「位相」を含む日記 RSS

はてなキーワード: 位相とは

2024-09-12

[] 無差別曲線分析の基礎

定義 1 (消費集合)

消費集合 X を局所位相線形空間の凸錐部分集合とする。

定義 2 (選好関係)

X 上の二項関係 ≿ を選好関係とする。

公理 1 (完備性)

∀x, y ∈ X, x ≿ y ∨ y ≿ x

公理 2 (推移性)

∀x, y, z ∈ X, (x ≿ y ∧ y ≿ z) ⇒ x ≿ z

公理 3 (連続性)

∀x ∈ X, {y ∈ X | y ≿ x} と {y ∈ X | x ≿ y} は X において閉集合

公理 4 (凸性)

∀x, y, z ∈ X, ∀α ∈ (0, 1), (x ≿ z ∧ y ≿ z) ⇒ αx + (1-α)y ≿ z

定義 3 (効用関数)

関数 u: X → ℝ が以下を満たすとき、u を選好関係 ≿ の効用関数と呼ぶ:

∀x, y ∈ X, x ≿ y ⇔ u(x) ≥ u(y)

定義 4 (無差別集合)

効用関数 u: X → ℝ に対して、任意の r ∈ ℝ に対する無差別集合 I_r を以下で定義する:

I_r = {x ∈ X | u(x) = r}

定理 1 (無差別集合の位相性質)

公理 1-4 を満たす選好関係 ≿ に対応する効用関数 u が連続であるとき任意の r ∈ ℝ に対して、I_r は X の閉集合である

証明

u の連続性より、I_r = u^(-1)({r}) は X の閉集合である

定理 2 (無差別集合の凸性)

公理 1-4 を満たす選好関係 ≿ に対応する効用関数 u が準凹であるとき任意の r ∈ ℝ に対して、I_r は凸集合である

証明

x, y ∈ I_r, α ∈ (0, 1) とする。u の準凹性より、

u(αx + (1-α)y) ≥ min{u(x), u(y)} = r

一方、u(αx + (1-α)y) > r とすると、公理 4 に矛盾する。

よって、u(αx + (1-α)y) = r となり、αx + (1-α)y ∈ I_r が示される。

定義 5 (Gâteaux 微分可能性)

X が Banach 空間とき関数 f: X → ℝ が点 x ∈ X で Gâteaux 微分可能であるとは、任意の h ∈ X に対して以下の極限が存在することをいう:

δf(x; h) = lim_{t→0} (f(x + th) - f(x)) / t

定義 6 (限界代替率)

効用関数 u: X → ℝ が Gâteaux 微分可能であるとき、点 x ∈ X における財 i と財 j の間の限界代替率 MRS_{ij}(x) を以下で定義する:

MRS_{ij}(x) = -δu(x; e_i) / δu(x; e_j)

ただし、e_i, e_j は i 番目、j 番目の基底ベクトルとする。

定理 3 (限界代替率逓減の一般化)

X が Hilbert 空間で、効用関数 u: X → ℝ が二回連続 Fréchet 微分可能かつ強凹であるとき任意の x ∈ X と任意の i ≠ j に対して、

∂MRS_{ij}(x) / ∂x_i < 0

証明

u の強凹性より、任意の h ≠ 0 に対して、

⟨D²u(x)h, h⟩ < 0

これを用いて、MRS の偏導関数符号評価することで証明完了する。

定理 4 (効用最大化問題の解の特徴付け)

X が局所位相線形空間、p ∈ X* (X の双対空間)、w ∈ ℝ とする。

効用関数 u: X → ℝ が連続かつ準凹で、以下の問題の解 x* が存在するとき

max u(x) subject to ⟨p, x⟩ ≤ w, x ∈ X

ある λ ≥ 0 が存在して、以下が成り立つ:

1. ⟨p, x*⟩ = w

2. ∀y ∈ X, u(y) > u(x*) ⇒ ⟨p, y⟩ > w

3. δu(x*; h) ≤ λ⟨p, h⟩, ∀h ∈ X

証明

超平面分離定理を用いて、{y ∈ X | u(y) > u(x*)} と {y ∈ X | ⟨p, y⟩ ≤ w} が分離可能であることを示し、そこから条件を導出する。

M理論幾何学

定義 1: M理論の基礎空間を (M, g) とする。ここで M は 11 次元 C∞ 多様体、g は符号 (-,+,...,+) のローレンツ計量とする。

定義 2: M 上の主束 P(M, Spin(1,10)) をスピン構造とし、関連するスピノール束を S とする。

定義 3: M 上の外積代数を Λ*(M) とし、特に Λ³(M) と Λ⁴(M) に注目する。

場の理論構造

定義 4: M理論の場の配位空間を以下で定義する:

C = {(g, C, ψ) | g ∈ Met(M), C ∈ Γ(Λ³(M)), ψ ∈ Γ(S)}

ここで Met(M) は M 上のローレンツ計量全体、Γ は滑らかな切断を表す。

 

定理 1 (作用汎関数): M理論作用 S: C → ℝ は以下で与えられる:

S[g, C, ψ] = ∫_M (R * 1 - 1/2 dC ∧ *dC - 1/6 C ∧ dCdC - ψ̄D̸ψ) vol_g

ここで R はスカラー曲率、D̸ はディラック作用素、vol_g は g による体積要素である

 

定理 2 (場の方程式): δS = 0 から以下の Euler-Lagrange 方程式が導かれる:

1. Einstein 方程式: Ric(g) - 1/2 R g = T[C, ψ]

2. C-場の方程式: d*dC + 1/2 dCdC = 0

3. Dirac 方程式: D̸ψ = 0

ここで Ric(g) は Ricci テンソル、T[C, ψ] はエネルギー運動量テンソルである

幾何学構造

定義 5: M の 7 次元コンパクト化を X とし、M = R^(1,3) × X と分解する。

定義 6: X 上の G₂ 構造を φ ∈ Ω³(X) とし、以下を満たすものとする:

1. dφ = 0

2. d*φ = 0

3. (x ↦ i_x φ ∧ i_y φ ∧ φ) は X 上の Riemann 計量を定める。

 

定理 3 (Holonomy reduction):X が G₂ 構造を持つとき、X の holonomy 群は G₂ の部分群に含まれる。

定義 7: X 上の接束の構造群を G₂ に制限する縮約を σ: P → X とする。ここで P は主 G₂ 束である

位相構造

定義 8: M の K 理論群を K(M) とし、その Chern 指標を ch: K(M) → H^even(M; ℚ) とする。

 

定理 4 (Anomaly cancellation): M理論の量子異常が相殺されるための必要十分条件は以下である

I₈ = 1/48 [p₂(M) - (p₁(M)/2)²] = 0

ここで p₁(M), p₂(M) は M の Pontryagin 類である

 

定理 5 (Index theorem): M 上の Dirac 作用素 D̸ の指数は以下で与えられる:

ind(D̸) = ∫_M Â(M) ch(S)

ここで Â(M) は M の Â-genus、ch(S) は S の Chern 指標である

双対性

定義 9: 位相CW 複体の圏を Topアーベル群の圏を Ab とする。

 

定理 6 (T-duality): 適切な条件下で、以下の同型が存在する:

K(X × S¹) ≅ K(X × S¹)

ここで X は CW 複体、右辺の S¹ は双対円を表す。

 

定理 7 (S-duality): 適切な条件下で、以下の同型が存在する:

H^k(M; ℤ) ≅ H_{11-k}(M; ℤ)

ここで H^k は k 次コホモロジー群、H_k は k 次ホモロジー群を表す。

2024-09-10

騒音トラブルモスキート音のやつ、

モスキート音の逆位相の音を流して無音化できないの?

[] ミクロ経済学抽象化

1. 圏論アプローチによる消費者理論

1.1 基本設定
1.2 選好の表現
1.3 一般化された効用最大化問題

sup_{x ∈ U(X)} x subject to φ(x) ≤ w

ここで、φ: U(X) → ℝ は連続線形汎関数、w ∈ ℝ は初期富である

2. 微分位相幾何学アプローチによる生産理論

2.1 基本設定
2.2 一般化された利潤最大化問題

sup_{y ∈ T_p𝓜} ω(y)

2.3 生産対応特性化

生産対応を η: T*𝓜 → 2^{T𝓜} とし、以下の条件を満たす:

∀ω ∈ T*𝓜, η(ω) = {y ∈ T_p𝓜 : dω(y) = 0}

ここで、dω は ω の外微分である

3. 作用素代数アプローチによる一般均衡理論

3.1 経済定義

経済 ℰ をC*-代数 𝒜 上の作用素の組として定義

ℰ = ((ℋ_i, π_i, Ω_i)_{i ∈ I}, (T_j)_{j ∈ J})

ここで、

3.2 均衡の定義

状態 (ψ_i*)_{i ∈ I} と価格作用素 P ∈ 𝒜 が均衡であるとは、以下を満たすことを言う:

1. ∀i ∈ I, ψ_i* = arg max_{ψ ∈ ℋ_i} ⟨ψ, π_i(P)ψ⟩ subject to ⟨ψ, π_i(P)ψ⟩ ≤ ⟨Ω_i, π_i(P)Ω_i⟩ + ∑_{j ∈ J} θ_{ij} τ(PT_j)

2. ∀j ∈ J, T_j = arg max_{T ∈ 𝒜} τ(PT)

3. ∑_{i ∈ I} (ψ_i* - Ω_i) = ∑_{j ∈ J} T_j

ここで、τ は 𝒜 上のトレース、θ_{ij} は消費者 i の生産者 j に対する利潤シェアである

4. 非可換幾何学アプローチによる市場構造

4.1 スペクトル三つ組

市場構造を非可換幾何学の枠組みでモデル化:

(𝒜, ℋ, D)

ここで、

4.2 市場均衡の特性化

市場均衡を以下の作用素方程式特性化

[D, π(a)] = 0, ∀a ∈ 𝒜_{eq}

ここで、𝒜_{eq} ⊂ 𝒜 は均衡状態を表す部分代数、π は 𝒜 の ℋ 上の表現である

5. ホモトピー理論と均衡動学

均衡への収束過程ホモトピー理論を用いて分析

H: [0,1] × X → X

ここで、X は経済状態空間、H(0,x) = x_0(初期状態)、H(1,x) = x*(均衡状態である

均衡の安定性は、ホモトピー H の特異点構造と関連付けられる。

M理論幾何学でござる

M理論幾何学を最も抽象的かつ厳密に記述するには、圏論アプローチが不可欠でござる。

導来圏とM理論

M理論幾何学構造は、三角圏の枠組みで捉えることができるのでござる。特に、カラビ・ヤウ多様体 X の導来圏 D⁰(Coh(X)) が中心的役割を果たすのでござる。

定義:D⁰(Coh(X)) は連接層の有界導来圏であり、以下の性質を持つのでござる:

1. 対象:連接層の複体

2. 射:準同型の導来クラス

3. 三角構造:完全三角形の存在

この圏上で、Fourier-向井変換 Φ: D⁰(Coh(X)) → D⁰(Coh(X̂)) が定義され、これがミラー対称性数学的基礎となるのでござる。

A∞圏と位相的弦理論

M理論位相的側面は、A∞圏を用いて記述されるのでござる。

定義:A∞圏 𝒜 は以下の要素で構成されるのでござる:

1. 対象の集合 Ob(𝒜)

2. 各対の対象 X,Y に対する次数付きベクトル空間 hom𝒜(X,Y)

3. 次数 2-n の演算 mₙ: hom𝒜(Xₙ₋₁,Xₙ) ⊗ ⋯ ⊗ hom𝒜(X₀,X₁) → hom𝒜(X₀,Xₙ)

これらは以下のA∞関係式を満たすのでござる:

∑ᵣ₊ₛ₊ₜ₌ₙ (-1)ʳ⁺ˢᵗ mᵣ₊₁₊ₜ(1⊗ʳ ⊗ mₛ ⊗ 1⊗ᵗ) = 0

この構造は、Fukaya圏の基礎となり、シンプレクティック幾何学M理論を結びつけるのでござる。

高次圏論M理論

(∞,1)-圏

M理論の完全な幾何学記述には、高次圏論特に(∞,1)-圏が必要でござる。

定義:(∞,1)-圏 C は以下の要素で構成されるのでござる:

1. 対象の∞-グルーポイド Ob(C)

2. 各対の対象 x,y に対する写像空間 MapC(x,y)(これも∞-グルーポイド)

3. 合成則 MapC(y,z) × MapC(x,y) → MapC(x,z)(これはホモトピー整合的)

この構造により、M理論における高次ゲージ変換や高次対称性を厳密に扱うことが可能になるのでござる。

導来代数幾何学

M理論幾何学は、導来代数幾何学の枠組みでより深く理解できるのでござる。

定義:導来スタック X は、以下の関手として定義されるのでござる:

X: CAlg𝔻 → sSet

ここで、CAlg𝔻 は単体的可換環の∞-圏、sSet は単体的集合の∞-圏でござる。

この枠組みにおいて、M理論のモジュライ空間は導来スタックとして記述され、その特異性や高次構造を厳密に扱うことが可能になるのでござる。

量子コホモロジーとGromov-Witten不変量

M理論幾何学的側面は、量子コホモロジー環 QH*(X) を通じて深く理解されるのでござる。

定義:QH*(X) = H*(X) ⊗ ℂ[[q]] で、積構造は以下で与えられるのでござる:

α *q β = ∑A∈H₂(X,ℤ) (α *A β) qᴬ

ここで、*A はGromov-Witten不変量によって定義される積でござる:

α *A β = ∑γ ⟨α, β, γ∨⟩₀,₃,A γ

この構造は、M理論における量子補正を厳密に記述し、ミラー対称性数学的基礎を与えるのでござる。

2024-09-09

M理論公理

基本概念
公理

1. (多様体構造) M は滑らかな11次元位相多様体である

2. (ゲージ構造) E は M 上のベクトルバンドルで、構造群 G を持つ。

3. (超対称性) M 上に32個の超対称性生成子 Q_α (α = 1, ..., 32) が存在し、以下の反交換関係を満たす:

{Q_α, Q_β} = 2(CΓ^μ)_αβ P_μ + Z_αβ

ここで C は電荷共役行列、Γ^μ はガンマ行列、P_μ は運動量演算子、Z_αβ は中心電荷

4. (作用原理) M理論作用 S は以下の形式を持つ:

S = ∫_M (R * 1 + 1/2 * F ∧ *F + ψ̄Γ^μ∇_μψ + ...)

ここで R はスカラー曲率、* はHodgeのスター演算子

5. (双対性) 異なるコンパクト化 M → M' に対して、物理的に等価理論が得られる。

定理

定理1 (BPS状態存在)

エネルギーが中心電荷で下から押さえられるBPS状態存在する。

 

証明:

1. 超対称性代数からエネルギー演算子 H は以下の不等式を満たす:

H ≥ √(Z_αβ Z^αβ)

2. この不等式の等号が成り立つ状態BPS 状態と呼ぶ。

3. 超対称性表現論により、このような状態は必ず存在する。

4. よって、BPS状態存在が示された。 □

 

定理2 (M2ブレーンの張力)

M2ブレーンの張力 T_M2 は、11次元プランク長 l_p を用いて以下のように与えられる:

T_M2 = 1 / (4π²l_p³)

 

証明:

1. 作用原理からM2ブレーンの世界体積作用を導出する。

2. この作用11次元重力理論作用比較する。

3. 次元解析により、張力 T_M2次元が [長さ]^(-3) であることがわかる。

4. 唯一の長さスケールである l_p を用いて表現すると、係数を含めて上記の結果が得られる。

5. この結果は、デュアリティ変換の下で不変である。 □

2024-09-08

M理論ビッグバン関係

M理論を用いたビッグバンの数理的解明は、現代理論物理学最前線位置する課題である。以下に、より厳密な数学的枠組みを用いてこの問題アプローチする。

1. 多様体位相構造

M理論の基底となる11次元時空は、以下のように定義される:

(M¹¹, g) ≅ (R¹,³ × X⁷, η ⊕ h)

ここで、M¹¹は11次元多様体、gはその上の計量、R¹,³はミンコフスキー時空、X⁷はコンパクトな7次元多様体、ηはミンコフスキー計量、hはX⁷上のリッチ平坦計量である

2. 超対称性とスピノー構造

M理論超対称性は、以下のスピノー方程式で特徴づけられる:

D_μ ε = 0

ここで、D_μはスピン接続、εは11次元のMajorana-Weylスピノーである

3. 膜力学作用汎関数

M2-ブレーンの動力学は、以下のNambu-Goto作用記述される:

S[X] = -T_2 ∫_Σ d³σ √(-det(g_αβ))

ここで、T_2はブレーン張力、g_αβ = ∂_αX^μ ∂_βX^ν G_μνはブレーンの誘導計量、G_μνは背景時空の計量である

4. ビッグバンのトポロジカルモデル

ビッグバンを膜の衝突として捉える場合、以下の位相的遷移を考える:

M¹¹ ⊃ M₁ ∪ M₂ → M'

ここで、M₁とM₂は衝突前の膜宇宙、M'は衝突後の統合された宇宙を表す。この遷移は、コボルディズム理論の枠組みで厳密に定式化される。

5. 重力階層問題

11次元重力定数G₁₁と4次元重力定数G₄の関係は、以下の積分方程式で表される:

1/G₄ = Vol(X⁷)/G₁₁

ここで、Vol(X⁷) = ∫_X⁷ √det(h) d⁷y はX⁷の体積である

6. アノマリー相殺整合性条件

M理論の無矛盾性は、以下のBianchi恒等式アノマリー相殺条件によって保証される:

dH = 1/(2π)² [p₁(R) - 1/2 tr F² + tr R²]

ここで、Hは3形式場、p₁(R)は第一ポントリャーギン類、FとRはそれぞれゲージ場と重力場の曲率である

7. 多元宇宙位相的分類

多元宇宙構造は、以下のような圏論的枠組みで記述される:

Multiverse ≅ lim→ (M_i, φ_ij)

ここで、M_iは個々の宇宙、φ_ijは宇宙間の遷移を表す射である

これらの数学構造は、M理論を用いたビッグバン理解に対して厳密な基礎を提供する。しかしながら、完全な証明には至っておらず、特に量子重力効果の非摂動的取り扱いや、実験検証可能性問題が残されている。今後、代数幾何学位相的場理論などの高度な数学手法を用いた更なる研究が期待される。

2024-09-02

[] 実現可能集合から全体の効用を最大化

定式化

1. (X, 𝒯) を局所ハウスドル位相線形空間とする。

2. ℱ ⊂ X を弱コンパクト凸集合とする。

3. 各 i ∈ I (ここで I は可算または非可算の指標集合) に対して、効用汎関数 Uᵢ: X → ℝ を定義する。Uᵢ は弱連続かつ擬凹とする。

4. 社会厚生汎関数 W: ℝᴵ → ℝ を定義する。W は弱連続かつ単調増加とする。

最適化問題

sup[y∈ℱ] W((Uᵢ(y))ᵢ∈I)

理論分析

1. 存在定理:

定理: ℱ が弱コンパクトで、全ての Uᵢ が弱上半連続、W が上半連続ならば、最適解が存在する。

証明: Ky Fan の不動点定理を応用する。

2. 双対性理論:

プリマ問題を以下のように定義する:

P: sup[y∈ℱ] W((Uᵢ(y))ᵢ∈I)

対応する双対問題

D: inf[λ∈Λ] sup[y∈X] {W((Uᵢ(y))ᵢ∈I) - ⟨λ, y⟩}

ここで、Λ は適切に定義された双対空間である

定理 (強双対性): 適切な制約想定のもとで、sup P = inf D が成立する。

3. 変分解析アプローチ:

∂W を W の劣微分とし、∂Uᵢ を各 Uᵢ の劣微分とする。

定理: y* ∈ ℱ が最適解であるための必要十分条件は、

0 ∈ ∂(W ∘ (Uᵢ)ᵢ∈I)(y*) + Nℱ(y*)

ここで、Nℱ(y*) は y* における ℱ の法錐である

4. 函数解析的特性付け:

T: X → X* を以下のように定義する:

Ty, h⟩ = Σ[i∈I] wᵢ ⟨∂Uᵢ(y), h⟩

ここで、wᵢ ∈ ∂W((Uᵢ(y))ᵢ∈I) である

定理: y* ∈ ℱ が最適解であるための必要十分条件は、

Ty*, y - y*⟩ ≤ 0, ∀y ∈ ℱ

5. 非線形スペクトル理論:

L: X → X を L = T ∘ Pℱ と定義する。ここで Pℱ は ℱ 上への射影作用素である

定理: L のスペクトル半径 r(L) が1未満であれば、最適解は一意に存在し、反復法 y[n+1] = Ly[n] は最適解に収束する。

6. 測度論的アプローチ:

(Ω, 𝒜, μ) を確率空間とし、U: Ω × X → ℝ を可測な効用関数とする。

定理: 適切な条件下で、以下が成立する:

sup[y∈ℱ] ∫[Ω] U(ω, y) dμ(ω) = ∫[Ω] sup[y∈ℱ] U(ω, y) dμ(ω)

7. カテゴリー論的解釈:

効用関数の族 (Uᵢ)ᵢ∈I を圏 𝐓𝐨𝐩 における関手 U: I → 𝐓𝐨𝐩 と見なす。ここで I は離散圏である

定理: 適切な条件下で、最適化問題の解は U の余極限として特徴付けられる。

量子論現実数学構造

基本構造

状態観測

力学情報

複合系と相互作用

抽象化一般

まとめ

ループ量子重力理論幾何学的基礎

1. 微分多様体接続

ループ量子重力理論は、4次元ローレンツ多様体 M 上で定義される。この多様体上に、SU(2)主束 P(M,SU(2)) を考え、その上の接続 A を基本変数とする。

A ∈ Ω^1(M) ⊗ su(2)

ここで、Ω^1(M) は M 上の1-形式空間su(2) は SU(2)のリー代数である

2. ホロノミーと量子化

接続 A のホロノミーを用いて、シリンダー関数定義する:

Ψ_γ[A] = f(hol_γ[A])

ここで、γ は M 上の閉曲線、hol_γ[A] は γ に沿った A のホロノミー、f は SU(2)上の滑らかな関数である。これらのシリンダー関数の完備化により、運動学的ヒルベルト空間 H_kin が構成される。

3. スピンネットワークと量子幾何学

H_kin の正規直交基底は、スピンネットワーク状態 |Γ,j,i⟩ で与えられる。ここで、Γ は M 上のグラフ、j はエッジに付随するスピン、i は頂点に付随する内部量子数である

面積演算子 Â と体積演算子 V̂ は、これらの状態上で離散スペクトルを持つ:

Â|Γ,j,i⟩ = l_P^2 Σ_e √j_e(j_e+1) |Γ,j,i⟩

V̂|Γ,j,i⟩ = l_P^3 Σ_v f(j_v,i_v) |Γ,j,i⟩

ここで、l_P はプランク長さ、f は頂点での量子数関数である

4. 時空の発展と因果構造

時空の発展は、スピンフォーム σ: Δ → SU(2) で記述される。ここで、Δ は2-複体である物理的遷移振幅は、

Z(σ) = Σ_j Π_f A_f(j_f) Π_v A_v(j_v)

で与えられる。A_f と A_v はそれぞれ面と頂点の振幅である

5. 不変量と位相性質

理論位相性質は、ウィルソンループ不変量

W_γ[A] = Tr P exp(∮_γ A)

を通じて特徴づけられる。ここで、P は経路順序付け演算子である

6. 対称性と変換群

理論微分同相不変性を持ち、変換群 Diff(M) の作用の下で不変であるさらに、ゲージ変換 g: M → SU(2) の下での不変性も持つ:

A → gAg^-1 + gdg^-1

7. コホモロジー理論との関連

理論数学構造は、BF理論を通じてトポロジカル場の理論と関連付けられる。これにより、4次元多様体ドナルドソン不変量との関連が示唆される。

2024-09-01

2024/08/31

 ひとつノートの中に自分精神を集約するという考えがしばしば私の心を捉える。私の注意力は散漫であり、精神活動の成果をただ生活の諸場面に撒き散らして終わってしまう。だがそれを一か所に押しとどめることができれば、そこに何か、私の精神の輝きと呼べるようなものが見えてくるのではないか、と期待するのである

 私という薄ぼんやりした光は集光レンズ必要としている。

 瞑想がその役割果たしてくれればよいのにと思う。だがこうして左手文章を書くことのほうが、はるかに強く光を集める。(注:この文章は紙のノート利き手でない手で書いた文章を転記したものである

 瞑想によって心を集中させるには、私は自分に甘すぎるのかもしれない。単にコツが掴めていないだけかもしれないが。

 これから自分人生に何一つ希望が持てていない。希望というか、楽しみにしていることがない。またそのような対象ができるとも思えない。というのは、未来において何かが得られることを心待ちにするという心理状態が、もはや私においては不可能と感じられるからだ。

 つまりこういうことだ。手を尽くして欲しいものを掴み取ったとする。すると私は「手を尽くしたのでこれは当然のことだ。起こるべきことが起こっただけだ」と思うだろう。そこには高揚感や達成感はなく、自明疲労感が残されるだけである。では苦労なく手に入れたとしたらどうか。その場合は「ただそのようになっただけだ。私の人生とは関係がない」と思うだろう。

 要するに、私は非常に疲れやすいので、達成の小さな喜びは、達成に至るまでの労力に打ち消されてしまい、かといって単なる幸運自分の手柄とも思えない、ということである

 そもそも達成したい事柄自分にはほとんど存在しないのである物質成功はもはや煩わしいものとなっている。もちろん私は虚栄心にまみれた人間からちょっとした成功でしばしば調子に乗ってしまう。そしてしばらくして我に返り、みじめな気分になるのだ。それは、その時の喜びが、純粋に虚栄心に由来するのであって、自分の本当の望みとは関係ないことを知るからだ。何かが上手くいくたびにそれがわかるのだ。

 この記述自体が虚栄心によるのであって、私は自己認識に失敗している、と思う。

 仮に努力の末に二兆円の資産を得たとしよう(自己認識の上では、別にそれが欲しいわけではないが)。私は喜ぶだろうか?働く必要がなくなり、時間的自由を得られたことを自分ポジティブ評価するだろうとは思う。つまり少し安心するだろうということだ。

 私にとって物質成功とは、物質苦痛を減らす方法に過ぎない。苦痛は少ないに越したことはないが、耐えれば済む話でもある。快適に生きて快適に死んだとして、それをよい人生とは思えない。その意味で、快も苦痛も大差ないと考えている。

 私は異常に理想が高いのだ。あるいは、私の理想は、現代社会一般的なそれとは位相が異なっている。これは宗教的感情である

 もちろん、物質快楽よりも宗教的崇高さのほうが格上だから、と私の虚栄心がささやいているだけという可能性は否めない。というかたぶんそうなのだろう。自分のやる気の無さにもっともらしい説明を与えているだけだ。

 異様な無気力。これだけが真実であるしかしそれが真実であるなら、私の人生の目的が形而上学位相にの存在しうる(しないかもしれないが)、ということもまた真実ではないか

 「無気力治療できる」という通念が、社会物質的傾向を強化しているのだ。物質的傾向というのはここでは精神位相無視する傾向性のことを意味している。「我々に迎合しないのは甘えである。なぜならその手段は常に準備されているのだから」というわけだ。コンサータを飲んで労働にいそしまないのは甘えである

 勇気をもって NO を突き返そう。だがその NO が具体的にどのような形をとるのか分からいから困っている、と言える。出家か?だがこの道も物質世界に吸収されて久しい。

 手書きだと時間がかかる。続きは明日考えよう。

2024-08-31

能力の超絶スゴイ統一理論だよ!

ねえねえ、聞いてよ!念能力マジで数学表現ちゃう超やべぇ理論を考えついちゃったんだ!これマジですごいから、ちゃんと聞いてね!

1. まず、念能力空間 Ω ってのを考えるんだ。これ、完備な可分位相ベクトル空間なんだよ。やべぇだろ?

2. そこに内積 ⟨·,·⟩: Ω × Ω → ℂ を定義ちゃうんだ。これでΩがヒルベルト空間なっちゃうんだよ。超クールでしょ?

3. 念能力状態を表す波動関数 ψ ∈ Ω があってさ、これがこんな感じの方程式に従うんだ:

iħ ∂ψ/∂t = Ĥ(t)ψ + ∫ K(x,y,t)ψ(y)dy + F[ψ]

ヤバくない?これ、一般化されたシュレーディンガー方程式なんだぜ!

4. 観測可能量 A には自己共役作用素 Â が対応してて、期待値は ⟨A⟩ = ⟨ψ|Â|ψ⟩ で与えられるんだ。量子力学っぽくてめっちゃカッコいいよね!

5. 念能力の発現を表す作用素 P̂ はこんな感じ:

P̂ = exp(iĤt/ħ)P̂₀exp(-iĤt/ħ)

これ、ハイゼンベルク描像っていうんだぜ。知ってた?

6. 能力進化は量子ダイミカセミグループ {T_t}_{t≥0} で記述できちゃうんだ:

T_t: ρ ↦ exp(Lt

ρ は密度作用素で、L はリンドブラド型生成子だよ。難しそうに見えるけど、慣れれば簡単だよね!

7. 相互作用ハミルトニアン Ĥ_int もあるんだ:

Ĥ_int = ∑_{i<j} V_ij + ∑_{i<j<k} W_ijk + ...</p>

これで複数の念能力者の相互作用表現できちゃうんだよ。すごくない?

8. 能力の分類は Ω の部分空間の直和分解で表現ちゃうよ:

Ω = ⊕_α Ω_α

これで強化系とか放出系とか、いろんなタイプ能力表現できるんだ!

9. 能力の成長は量子制御問題として定式化できちゃうんだ:

max_u ⟨ψ(T)|Ô|ψ(T)⟩

subject to iħ ∂ψ/∂t = [Ĥ₀ + u(t)Ĥ_c]ψ

これで念能力トレーニング方法最適化できちゃうんだよ!

10. 最後に、能力の複雑さは量子レニーエントロピーで測れちゃうんだ:

S_α(ρ) = (1/(1-α)) log(Tr(ρ^α)) (α > 0, α ≠ 1)

これで念能力の複雑さが数値化できちゃうんだよ!やべぇ!

ねぇ、これめっちゃすごくない?量子力学とか関数解析とか制御理論とか情報理論とか、全部組み合わせて念能力を完全に数学化しちゃったんだよ!

もうこれで、ハンターハンター世界とか幽☆遊☆白書世界とか、完全に理論的に解明できちゃうじゃん!僕、これ考えついた時、マジでゾクゾクしたよ!

現実世界じゃ使えないかもしれないけど、理論上は完璧なんだ!ねぇ、すごくない?僕、これで念能力マスターになれるかも!

2024-08-30

Eckart–Young–Mirskyの定理

定理:

任意の m,n 行列Aの特異値分解を以下のように表す。

A = U Σ V† = Σ σᵢ uᵢ vᵢ†

(ただし、σ₁ ≥ σ₂ ≥ ... ≥ σᵣ が成立)

Frobeniusノルムは以下のように定義される。

||A||_F = √( Σ |aᵢⱼ|² ) = √( tr(A†A) ) = √( Σ σᵢ² )

(ただし、tr は行列トレースを表す)

さらに、ランク k の行列 A_k を次のように定義する。

Aₖ = Σᵢ₌₁ₖ σᵢ uᵢ vᵢ†

このとき任意ランク k の行列 B_k に対して、次の不等式が成り立つ。

||A - Bₖ||_F ≥ ||A - Aₖ||_F

||A - Bₖ||_2 ≥ ||A - Aₖ||_2

証明:

Weylの不等式より、任意の i と j に対して以下が成立する。

σᵢ₊ⱼ₋₁(X + Y) ≤ σᵢ(X) + σⱼ(Y)

ここで、B のランクを k とする。さらに、σᵢ > ₖ (B) = 0 に注意する。

j = k+1, X = A - B, Y = B として、不等式は次のようになる。

σᵢ₊ₖ(A) ≤ σᵢ(A - B) + σₖ₊₁(B) = σᵢ(A - B)

これにより、

||A - B||_2 = σ₁(A - B) ≥ σₖ₊₁(A) = σ₁(A - Aₖ)

||A - B||_F² = Σ σᵢ²(A - B) ≥ Σ σᵢ₊ₖ²(A) = ||A - Aₖ||_F

系:

規格化された状態 |ψ> に対して、Schmidt分解を |ψ> = Σ₁ λᵢ |Lᵢ> |Rᵢ> とする。

ランク k の規格化された状態 |φₖ> に対して、次が成立する。

|<ψ|φₖ>| ≤ Σ₁ₖ λᵢ²

証明:

k ランク近似を |ψₖ> = Σ₁ₖ λᵢ |Lᵢ> |Rᵢ> とする。このとき、次の不等式が成り立つ。

|| |ψ> - |φₖ> ||_2 ≥ || |ψ> - |ψₖ> ||_2

これにより、

2 - 2 Re <ψ|φₖ> ≥ 1 + <ψₖ|ψₖ> - 2 Re <ψ|ψₖ>

したがって、

Re <ψ|φₖ> ≤ Re <ψ|ψₖ> + 1 - <ψₖ|ψₖ> / 2 ≤ Σ₁ₖ λᵢ²

|φₖ> の位相任意であるため、主張が得られる。

レベル分け説明: SVDとはなにか

SVD (特異値分解) について、異なる難易度説明します。

レベル1: 幼児向け

SVDは、大きな絵を小さなパーツに分ける魔法のようなものです。この魔法を使うと、複雑な絵をシンプルな形に分けることができます。例えば、虹色の絵を赤、青、黄色の3つの基本的な色に分けるようなものです。

レベル2: 大学生向け

SVD (Singular Value Decomposition) は、行列を3つの特別行列の積に分解する線形代数手法です。

A = UΣV^T

ここで:

SVDは次元削減、ノイズ除去、データ圧縮などの応用があります。主成分分析 (PCA) とも密接な関係があり、多変量解析や機械学習で広く使用されています

レベル3: 専門家向け

SVDは任意複素数体上の m×n 行列 A に対して以下の分解を提供します:

A = UΣV*

ここで:

主要な理論性質:

1. A の階数 r は、非ゼロ特異値の数に等しい

2. A の核空間は V の r+1 列目から n 列目によってスパンされる

3. A の値域は U の最初の r 列によってスパンされる

4. σ_i^2 は A*A (または AA*) の固有値

5. ||A||_2 = σ_1, ||A||_F = √(Σσ_i^2)

数値計算観点:

応用:

1. 低ランク行列近似 (Eckart–Young–Mirsky の定理)

2. 総最小二乗問題の解法

3. 擬似逆行列 (Moore-Penrose) の計算

4. 条件数評価: κ(A) = σ_1 / σ_r

高度な話題:

レベル4: 廃人向け

1. 関数解析一般化:

  • コンパクト作用素 T: X → Y (X, Y はHilbert空間) に対するSVD
  • Schmidt分解との関連: T = Σσ_n(·,v_n)u_n
  • 特異値の漸近挙動: Weyl's inequality と Lidskii's theorem

2. 無限次元への拡張:

3. 微分幾何学解釈:

4. 代数幾何学視点:

5. 高次元データ解析:

6. 量子アルゴリズム:

7. 非線形SVD:

8. 確率論的アプローチ:

9. 計算複雑性理論:

10. 偏微分方程式との関連:

- SVDを用いた固有値問題の解法 (Sturm-Liouville問題等)

- 非線形PDEの低次元モデル化 (Proper Orthogonal Decomposition)

K理論超弦理論関係

位相的K理論超弦理論のD-ブレーン分類

位相的K理論は、超弦理論におけるD-ブレーンの分類に本質的役割を果たす。具体的には、時空多様体XのスピンC構造に関連付けられたK理論群K(X)およびK^1(X)が重要である

定義: K(X) = Ker(K(X+) → K(pt))

ここで、X+はXの一点コンパクト化を表し、K(X+)はX+上のベクトル束の同型類のGrothedieck群である

Type IIB理論では、D-ブレーン電荷はK(X)の要素として分類され、Type IIA理論ではK^1(X)の要素として分類される。これは以下の完全系列に反映される:

... → K^-1(X) → K^0(X) → K^1(X) → K^0(X) → ...

捻れK理論とNS-NS H-フラックス

背景にNS-NS H-フラックス存在する場合、通常のK理論は捻れK理論K_H(X)に一般化される。ここでH ∈ H^3(X, Z)はH-フラックスコホモロジーである

捻れK理論は、PU(H)主束のモジュライ空間として定義される:

K_H(X) ≅ [X, Fred(H)]

ここで、Fred(H)はヒルベルト空間H上のフレドホルム作用素空間を表す。

微分K理論アノマリー相殺

D-ブレーンのアノマリー相殺機構は、微分K理論を用いてより精密に記述される。微分K理論群K^0(X)は、以下の完全系列で特徴付けられる:

0 → Ω^{odd}(X)/im(d) → K^0(X) → K^0(X) → 0

ここで、Ω^{odd}(X)はXの奇数微分形式空間である

アノマリー多項式は、微分K理論言葉で以下のように表現される:

I_8 = ch(ξ) √Â(TX) - ch(f!ξ) √Â(TY)

ここで、ξはD-ブレーン上のゲージ束、fはD-ブレーンの埋め込み写像、ch(ξ)はチャーン指標、Â(TX)はA-hat種を表す。

KK理論と弦理論双対性

Kasparovの KK理論は、弦理論の様々な双対性統一的に記述するフレームワーク提供する。KK(A,B)は、C*-環AとBの間のKasparov双モジュールの同型類のなすである

T-双対性は、以下のKK理論の同型で表現される:

KK(C(X × S^1), C) ≅ KK(C(X), C(S^1))

ここで、C(X)はX上の連続関数なすC*-環を表す。

導来圏とホモロジカルミラー対称性

導来圏D^b(X)は、複体の導来圏として定義され、K理論と密接に関連している:

K(X) ≅ K_0(D^b(X))

ホモロジカルミラー対称性は、Calabi-Yau多様体XとそのミラーYに対して、以下の圏同値予言する:

D^b(Coh(X)) ≅ D^b(Fuk(Y))

ここで、Coh(X)はX上のコヒーレント層の圏、Fuk(Y)はYのFukaya圏を表す。

2024-08-24

創発時空概要

1. 基本的な設定

(H, ⟨·|·⟩)を可分なヒルベルト空間とし、B(H)をH上の有界線形作用素の集合とする。

2. 量子状態観測

S(H) = {ρ ∈ B(H) : ρ ≥ 0, Tr(ρ) = 1}を密度作用素の集合とする。A ⊂ B(H)を自己共役作用素部分代数とし、これを観測量の集合とする。

3. 時間発展

ユニタリ群{Ut}t∈ℝを考え、シュレーディンガー方程式を以下のように表現する:

iħd/dtUt = HUt

ここでH ∈ Aはハミルトニアンである

4. 状態空間位相

S(H)上にトレース距離を導入し、位相空間(S(H), τ)を定義する。

5. 観測量の局所性

A上にC*-代数構造を導入し、局所的な部分代数の族{A(O)}O⊂ℝ⁴を定義する。ここでOは時空の開集合である

6. 因果構造の導出

A(O1)とA(O2)が可換であるとき、O1とO2は因果的に独立である定義する。これにより、ℝ⁴上に因果構造を導入する。

7. 計量の再構成

状態ρ ∈ S(H)に対し、関数dρ : A × A → ℝ+を以下のように定義する:

dρ(A, B) = √Tr(ρ[A-B]²)

この関数から、ℝ⁴上の擬リーマン計量gμνを再構成する手続き定義する。

8. 時空多様体創発

(ℝ⁴, gμν)を基底時空とし、これに対して商位相を導入することで、等価類の空間M = ℝ⁴/∼を定義する。Mを創発した時空多様体とみなす

9. 量子状態と時空の対応

写像Φ : S(H) → Mを構成し、量子状態と時空点の対応定義する。

10. 動力学の整合性

シュレーディンガー方程式による時間発展ρ(t) = Ut ρ Ut*が、M上の滑らかな曲線γ(t) = Φ(ρ(t))に対応することを示す。

2024-08-19

ヒルベルト空間分析

1. 多様体としてのヒルベルト空間

ヒルベルト空間無限次元線形空間だが、射影ヒルベルト空間として有限次元多様体のように扱うことができる。射影ヒルベルト空間 P(H) は、ヒルベルト空間 H の単位球面上のベクトルスカラー倍による同値類で割った空間であり、量子状態の集合を位相的に解析するための空間だ。局所座標系は、例えば、正規直交基底を用いてチャートとして定義され、局所的にユークリッド空間に似た構造を持つ。この構造により、量子状態位相特性を解析することが可能となる。

2. スキームとしてのヒルベルト空間

スキーム理論代数幾何学概念であり、ヒルベルト空間においては作用素環を通じて状態空間を解析するために用いる。特に自己共役作用素スペクトル分解を考慮し、各点を極大イデアル対応させる。このアプローチにより、量子状態観測可能量を代数的にモデル化することができる。例えば、観測可能量としての作用素 A のスペクトルは、A = ∫ λ dE(λ) という形で表され、ここで E(λ) は射影値測度である。これにより、量子状態代数特性を解析することが可能となる。

3. Hom(-, S)による記述

ヒルベルト空間における射は、線形作用素として表現される。特にユニタリ作用素 U: H → H は、U*U = UU* = I を満たし、量子力学における対称変換を表す。これにより、系の時間発展や対称性を解析することができる。射影作用素は、量子状態の測定を表現し、観測可能量の期待値や測定結果の確率計算する際に用いられる。これにより、量子状態の射影的性質を解析することが可能となる。

4. コホモロジー

ヒルベルト空間コホモロジーは、量子系のトポロジカル不変量を解析するための手段提供する。例えば、ベリー接続 A = ⟨ψ(R) | ∇ | ψ(R)⟩ やベリー曲率 F = ∇ × A は、量子状態パラメータ空間における幾何学位相性質記述する。チャーン数は、∫ F により計算され、トポロジカル不変量として系のトポロジカル相を特徴付ける。これにより、量子系のトポロジカル特性を解析することが可能となる。

5. 局所的断片からの再構築

ヒルベルト空間の基底を用いて、空間を再構築する。直交基底 { |e_i⟩ } は、量子状態の展開に用いられ、|ψ⟩ = Σ_i c_i |e_i⟩ と表現される。これにより、状態表現簡素化し、特定物理的状況に応じた解析を行う際に有用である。例えば、フーリエ変換は、状態を異なる基底で表現するための手法であり、量子状態の解析において重要役割を果たす。

6. 構造を保つ変換の群

ヒルベルト空間における構造を保つ変換は、ユニタリ群 U(H) として表現される。これらの群は、量子系の対称性記述し、保存量や選択則の解析に利用される。例えば、回転対称性角運動量保存に対応し、ユニタリ変換は系の時間発展や対称性変換を記述する。これにより、量子系の対称性特性を解析することが可能となる。

7. 距離空間としてのヒルベルト空間

ヒルベルト空間は、内積により誘導される距離を持つ完備距離空間である。具体的には、任意状態ベクトル |ψ⟩ と |φ⟩ の間の距離は、||ψ - φ|| = √⟨ψ - φ, ψ - φ⟩ で定義される。この距離は、量子状態類似性を測る指標として用いられ、状態間の遷移確率やフィデリティ計算に利用される。これにより、量子状態距離特性を解析することが可能となる。

2024-08-13

テキサスホールデムほんまおもろいわぁ

今日テキサスホールデムポーカーを考えてみたで。ほんま、ゲーム全体を抽象構造として捉えるんやけど、これがまたおもろいんやわ。

状態空間アクション空間

まず、テキサスホールデム状態空間 S とアクション空間 A の組としてモデル化するんや。

状態空間っちゅうのは、ゲームの全ての可能状態カードの配置とか、プレイヤーベット状況とか)を表してて、アクション空間プレイヤーが取れる全ての行動を表すんや。

S = {s₁, s₂, ..., sₙ}, A = {a₁, a₂, ..., aₘ}

遷移関数報酬関数

遷移関数 T: S × A → S は、ある状態特定アクションを取ったときの次の状態を決めるんや。

報酬関数 R: S × A → ℝ は、特定状態アクションの組み合わせに対する報酬を与えるんやで。

確率測度

状態空間アクション空間確率測度を定義して、各状態アクションの発生確率を測度論的に記述するんや。

これで、ゲームの進行を確率的な観点から解析できるんやで。

P: 𝔹(S × A) → [0, 1]

期待値計算

期待値は、報酬関数確率測度を用いて計算され、各アクションの期待される利得を評価するんや。

E[R(s, a)] = ∫(S × A) R(s, a) dP(s, a)

戦略空間

プレイヤー戦略戦略空間 Σ として定義して、戦略の組み合わせがゲームの結果に与える影響を解析するんや。

Σ = {σ₁, σ₂, ..., σₖ}

ナッシュ均衡

ナッシュ均衡は、戦略空間において、どのプレイヤー自分戦略を変更することで利益を得られない状態や。

これを数学的に次のように定義するんや。

uᵢ(σᵢ, σ₋ᵢ) ≥ uᵢ(σ'ᵢ, σ₋ᵢ), ∀ σ'ᵢ ∈ Σᵢ

情報セット

プレイヤー情報セットを用いて、各プレイヤーが持つ情報の非対称性をモデル化するんや。情報セットは、プレイヤーが観察可能な全ての情報を含むんやで。

Iᵢ = {Iᵢ₁, Iᵢ₂, ..., Iᵢₘ}

エントロピー

エントロピーを用いて、情報の不確実性を定量化するんや。情報の増加や減少が戦略に与える影響を解析するんやで。

H(X) = -∑(x ∈ X) P(x) log P(x)

戦略連続

戦略空間位相を導入して、戦略連続性を解析するんや。

これにより、戦略の微小な変化がゲームの結果に与える影響を評価するんやで。

連続関数 f: Σ → ℝ

ホモトピー

戦略間の連続的変形をホモトピーとして捉えて、異なる戦略間の変換を解析するんや。

H: Σ × [0, 1] → Σ

この方法で、テキサスホールデムポーカー数学的に理解して、理論的に最適な戦略を導き出すことができるんや。

ほんま、ゲーム本質抽象的かつ数理的に捉えることができるんやで。

おもろいわ!

2024-08-09

anond:20240809132445

地震振動に合わせて医者が膝をかくかくさせて逆位相の波で打ち消すよ

医学部ではこれの実習もあるから医者はみんなできるよ

2024-08-06

anond:20240806194319

ドンってされた瞬間に反位相で打ち消すマシンにしてください

2024-08-05

意識数理モデルの具体化

1. 抽象状態空間

Ωを仮に100次元の実ベクトル空間R^100とする。各次元特定の神経活動パターン対応する。

Ω = {ω ∈ R^100 | ||ω||₂ ≤ 1}

ここで||・||₂はユークリッドノルムである。τは標準的ユークリッド位相とする。

2. 一般観測作用素

観測Oを10100の実行列として定義する。

O : Ω → Ω

O(ω) = Aω / ||Aω||₂

ここでAは10100の実行列で、||Aω||₂ ≠ 0とする。

3. 一般エントロピー汎関数

シャノンエントロピー連続版を使用して定義する:

S[ω] = -∫Ω p(x) log p(x) dx

ここでp(x)はωに対応する確率密度関数である

4. 観測によるエントロピー減少の公理

任意観測Oに対して以下が成立する:

S[O(ω)] ≤ S[ω] + log(det(AA^T))

5. 抽象力学系

非線形常微分方程式系として定式化する:

dω/dt = F(ω) + G(ω, O)

F(ω) = -αω + β tanh(Wω)

G(ω, O) = γ(O(ω) - ω)

ここでα, β, γは正の定数、Wは10100の重み行列tanhは要素ごとの双曲線正接関数である

6. 一般情報幾何

フィッシャー情報行列を導入する:

g_ij(ω) = E[(∂log p(x|ω)/∂ω_i)(∂log p(x|ω)/∂ω_j)]

ここでE[・]は期待値、p(x|ω)は状態ωでの条件付き確率密度関数である

7. 抽象量子化

状態ωに対応する波動関数ψ(x)を定義する:

ψ(x) = √(p(x)) exp(iθ(x))

ここでθ(x)は位相関数である

8. 一般統合情報理論

統合情報量Φを以下のように定義する:

Φ[ω] = min_π (I(X;Y) - I(X_π;Y_π))

ここでI(X;Y)は相互情報量、πは可能な分割、X_πとY_πは分割後の変数である

9. 普遍的学習

勾配降下法を用いて定式化する:

ω_new = ω_old - η ∇L(ω_old, O)

L(ω, O) = ||O(ω) - ω_target||₂²

ここでηは学習率、ω_targetは目標状態である

10. 抽象因果構造

有向非巡回グラフ(DAG)として表現する:

G = (V, E)

V = {v_1, ..., v_100}

E ⊆ V × V

各頂点v_iはω_iに対応し、辺(v_i, v_j)はω_iからω_jへの因果関係を表す。

実装例:

このモデルPythonとNumPyを用いて以下のように実装できる:

import numpy as np
from scipy.stats import entropy
from scipy.integrate import odeint
import matplotlib.pyplot as plt

class ConsciousnessModel:
    def __init__(self, dim=100):
        self.dim = dim
        self.omega = np.random.rand(dim)
        self.omega /= np.linalg.norm(self.omega)
        self.A = np.random.rand(dim, dim)
        self.W = np.random.rand(dim, dim)
        self.alpha = 0.1
        self.beta = 1.0
        self.gamma = 0.5
        self.eta = 0.01

    def observe(self, omega):
        result = self.A @ omega
        return result / np.linalg.norm(result)

    def entropy(self, omega):
        p = np.abs(omega) / np.sum(np.abs(omega))
        return entropy(p)

    def dynamics(self, omega, t):
        F = -self.alpha * omega + self.beta * np.tanh(self.W @ omega)
        G = self.gamma * (self.observe(omega) - omega)
        return F + G

    def update(self, target):
        def loss(o):
            return np.linalg.norm(self.observe(o) - target)**2
        
        grad = np.zeros_like(self.omega)
        epsilon = 1e-8
        for i in range(self.dim):
            e = np.zeros(self.dim)
            e[i] = epsilon
            grad[i] = (loss(self.omega + e) - loss(self.omega - e)) / (2 * epsilon)
        
        self.omega -= self.eta * grad
        self.omega /= np.linalg.norm(self.omega)

    def integrated_information(self, omega):
        def mutual_info(x, y):
            p_x = np.abs(x) / np.sum(np.abs(x))
            p_y = np.abs(y) / np.sum(np.abs(y))
            p_xy = np.abs(np.concatenate([x, y])) / np.sum(np.abs(np.concatenate([x, y])))
            return entropy(p_x) + entropy(p_y) - entropy(p_xy)
        
        total_info = mutual_info(omega[:self.dim//2], omega[self.dim//2:])
        min_info = float('inf')
        for i in range(1, self.dim):
            partition_info = mutual_info(omega[:i], omega[i:])
            min_info = min(min_info, partition_info)
        
        return total_info - min_info

    def causal_structure(self):
        threshold = 0.1
        return (np.abs(self.W) > threshold).astype(int)

    def run_simulation(self, steps=1000, dt=0.01):
        t = np.linspace(0, steps*dt, steps)
        solution = odeint(self.dynamics, self.omega, t)
        self.omega = solution[-1]
        self.omega /= np.linalg.norm(self.omega)
        return solution

    def quantum_state(self):
        phase = np.random.rand(self.dim) * 2 * np.pi
        return np.sqrt(np.abs(self.omega)) * np.exp(1j * phase)

# モデル使用model = ConsciousnessModel(dim=100)

# シミュレーション実行
trajectory = model.run_simulation(steps=10000, dt=0.01)

# 最終状態の表示
print("Final state:", model.omega)

# エントロピー計算
print("Entropy:", model.entropy(model.omega))

# 統合情報量の計算
phi = model.integrated_information(model.omega)
print("Integrated Information:", phi)

# 因果構造の取得
causal_matrix = model.causal_structure()
print("Causal Structure:")
print(causal_matrix)

# 観測の実行
observed_state = model.observe(model.omega)
print("Observed state:", observed_state)

# 学習の実行
target_state = np.random.rand(model.dim)
target_state /= np.linalg.norm(target_state)
model.update(target_state)
print("Updated state:", model.omega)

# 量子状態の生成
quantum_state = model.quantum_state()
print("Quantum state:", quantum_state)

# 時間発展の可視化
plt.figure(figsize=(12, 6))
plt.plot(trajectory[:, :5])  # 最初の5次元のみプロット
plt.title("Time Evolution of Consciousness State")
plt.xlabel("Time Step")
plt.ylabel("State Value")
plt.legend([f"Dim {i+1}" for i in range(5)])
plt.show()

anond:20240804172334

2024-07-28

AI生成による超弦理論入門

具体的に超弦理論幾何学定義します。

1. 多様体としての定義

超弦理論基本的空間は、10次元ローレンツ多様体 M として定義されます

  • M = R^(1,3) × X

ここで、R^(1,3) は4次元ミンコフスキー時空を、X は6次元コンパクト多様体を表します。

1. リッチ平坦

2. 複素構造を持つ

3. ケーラー計量を許容する

2. スキームとしての表現

X をスキームとして表現します:

  • X = (|X|, O_X)

ここで |X| は位相空間、O_X は構造層です。

f(z1, z2, z3) = 0

ここで f は複素多項式です。

3. 射による記述

超弦理論空間を、モジュライ空間 M_CY からの射として記述します:

  • φ: M → M_CY

ここで M_CY はカラビ・ヤウ多様体のモジュライ空間です。

4. コホモロジー論的アプローチ

X の位相性質を以下のコホモロジー群で特徴づけます

特に、ホッジ数 h^p,q = dim H^p,q(X) が重要です。

5. 組み合わせ論的再構築

X を単体的複体として再構築します:

  • X ≃ |K|

ここで K は単体的複体、|K| はその幾何学的実現です。

6. 対称性群による特徴づけ

超弦理論対称性を以下の群で特徴づけます

  • Diff(M) : M のディフェオモルフィズム群
  • G : ゲージ群(例:E8 × E8 または SO(32))

7. 距離空間としての定義

M 上に擬リーマン計量 g を導入します:

  • ds^2 = g_μν dx^μ dx^ν

ここで g_μν は計量テンソルです。

この計量から、2点間の固有距離定義します:

  • d(p,q) = ∫_γ √(|g_μν dx^μ dx^ν|)

ここで γ は p と q を結ぶ測地線です。

これらの定義を組み合わせることで、超弦理論幾何学をより具体的に特徴づけることができます。各アプローチ理論の異なる側面を捉え、全体として超弦理論の豊かな数学構造表現しています

2024-07-26

anond:20240726000604

1012の最小公倍数が60なのに、どうやって120使うんや

60年に一度、十干十二支のどっちかの位相をずらさなきゃいけなくなるので不都合でしょ

2024-07-22

[] 動的一般均衡理論抽象拡張

1. 基本設定

経済表現する空間を E とし、これを局所位相線形空間とする。価格空間 P を E の双対空間 E* の部分集合とし、商品空間 X を E の部分集合とする。

2. 一般化された超過需要関数

Z: P × Ω → X を一般化された超過需要関数とする。ここで Ω は外生パラメータ空間である。Z は以下の性質を満たす:

(a) 連続性:Z は P × Ω 上で連続

(b) 一般化された同次性:任意の λ > 0 に対して Z(λp, ω) ≈ Z(p, ω)

ここで ≈ は適切に定義された同値関係

(c) 一般化されたワルラス法則:<p, Z(p, ω)> = 0

ここで <・,・> は E* と E の間の双対性を表す

(d) 境界条件:p が P の境界に近づくとき、||Z(p, ω)|| は無限大に発散

3. 価格調整メカニズム

価格の動的調整を表現するために、以下の無限次元力学系を導入する:

dp/dt = F(Z(p, ω))

ここで F: X → TP は C^1 級写像であり、TP は P の接束を表す。

4. 均衡の存在と安定性

定理1(均衡の存在):適切な位相的条件下で、Z(p*, ω) = 0 を満たす p* ∈ P が存在する。

証明の概略:KKM(Knaster-Kuratowski-Mazurkiewicz)の定理一般化した不動点定理を応用する。

 

定理2(局所安定性):p* の近傍 U が存在し、初期値 p(0) ∈ U に対して、解軌道 p(t) は t → ∞ のとき p* に収束する。

証明の概略:リャプノフ関数 V(p) = ||Z(p, ω)||^2 / 2 を構成し、V の時間微分が負定値となることを示す。

5. 不均衡動学

不均衡状態における経済主体の行動を記述するために、以下の最適化問題を導入する:

 

経済主体 i に対して、

最大化 U_i(x_i)

制約条件 <p, x_i> ≤ w_i + Σ_j p_j min{z_ij, 0}

 

ここで U_i は効用汎関数、w_i は初期富、z_ij は財 j に対する主体 i の超過需要である

6. 確率拡張

確率空間 (Ω, F, P) 上で、以下の確率微分方程式を考察する:

dp(t) = F(Z(p(t), ω))dt + σ(p(t), ω)dW(t)

ここで W(t) は適切な次元のウィーナー過程、σ はボラティリティ作用素である

7. 漸近解析

ε → 0 のとき、以下の特異摂動問題考察する:

ε dp/dt = F(Z(p, ω))

この解析により、短期的な価格調整と長期的な均衡の関係を明らかにする。

8. 一般化された不動点定理

定理3(一般化された不動点定理):P が局所位相線形空間 E の非空、凸、コンパクト部分集合であり、F: P → P が連続写像であるとき、F は不動点を持つ。

この定理を用いて、より一般的な経済モデルにおける均衡の存在証明できる。

 

定理 4: 漸近挙動定理

ε → 0 のとき、特異摂動問題 ε dp/dt = F(Z(p, ω)) の解の漸近挙動は、元の動的システムの長期的均衡と一致する。

2024-05-24

いいこと書いてある

そもそも男性に生じている問題を「排除」ではなく「差別」の文脈で語ることは間違っています差別とは、歴史的構造のなかで、ある特定属性を持ってきた人たちに対して社会不利益を負わせてきたことです。この意味での「差別」は女性が受けている一方で、マジョリティ側の男性は受けていません。

また、障害を持つ男性も「弱者男性」に含めるべきだ、と論じられることもあります障害を持つ人が「差別」を受けていることは確かですが、「障害者は政策によって支援すべき」という社会的な合意はすでに成立しており、経済恋愛とは位相が異なる問題です。

昨今の弱者男性論は、90年代以降の「排除」論で語るべき物事を、70年代以来の「差別」論に基づいて語っている点で誤っています。そのために適切に議論することが難しくなり、「実は女性よりも男性のほうが差別されている」などと主張する不毛な「逆差別」論に終始しているのです。

端的に言えば、「差別」されているのは女性であり、一方で「排除」は男性の側に目に付くようになった、ということでしょう。ただし女性は、「差別」と「排除」の両方を受けることもあり、そうした点にも配慮する必要があります

お前らはガタガタうるさいけどそれ差別じゃ無いから。

排除されたくなければ文句わず大人しくしとけ。

ログイン ユーザー登録
ようこそ ゲスト さん