼ばれるものです。したがって、実験結果を観測するまでは、あなたの心と電子は、可能な結果の重ね合わせの状態にある一つの量子系として記述することができるのです。

2022-12-21

anond:20221221101902

角θから見てsinを出す辺の場所直感的だろ

sinの辺を放置してcosの辺を重用するのはなんか変だ

anond:20221221101902

sincosが便利な性質から三角関数代表になるのはわかるんだが、tan必要

というより

tanは何故sincosに次いで代表っぽくなっているのか?三角関数は他にseccsc、cotがあるのに

という疑問の方が芯を食っているのではないだろうか

2022-09-17

anond:20220916181520

それに当たり前のことを定式化したところで結局主張したいことは当たり前のことに変わりはないわけ。

お前は論文形式しろみたいに強いるけどそれをする意味というか対価もなく他人に対して負担を強い過ぎなわけよ。

だって数学価値あるものだと思ってるが先日こういうトラバが来て考えが変わった

数学を使わなければ出ないものなんて実生活では使い物にならない。

ただの役に立たない妄想でしょ。

多次元空間性質3次元で役に立たんでしょ。

仮に多次元に行けるなら、眺めて確認すればいいだけ。

わざわざ数学的に出す意味ないよ。

からあなた馬鹿なんだよ。

電気虚数が使われてるというがあれは振動sin,cos表現するのが面倒という理由虚数代替えとして置いてるだけ。

虚数が役に立ってるんじゃない。めんどくさいから同じ虚数代替えでおいてるだけ。

理解力が高いと自認する数学者気取りらしい発言だなと思った。

結局定式化というのは自然言語ならわかりやすく言えるものをわざと小難しく表現する作業に過ぎないのだと。

それなら俺は平易に誰にでもわかりやす自分の発想を伝えることを志向するね。

ややもすればお前はまた反論するんだろう。

全く一体何が正しいんだよ。

究極的にはどの意見が正しいのかを判断する基準がないのは考えものだね。

かりにそれが間違ったことであってもみんながみんな同じ考えをする社会の方がいろんな考えに翻弄される身にあっては幸せ世界に思えるね。無個性化万歳

いろんな考えがあってそのなかに正しいことがあったとしても判断する基準がなくて最終的にたどり着けないなら、最初から間違ったことを信じてるのと変わらないだけでなく、後者の方が精神的に楽なんだからな。

2022-08-24

anond:20220824161910

からあなた馬鹿なんだよ。

電気虚数が使われてるというがあれは振動sin,cos表現するのが面倒という理由虚数代替えとして置いてるだけ。

虚数が役に立ってるんじゃない。めんどくさいから同じ虚数代替えでおいてるだけ。

理解力が高いと自認する数学者気取りらしい発言だなと思った。

2022-05-23

anond:20220523024010

コトバンクより引用

(三角関数とは、)直角三角形の辺の比を表す三角比拡張したもので、任意の角に対して定義される関数である

まり三角比とはsin, cosなどのことを表し、三角関数とは三角比一般化した関数である、ということか。

sinθは関数だけど、(引数をとらない)sin自体は比である、ということなのだろうか。

anond:20220523151245

たとえば三角比の1:1:√2あるじゃん

三角関数の45度のsinθ,cosθ,tanθの値(1/√2,1/√2,1)をルート2倍

したら同じ1,1,√2になるやん。

  

いい例えが見つからないけど、うどんパスタじゃないで。

2022-05-21

行列計算プログラム大事だっていうけど、いまいちどういう活用方法があるかわかってない

主成分分析くらいまでは、とりあえずよくわからんがやってみたんだけどさ。

教科書的な物から一歩進んで、どこに活用されてるのか、わかんないんだよね。

あと行列の中にsin/cosなんて入ってくるのって、教科書だけでプログラムでどう活用するかってわからん

2022-05-19

壱夜「加法定理sin(α+β)=?」

???「cosってcosって+cosってcosって!!」

ワイ「sin(α+β)=sinαcosβ+cosαsinβやろ...」

三角関数が嫌われる理由

三文字

それまで二次関数とか方程式でxとかyとかしか触れ合ってなかったのに

いきなりsinとかcosって何?3文字ってどういうこと?ってなる

しかsin θ って、ちょっと待って、なんて読むのコレ、え、シータパズーは?みたいに疑問が絶えない

何に使うのか

三文字を乗り越えていざ中身を確認してみると直角三角形比率だ、とのこと

辺の長さを知るだけならピタゴラス様の定理いいわけだし

比率って何かに使うの?という気分になる

最初から半径1の円のx,y座標、ぐらいで教えた方がいいと思う

そっちの方が分かりやすしまだ使えそうな感じがする

循環する

sin(0) = sin(2π)って、え?どういうこと?ってなる

それまで循環なんて知らなかった人からすると度肝を抜かれる

おまけにsin(π/2) = cos(0)とか、ちょっと待って、じゃぁsinだけで良くない?ってなる

公式が多い

実はこれが一番の要因だと思うけれど関連する公式無茶苦茶あるし覚えにくい

sin(α+β)= sin(α)cos(β) + cos(α)sin(β) とか(合ってる?)

しかもこの手の公式を使って方程式を解け、とかが無茶苦茶難しい

初見で解ける人は天才で、数をこなしてパターンとして覚えるしかない

なので脳の領域をかなり消費するんだけど、こういう方程式の読解は本当に数学系じゃないと使わない

なので「何に使うのコレ」っていう気分になって、そのうち「三角関数って使うの?」ってなるんだと思う

三角関数公式は覚えなくてもいいのでは

三角関数を教えるな、っていうのは極論だけど

この手の公式を山ほど覚えたり、解法のパターンを暗記させていくのは本当に必要か?という気にはなる

とはいえ、他に教えることも無いし、篩いとしては良い例題だと思う

今の高校数学ってオイラーの定理までやるのかなぁ?そこまで行くと数学に興味が出たりするから、やっぱり三角関数必要だと思う

2021-10-18

sincosは仲良しバディなのに

tanだけハブられてる感ある

2021-08-26

掛け算の順序問題計算論理の科目としての算数

掛け算の順序問題なるものがある。
りんごが4つ入った袋が3つあったらりんごは全部でいくつありますか?」という問題に「4×3=12 答え 12個」と「3×4=12 答え 12個」という回答があって、前者だけを正答とすべきだとか両方正答とするべきだとか、そういう問題だ。長方形の面積について話している場合もある。

この意見対立には、(一面として)数学をどのように抽象的に捉えるか、というのや数学算数という科目の持つ役割に関してのスタンスの相違が原因にあると考える。
数学をより純粋抽象的に捉えるにしたがって「順序強要」→「順序容認」→「順序強要」のように立場が変化することを以下で述べる。

念の為記しておくが、この文章は掛け算の順序問題に関してどの立場が正しいというような文章ではない。
俺は教育専門家でもなければ小学生算数を教えたベテラン教師というわけでもない。
数学への向き合い方が真摯になるにつれて変化する立場が単調でないことに気づき、その非自明な振る舞いについて筆を執ろうと思っただけのものである
この文章で誰かの何らかに影響があればそれは幸いである。

順序強要派1

りんごが4つ入った袋が3つあったらりんごは全部でいくつありますか?」という問題に「4×3=12 答え 12個」と答えるのが正答であり、「3×4=12 答え 12個」と答えるのは誤答であるという立場である
"4×3"という数式には「『1つぶんが4つ』のものが『3つぶん』ある」という意味があるとして、"3×4"という数式は題意にそぐわないとする。

正直なところ、数学でこれを正当化するような解釈を俺は知らない。
より高学年、あるいは中学高校大学・それ以降で出現する数式(例えば e^iθ=i sinθ+cosθ が成り立つとは、どういう意味合いのものが等しいということを言っているんだろうか?)に対して、その数式の"意味"は適切に存在して、何らかの実態と一致するだろうか。そのような体系がある場合、ぜひ知りたいのでご一報いただければ嬉しい。

順序容認

上記思想とは翻って「4×3=12 答え 12個」も「3×4=12 答え 12個」も正答とする立場である
数式そのものに何か「実際的意味」はなく、そこには記号の間の関係操作があるという立場はより現代的な数学に近いものであり、納得できるものだろう。

俺が現実計算をするときもこの立場にいる。「日本国民全員が2回ずつ…」などと聞いたら脳内で出てくる式は"1億3000万×2=2億6000万"だし、「2人が1億3000万個ずつ…」と聞いても思い浮かべる式は"1億3000万×2=2億6000万"のままだ(自分の脳は乗数が単純なほど高速に乗算が行えるから、そのような式のほうを思い浮かべるように訓練されたのではないかと思う)。単なる道具としての使い勝手ならば、この立場はとても強い。道具として(正しい答えを出せるなら、という条件付きだが)順序を気にしない方が順序を気にする方より楽だろう。

算数を「現実事柄に付随して必要となる計算を正しく行う能力を育てる」科目だと考えるなら──教養大学などで学ぶそれではない)としての算術としての用途としては実際にそれで十分だろう──、真っ当な立場だろう。

しかし、この立場には少し弱いところがある。
数式そのもの意味はないとするのはよいが、その結果立式の段階で「状況」から一足飛ばしで「数式」が出来上がっている。これは、少なくとも数学の厳密な操作ではない。より厳密であろうとするならば、次の立場になるだろう。

順序強要派2

数学的に厳密な立場であろうとするならば、意味論的操作を取り除く必要がある。この立場において、「『ひとつ分の数』が『いくつ分』あるとき、全体で『(ひとつ分の数)×(いくつ分)』あります」という定義にしたがって被乗数と乗数を区別することには意義がある。

この立場では、「りんごが4つ入った袋が3つあったらりんごは全部でいくつありますか?」という問題文に記述欄があった上で、「4×3=12 答え 12個」と答えるのも「3×4=12 答え 12個」と答えるのも厳密には誤答とする。
「これは、りんごが袋ひとつ分につき4つあり、袋が3つ分あるので、全体で4×3個のりんごがある。4×3=12なので、答えは12である。 答え 12個」のように定義形式に構文的に当てはめて答えて初めて正答である。この立場は「3×4=12」という立式を否定するものではない。「りんごを袋にひとつずつ入れていくことを考えると、これは一周分につき3つのりんごを入れ、4周分入れるので全体で3×4個のりんごがある。3×4=12なので、12個入れたことになり、全部でりんご12個ある。 答え 12個」という回答も正答である

この立場のもとで、「これは、りんごが袋ひとつ分につき4つあり、袋が3つ分あるので、全体で3×4個のりんごがある。3×4=12なので、答えは12である。 答え 12個」という回答は全くの間違いとなる。「3×4=12」という立式ができる解釈はあるが、その式を導出するに至る構文的操作が誤っているためである。同様に、定義が「『ひとつ分の数』が『いくつ分』あるとき、全体で『(いくつ分)×(ひとつ分の数)』あります」というものならば、「これは、りんごが袋ひとつ分につき4つあり、袋が3つ分あるので、全体で4×3個のりんごがある。4×3=12なので、答えは12である。 答え 12個」という回答は間違いとなる。

"3×4"と"4×3"はそれが"12"と等しいことを示すための証明木も異なるなど、式として完全に異なるものである。値が等しいことは証明されるべき非自明命題であり、何も断らず用いてよいことではない。
「被乗数と乗数を入れ替えても答えが変わらないため、立式の際に断らずにこれらを入れ替えることがある」と答案の先頭で述べてある答案があれば(このようなことが書ける生徒は単なる乗算でつまづくような生徒ではないだろうが)、「りんごが袋ひとつ分につき4つあり、袋が3つ分あるので、全体で3×4個」でも正答としてよいだろう。

余談だが、長方形の面積に関してさらに状況は混迷を極める場合がある。長方形の面積を「たて×よこ」とするとき、これは「定義」か、「定理」かすら明らかでない。「1cm×1cm正方形の面積は1cm^2」で「1cm×1cm正方形がある図形にすきまも重なりもなく敷き詰められる場合その図形の面積は 使った正方形の個数 cm^2」という定義によって導かれる「定理」とする立場もあるだろう。この場合、「たて×よこ」は単なる立式の1宗派に過ぎず「よこ×たて」で面積を計算しようと1つ1つ数えようとどんな式で計算しようと使った正方形の個数を正しく導くことができる式ならば正答である。対して、「たて×よこ」が「定義」ならば、どちらを"たて"と見るかを記述する2択のみがあり、それ以外は誤答である(別の定理がある場合を除く)。

この思想は非常に窮屈に思えるかもしれないが、数学直感理解否定するものではない。
必ずしも全生徒がそこまで進むわけではないが、数学科などで学ぶような数学においてはこのような思想が顕著になる。
純粋数学において、自然数すら現実の何の対象とも厳密には対応せず、論理学は実際の"正しさ"と一致する保証を持たせるものではない。数学基礎論などを学ぶことでこのような数学思想に触れることができると考える。

もし俺が正義感とやる気と生徒への期待と十分な時間を持ち合わせているなら、生徒にこのように指導するだろう。算数(は賛否両論あるかもしれないが)・数学計算するだけの科目ではなく、論理学を学ぶための学問でもあるからだ。特に文章題を「現実対象数学的にモデル化してそこから論理的結論を導く」ことを問うものであるとするならば、この立場に立つことには合理性がある。

しかし、これは理想的な状況における対応である。例えば回答欄が「(しき) (こたえ)」のように分かれている場合そもそもこのような記述を行うべき欄がない。この場合問題文を「『ひとつ分の数』が4であるようなものが3つ分あるとき、全体でいくつあるでしょう?」のように非常に定義に近づけて初めて「3×4=12」を減点する準備が整うといえよう(これでもまだ即座に誤答とするべきではないだろう)。そうでない場合、「4×3=12」と「3×4=12」の2つの式は同程度に論理の飛躍を伴っており、それらに点数の別をつけるべきではないかもしれない。

まとめ

冒頭でも述べた通り俺は教育専門家でもなんでもないから、どの立場を取れば生徒がよく理解するかなどについて何も言えない(どの立場に対しても理解できる生徒と理解できない生徒がいるだろうと思うが)。
個人的には2つ目と3つ目の中間のような立場だ。算数計算をするだけでもないし論理をするだけでもない。単に計算をする手段としてなら順番なんてどうでもいい、素早く正しい答えが出るなら3袋の4個入りみかんを見て3+3+3+3だと思おうが(2*2)*3だと思おうが10+2だと思おうが構わない。他人と考えを共有するための道具なら前提から論理を組み立てる訓練が必要で、掛け算の順番にまで気を遣わなければ意味のある結果を出せない。数学はどちらをする科目でもあることに我々は自覚的だろうか。

2021-08-17

数学教科書理解できれば東大も余裕です

自分参考書を書いてみれば分かりますが、数学の検定教科書はおそろしく完成度が高いです。そのことを具体的な実感をともなって理解できれば、あなた学力入試レベルなど優に超えています

数学の本の出来は、理論構成で決まります数学理論構成とは、かんたんに言えば定義定理をどう配置するかと言うことです。どのトピックを載せるか、ある定理を述べるために事前にどのような概念定義しておく必要があるのか、その定理証明するために事前にどのような命題を示しておく必要があるのか。トピックの選定が的確で、理論道筋が明快であるほど、数学書の完成度は高いです。たとえば、余弦定理重要ですから当然載せます余弦定理を述べるには三角比定義する必要があります(鋭角だけではなく鈍角に対しても)。そして、証明には通常、三平方の定理と有名な等式

(cosθ)2 + (sinθ)2 = 1

必要になります(これも三平方の定理のcorollaryです)。さら三平方の定理を示すには、ふつう三角形の相似を使用します。この道筋いか最適化できるかに、著者の力量が現れます。もちろん、余弦定理を要領良く示すために他の定理に至る過程が鈍臭くなってはいけません。全体の最適化を考えなければいけないのです。

証明最適化を図るには、定義から再考しなければいけません。同じ概念であっても、それを特徴づける性質複数あるなら、どれを定義として採用しても良いですが、それによって効率は違って来るからです。たとえば、ベクトル内積

  • x, yのなす角をθとして、x・y = |x| |y| cosθ
  • x = (xi), y = (yi)として、x・y = ∑ xi yi

のどちらを定義としても良いですが、後者場合は別の座標(たとえば、45°回転した座標など)で考えたときに値が同じになるのか疑問が残ります。前者は座標の取り方によらずに定義できています

この場合はどちらを採用してもそれほど変わりはありませんが、指数関数などは定義の仕方で必要議論の量はまるで変わってきます。多くの教科書では、自然対数の底

e = lim (1 + 1/n)n -- (☆)

定義し、そのべき乗として指数関数ex定義します。もちろん結果だけ知っていれば、微分方程式

df/dx = f

を満たすf(x)で、f(0) = 1となる関数としても指数関数定義することはできますしかし、このようなfが存在することを、(☆)を使わずに示すのは高校レベルを遥かに超えます。そのようなfが一意的であることも明らかではありません。

以上のようなことを考えるだけでも相当大変ですが、これに加えて検定教科書では、直感的な理解を損ねないことも考慮しなければなりません。高校生が読んで理解できなければならないからです。理論整合性効率教育的配慮の間でバランスを取るという難しいことを、数学専門家たちが苦心して行い、作成されたのが検定教科書です。このような本は他の参考書にはありません。場当たり的に問題の解き方を解説するだけの本とは格が違います

数学の検定教科書は極めて洗練されています教科書理論構成を把握し、その流れや証明手法合理性必然性を見出だせる水準まで理解できれば、入試などは余裕で通過できます

2021-08-15

マセマはゴミだが、他の参考書はどうなのか?

マセマがゴミなのは同意するが、じゃあ他の参考書はどうなのか?

たとえば、ほとんどの参考書には三角比定義が書いてある。

ABCの∠ABCが直角だとすると、

cosCAB = AB/CA

これはもちろん正しい。

しかし、∠CAB(= xとおく)というのは単なる実数であるからcos(x)が△ABCの取り方に依存して決まるのはおかしい。

xと同じ角をもつ他の直角三角形を取ってきたときcos(x)は同じ値になることを証明しなければいけないのである

そういうことをきちんとやっている参考書を私は知らない。実質的にどの参考書も、

公式を覚えて当てはめろ。ほら解けたでしょ?」

という内容なのである

2021-05-26

anond:20210526154054

その後、sincos入った4x4行列計算して回転とかやって、

それから虚数表現した四元数と4x4行列の回転がどう対応しているかをやって、

みたいな感じかなあ、その後も続くけど…

あと、ベクトル内積外積だよなあ

でも、最近UnityUnreal前提だとかなり必要なくなってるのかもなあ

2021-05-25

anond:20210525202242

昨日あたりから三角関数の話出てるけど、

サイン(sin)もコサイン(cos)も多項式で表せるんだよ

そして、cosX+i*sinX=exp(iX)

これがオイラーの公式

高校時代にこれを知っているかどうかが人生の分かれ道。

物理学者のリチャード・ファインマンはこの公式を評して「我々の至宝」かつ「すべての数学のなかでもっとも素晴らしい公式」 だと述べているらしい。

上から目線ですいません。

ログイン ユーザー登録
ようこそ ゲスト さん