はてなキーワード: ホモトピー群とは
Chern-Simons理論は、特に3次元のトポロジカル量子場理論(TQFT)における中心的な役割を果たす理論でござって、その定式化は主に接続(connection)と曲率(curvature)という微分幾何学の概念に基づいておるのでござる。この理論は、特にゲージ理論とトポロジーの交差点で深い意味を持ち、リー群上の接続のトポロジー的性質を探るものでござる。以下では、厳密な数学的枠組みのもとで、Chern-Simons理論を詳細に説明いたすでござる。
Chern-Simons理論は、主束上で定義される接続から構築されるのでござる。ここで、P(E) を G 群の主束とし、G をリー群、𝔤 をそのリー代数といたすでござる。主束は次のように定義されるのでござる:
P(E) → M,
ここで M は3次元の多様体で、E はファイバー空間を表すのでござる。接続 A ∈ Ω¹(M, 𝔤) はこの主束上の1-形式でござって、各点でリー代数 𝔤 の値を取るのでござる。
接続 A は、接続を持つファイバー上の接続のトランスポートを表現し、リー群の基準を用いて測地線のようにデータを運ぶのでござる。接続 A によって定義される曲率は、外微分 dA と二次の項 A ∧ A を含む、次の形で表現されるのでござる:
F_A = dA + A ∧ A.
ここで、F_A は接続 A の曲率2-形式でござって、ゲージ群 G の接続が示す物理的な局所的な場を表すのでござる。
Chern-Simons形式は、主に接続の曲率を用いて定義されるのでござる。3次元多様体 M 上でのChern-Simons形式 CS(A) は、接続 A の曲率 F_A に基づいて次のように表されるのでござる:
CS(A) = ∫_M Tr(A ∧ dA + ⅔ A ∧ A ∧ A),
ここで、Tr はリー代数 𝔤 のトレースを取る演算子でござって、各項は外積(wedge product)によって形成されるのでござる。具体的には、A ∧ dA は接続 A とその外微分 dA の外積を、A ∧ A ∧ A は接続の3重積を意味するのでござる。
Chern-Simons形式は、ゲージ変換に対して不変であることが重要な特徴でござる。ゲージ変換は、接続 A に対して次のように作用するのでござる:
A → g⁻¹Ag + g⁻¹dg,
ここで g ∈ G はゲージ群の元でござる。この変換によって、Chern-Simons形式がどのように振る舞うかを調べると、次のように変換することがわかるのでござる:
CS(A) → CS(A) + ∫_M Tr(g⁻¹dg ∧ g⁻¹dg ∧ g⁻¹dg).
これは、Chern-Simons形式がゲージ変換の下でトポロジカル不変量として振る舞うことを示しておるのでござる。すなわち、Chern-Simons形式の値は、ゲージ変換による局所的な変更には依存せず、主に多様体のトポロジーに依存することが分かるのでござる。
Chern-Simons理論の量子化は、パスインテグラルを用いた量子場理論の枠組みで行われるのでござる。具体的には、Chern-Simons作用を用いた量子化は次のように記述されるのでござる:
Z_CS(M) = ∫ 𝒟A exp(i ∫_M Tr(A ∧ dA + ⅔ A ∧ A ∧ A)).
この積分は、接続 A に関するパスインテグラルでござって、Chern-Simons理論における量子場理論の構築に用いられるのでござる。ここで 𝒟A は接続 A の変分に関する積分を示すのでござる。
Chern-Simons形式は、特に3次元多様体に対するトポロジカル不変量としての性質が重要でござる。3次元多様体 M に対して、Chern-Simons不変量は以下のように定義され、計算されるのでござる:
Z_CS(M) = ∫ 𝒟A exp(i ∫_M Tr(A ∧ dA + ⅔ A ∧ A ∧ A)).
この不変量は、3次元の量子ホール効果やトポロジカル絶縁体などの物理的現象を記述するのに重要でござる。具体的には、Chern-Simons形式によって、3次元多様体のトポロジーを示す不変量が得られ、量子化されたゲージ理論における位相的な特性を理解するために利用されるのでござる。
以下は、M理論と超弦理論の幾何学を抽象化した数学的枠組みでのモデル化について述べる。
まず、物理的対象である弦や膜を高次の抽象的構造としてモデル化するために、∞-圏論を用いる。ここでは、物理的プロセスを高次の射や2-射などで表現する。
∞-圏 𝒞 は、以下を持つ:
これらの射は、合成や恒等射、そして高次の相互作用を満たす。
次に、デリーブド代数幾何学を用いて、空間や場の理論をモデル化する。ここでは、デリーブドスタックを使用する。
デリーブドスタック 𝒳 は、デリーブド環付き空間の圏 𝐝𝐀𝐟𝐟 上の関手として定義される:
𝒳 : 𝐝𝐀𝐟𝐟ᵒᵖ → 𝐒
ここで、𝐒 は∞-グルーポイドの∞-圏(例えば、単体集合のホモトピー圏)である。
物理的なフィールドやパーティクルのモジュライ空間は、これらのデリーブドスタックとして表現され、コホモロジーやデリーブドファンクターを通じてその特性を捉える。
非可換幾何学では、空間を非可換代数 𝒜 としてモデル化する。ここで、スペクトラルトリプル (𝒜, ℋ, D) は以下から構成される:
作用素 D のスペクトルは、物理的なエネルギーレベルや粒子状態に対応する。幾何学的な距離や曲率は、𝒜 と D を用いて以下のように定義される:
∞-トポス論は、∞-圏論とホモトピー論を統合する枠組みである。∞-トポス ℰ では、物理的な対象やフィールドは内部のオブジェクトとして扱われる。
フィールド φ のグローバルセクション(物理的な状態空間)は、次のように表される:
Γ(φ) = Homℰ(1, φ)
ここで、1 は終対象である。物理的な相互作用は、これらのオブジェクト間の射としてモデル化される。
ゲージ対称性やその高次構造を表現するために、L∞-代数を用いる。L∞-代数 (L, {lₖ}) は次元付きベクトル空間 L = ⊕ₙ Lₙ と多重線形写像の族 lₖ からなる:
lₖ : L⊗ᵏ → L, deg(lₖ) = 2 - k
∑ᵢ₊ⱼ₌ₙ₊₁ ∑ₛᵢgₘₐ∈Sh(i,n-i) (-1)ᵉ⁽ˢⁱᵍᵐᵃ⁾ lⱼ ( lᵢ(xₛᵢgₘₐ₍₁₎, …, xₛᵢgₘₐ₍ᵢ₎), xₛᵢgₘₐ₍ᵢ₊₁₎, …, xₛᵢgₘₐ₍ₙ₎) = 0
ここで、Sh(i,n-i) は (i, n - i)-シャッフル、ε(sigma) は符号関数である。
これにより、高次のゲージ対称性や非可換性を持つ物理理論をモデル化できる。
安定ホモトピー理論では、スペクトラムを基本的な対象として扱う。スペクトラム E は、位相空間やスペースの系列 {Eₙ} と構造写像 Σ Eₙ → Eₙ₊₁ からなる。
πₙˢ = colimₖ→∞ πₙ₊ₖ(Sᵏ)
ここで、Sᵏ は k-次元球面である。これらの群は、物理理論における安定な位相的特性を捉える。
物理的な相関関数は、コホモロジー類を用いて以下のように表現される:
⟨𝒪₁ … 𝒪ₙ⟩ = ∫ₘ ω𝒪₁ ∧ … ∧ ω𝒪ₙ
ここで、ℳ はモジュライ空間、ω𝒪ᵢ は観測量 𝒪ᵢ に対応する微分形式またはコホモロジー類である。
先に述べた抽象数学的枠組みを用いて、M理論の重要な定理であるM理論とIIA型超弦理論の双対性を導出する。この双対性は、M理論が11次元での理論であり、円 S¹ に沿ってコンパクト化するとIIA型超弦理論と等価になることを示している。
時空間の設定:
H•(ℳ₁₁, ℤ) ≅ H•(ℳ₁₀, ℤ) ⊗ H•(S¹, ℤ)
これにより、11次元のコホモロジーが10次元のコホモロジーと円のコホモロジーのテンソル積として表される。
C-場の量子化条件:
M理論の3形式ゲージ場 C の場の強度 G = dC は、整数係数のコホモロジー類に属する。
[G] ∈ H⁴(ℳ₁₁, ℤ)
デリーブド代数幾何学では、フィールド C はデリーブドスタック上のコホモロジー類として扱われる。
非可換トーラスの導入:
円 S¹ のコンパクト化を非可換トーラス 𝕋θ としてモデル化する。非可換トーラス上の座標 U, V は以下の交換関係を満たす。
UV = e²ᵖⁱθ VU
非可換トーラス上のK-理論群 K•(𝕋θ) は、Dブレーンのチャージを分類する。
K•(ℳ₁₁) ≅ K•(ℳ₁₀)
𝕊ₘ ≃ Σ𝕊ᵢᵢₐ
ここで、Σ はスペクトラムの懸垂(suspension)函手である。
デリーブド代数幾何学、非可換幾何学、および安定ホモトピー理論の枠組みを用いると、11次元のM理論を円 S¹ 上でコンパクト化した極限は、IIA型超弦理論と数学的に等価である。
(b) 非可換性の考慮
完備確率空間 (Ω, ℱ, ℙ) 上で、右連続増大フィルトレーション {ℱₜ}ₜ≥₀ を考える。
状態空間として、実可分ヒルベルト空間 ℋ を導入し、その上のトレース類作用素のなす空間を 𝓛₁(ℋ) とする。
システムダイナミクスを以下の無限次元確率微分方程式で記述する:
dXₜ = [AXₜ + F(Xₜ, uₜ)]dt + G(Xₜ)dWₜ
ここで、Xₜ ∈ ℋ は状態変数、A は無限次元線形作用素、F, G は非線形作用素、uₜ は制御変数、Wₜ は Q-Wiener プロセスである。
経済主体の最適化問題を、以下の抽象的な確率最適制御問題として定式化する:
ここで、𝓤 は許容制御の集合、L: ℋ × 𝓤 → ℝ は汎関数である。
価値汎関数 V: ℋ → ℝ に対する無限次元Hamilton-Jacobi-Bellman方程式:
ρV(x) = sup{L(x, u) + ⟨AX + F(x, u), DV(x)⟩ℋ + ½Tr[G(x)QG*(x)D²V(x)]}
ここで、DV と D²V はそれぞれFréchet微分と2次Fréchet微分を表す。
システムの確率分布の時間発展を記述する無限次元Fokker-Planck方程式:
∂p/∂t = -divℋ[(Ax + F(x, u))p] + ½Tr[G(x)QG*(x)D²p]
ここで、p: ℋ × [0, ∞) → ℝ は確率密度汎関数、divℋ はヒルベルト空間上の発散作用素である。
dλₜ = -[A*λₜ + DₓF*(Xₜ, uₜ)λₜ + DₓL(Xₜ, uₜ)]dt + νₜ dWₜ
ここで、λₜ は無限次元随伴過程、A* は A の共役作用素である。
価格過程の一般的な表現を、以下の無限次元マルチンゲール問題として定式化する:
Mₜ = 𝔼[M_T | ℱₜ] = M₀ + ∫₀ᵗ Φₛ dWₛ
ここで、Mₜ は ℋ 値マルチンゲール、Φₜ は予測可能な 𝓛₂(ℋ) 値過程である。
Girsanovの定理の無限次元拡張を用いて、以下の測度変換を考える:
dℚ/dℙ|ℱₜ = exp(∫₀ᵗ ⟨θₛ, dWₛ⟩ℋ - ½∫₀ᵗ ‖θₛ‖²ℋ ds)
インフレーション動学を、以下の無限次元確率偏微分方程式で記述する:
dπₜ = [Δπₜ + f(πₜ, iₜ, Yₜ)]dt + σ(πₜ)dWₜ
ここで、Δ はラプラシアン、f と σ は非線形作用素、iₜ は金利、Yₜ は総産出である。
小さなパラメータ ε に関して、解を以下のように関数空間上で展開する:
Xₜ = X₀ + εX₁ + ε²X₂ + O(ε³)
dwₜ = [Bwₜ + H(wₜ, πₜ, iₜ, Yₜ)]dt + K(wₜ)dWₜ
ここで、B は線形作用素、H と K は非線形作用素である。
金利上昇の実質賃金への影響は、以下の汎関数微分で評価できる:
δ𝔼[wₜ]/δiₜ = lim(ε→0) (𝔼[wₜ(iₜ + εh) - wₜ(iₜ)]/ε)
1. 非可換確率論:
量子確率論の枠組みを導入し、不確実性のより一般的な記述を行う。
経済均衡の位相的構造を分析し、均衡の安定性を高次ホモトピー群で特徴付ける。
4. 超準解析:
無限次元確率動的一般均衡モデルは、金利、インフレーション、実質賃金の相互作用を一般的な形で記述している。
モデルの複雑性により、具体的な解を得ることは不可能に近いが、この理論的枠組みは経済現象の本質的な構造を捉えることを目指している。
このアプローチは、金利上昇がインフレ抑制を通じて実質賃金に与える影響を、無限次元確率過程の観点から分析することを可能にする。
しかし、モデルの抽象性と現実経済の複雑性を考慮すると、具体的な政策提言への直接的な適用は不適切である。
このモデルは、経済学の理論的基礎を数学的に提供するものであり、実際の経済分析や政策決定には、この抽象的枠組みから導かれる洞察を、より具体的なモデルや実証研究と慎重に組み合わせて解釈する必要がある。
このレベルの抽象化は、現代の経済学研究の最前線をはるかに超えており、純粋に理論的な探求としての意義を持つものであることを付記する。