「位相空間」を含む日記 RSS

はてなキーワード: 位相空間とは

2024-11-13

線形代数学的自由意志モデル

1. 数学的定式化

自由意志表現する n 次元ベクトル空間 V を考える。この空間において、意思決定 d は以下のように表現される:

d = Σ(i=1 to n) αi ei

ここで、

2. 基底の選択自由意志

定理任意の n 次元ベクトル空間 V に対して、無限に多くの正規直交基底が存在する。

証明グラムシュミット直交化法を用いて、任意の n 個の線形独立ベクトルから正規直交基底を構成できる。

この定理は、意思決定空間において無限表現可能性が存在することを示唆する。

3. 量子力学解釈

自由意志非決定論的側面を表現するため、量子力学概念を導入する。

意思決定を量子状態 |ψ⟩ として表現

|ψ⟩ = Σ(i=1 to n) ci |ei⟩

ここで、

測定過程意思決定の実現)は、波動関数崩壊として解釈される。

4. 位相空間軌道

意思決定過程力学系として捉え、2n 次元位相空間 Γ を導入する:

Γ = {(q1, ..., qn, p1, ..., pn) | qi, pi ∈ ℝ}

ここで、qi一般化座標、pi一般運動量を表す。

システム時間発展は、ハミルトン正準方程式に従う:

dqi/dt = ∂H/∂pi

dpi/dt = -∂H/∂qi

H はハミルトニアンで、システムの全エネルギーを表す。

5. カオス理論自由意志

決定論カオス概念を導入し、初期条件に対する敏感な依存性を自由意志表現として解釈する。

リアプノフ指数 λ を用いて、システムカオス性を定量化:

λ = lim(t→∞) (1/t) ln(|δZ(t)| / |δZ0|)

ここで、δZ(t) は位相空間における軌道の微小な摂動を表す。

6. 制約条件と最適化問題

社会的物理的制約を、ラグランジュ乗数法を用いて表現する:

L(x1, ..., xn, λ1, ..., λm) = f(x1, ..., xn) - Σ(j=1 to m) λj gj(x1, ..., xn)

ここで、

2024-09-29

anond:20240929050427

目標:与えられた高度な数学概念(高次トポス理論、(∞,1)-カテゴリー、L∞-代数など)をフルに活用して、三平方の定理程度の簡単定理証明します。

定理1次元トーラス上の閉曲線のホモトピー類は整数と一対一に対応する

背景:

高次トポス理論ホモトピー論を高次元一般化し、空間位相構造抽象的に扱うための枠組み。

(∞,1)-カテゴリー対象と射だけでなく、高次の同値ホモトピー)を持つカテゴリー

L∞-代数リー代数の高次元一般化であり、物理学微分幾何学対称性や保存量を記述する。

証明

1次元トーラス T¹ の構成

トーラス

𝑇

1

T

1

は、円周

𝑆

1

S

1

同値であり、単位区間

[

,

1

]

[0,1] の両端を同一視して得られる。

(∞,1)-トポスにおけるトーラスの解釈

𝑇

1

T

1

を高次トポス理論の枠組みで扱うために、位相空間ホモトピータイプとして考える。

これは、1つの0次元セルと1つの1次元セルを持つCW複体としてモデル化できる。

閉曲線のホモトピー類:

𝑇

1

T

1

上の閉曲線は、連続写像

𝛾

:

𝑆

1

𝑇

1

γ:S

1

→T

1

で表される。

2つの閉曲線

𝛾

1

,

𝛾

2

γ

1

2

ホモトピックであるとは、ある連続変形(ホモトピー)によって互いに移り合うことを意味する。

基本群の計算

トーラス

𝑇

1

T

1

の基本群

𝜋

1

(

𝑇

1

)

π

1

(T

1

) は整数全体のなす加法

𝑍

Z と同型である

これは、高次トポス理論においても同様であり、(∞,1)-カテゴリーにおける自己同型射として解釈できる。

ホモトピー類と整数対応

各閉曲線

𝛾

γ に対し、そのホモトピー類は整数

𝑛

n(トーラスを巻く回数)に対応する。

この対応は、ホモトピータイプ理論(HoTT)の基礎に基づいて厳密に定式化できる。

L∞-代数による解釈

円周

𝑆

1

S

1

ループ空間のL∞-代数構造を考えると、ホモトピー類の加法性質代数的に記述できる。

まり、2つの曲線の合成に対応するホモトピー類は、それらの巻数の和に対応する。

結論

高次トポス理論とL∞-代数の枠組みを用いることで、

𝑇

1

T

1

上の閉曲線のホモトピー類が整数と一対一に対応することを証明した。

解説

この証明では、与えられた高度な数学概念を用いて、基本的トポロジーの結果を導き出しました。具体的には、トーラス上の閉曲線の分類というシンプル問題を、高次トポス理論とL∞-代数を使って厳密に定式化し、証明しました。

高次トポス理論は、空間ホモトピー性質を扱うのに適しており、基本群の概念一般化できます

(∞,1)-カテゴリー言葉で基本群を考えると、対象自己同型射のホモトピー類として理解できます

L∞-代数を使うことで、ホモトピー類の代数構造を詳細に記述できます

まとめ:

このように、高度な数学的枠組みを用いて、基本的定理を新たな視点から証明することができます。これにより、既存数学的知見を深めるだけでなく、新たな一般化や応用の可能性も見えてきます

俺の感想

三平方の定理程度の簡単定理?????????????????????????????????

2024-09-27

anond:20240927210351

じゃあとりあえず位相空間開集合族ではなく近傍系で定義する方法について語ってくれ

anond:20240927204921

位相空間開集合族ではなく近傍系で定義する方法について説明する。

定義

集合 X に対し、各点 x ∈ X に対してその点の近傍系𝒩(x) が割り当てられているとする。このとき、以下の公理が満たされるとき、これらの 𝒩(x) によって X 上に位相構造定義される。

1. 自己包含性:任意の N ∈ 𝒩(x) に対して、x ∈ N。

2. 包含関係の保存:任意の N ∈ 𝒩(x) と N ⊆ N′ ⊆ X に対して、N′ ∈ 𝒩(x)。

3. 有限交叉性:任意の N₁, N₂ ∈ 𝒩(x) に対して、N₁ ∩ N₂ ∈ 𝒩(x)。

4. 近傍基準任意の N ∈ 𝒩(x) に対して、ある N′ ∈ 𝒩(x) が存在し、N′ ⊆ N かつ任意の y ∈ N′ に対して N ∈ 𝒩(y)。

解説

この定義では、各点 x の近傍系 𝒩(x) を直接定めることで、位相空間構造を構築する。近傍系は点ごとの局所的な性質を反映しており、これにより開集合概念を介さずに位相的な議論可能となる。

公理の詳細:

1. 自己包含性は、近傍がその点を必ず含むことを要求する。これは近傍基本的性質である

2. 包含関係の保存は、近傍を含むより大きな集合もまた近傍であることを示す。これは近傍系が包含関係に対して上に閉じていることを意味する。

3. 有限交叉性は、有限個の近傍共通部分も近傍であることを保証する。これにより、近傍系はフィルター構造を持つ。

4. 近傍基準は、任意近傍に対してその内部に「より小さな近傍存在し、その近傍内の点全てが元の近傍を共有することを要求する。これは位相空間局所的な一貫性保証する。

位相の導出:

近傍から開集合系を導出することができる。具体的には、集合 U ⊆ X を開集合定義するには、任意の点 x ∈ U に対して U ∈ 𝒩(x) が成り立つこととする。このとき、これらの開集合全体の族は位相公理を満たす。

双対性

逆に、開集合から近傍系を定義することも可能である。各点 x の近傍系 𝒩(x) を、x を含む開集合全体と定義すれば、公理を満たす近傍系が得られる。

2024-09-25

anond:20240925204155

じゃあとりあえず位相空間開集合族ではなく近傍系で定義する方法について語ってくれ

2024-09-18

M理論とIIA型超弦理論双対性

以下は、M理論超弦理論幾何学抽象化した数学的枠組みでのモデル化について述べる。

∞-圏論と高次ホモトピー理論

まず、物理対象である弦や膜を高次の抽象構造としてモデル化するために、∞-圏論を用いる。ここでは、物理プロセスを高次の射や2-射などで表現する。

∞-圏 𝒞 は、以下を持つ:

  • 対象Ob(𝒞)
  • 1-射(またはモルフィズム):対象間の射 f: A → B
  • 2-射:1-射間の射 α: f ⇒ g
  • n-射:高次の射 β: α ⇒ γ など

これらの射は、合成や恒等射、そして高次の相互作用を満たす。

デリーブド代数幾何学と高次スタック

次に、デリーブド代数幾何学を用いて、空間場の理論モデル化する。ここでは、デリーブドスタック使用する。

デリーブドスタック 𝒳 は、デリーブド環付き空間の圏 𝐝𝐀𝐟𝐟 上の関手として定義される:

𝒳 : 𝐝𝐀𝐟𝐟ᵒᵖ → 𝐒

ここで、𝐒 は∞-グルーポイドの∞-圏(例えば、単体集合のホモトピー圏)である

物理的なフィールドパーティクルのモジュライ空間は、これらのデリーブドスタックとして表現され、コホモロジーデリーブドファンクターを通じてその特性を捉える。

非可換幾何学とスペクトラルトリプル

非可換幾何学では、空間を非可換代数 𝒜 としてモデル化する。ここで、スペクトラルトリプル (𝒜, ℋ, D) は以下から構成される:

作用素 D のスペクトルは、物理的なエネルギーレベルや粒子状態対応する。幾何学的な距離や曲率は、𝒜 と D を用いて以下のように定義される:

高次トポス

∞-トポス論は、∞-圏論ホモトピー論を統合する枠組みである。∞-トポス ℰ では、物理的な対象フィールドは内部のオブジェクトとして扱われる。

フィールド φ のグローバルセクション(物理的な状態空間)は、次のように表される:

Γ(φ) = Homℰ(1, φ)

ここで、1 は終対象である物理的な相互作用は、これらのオブジェクト間の射としてモデル化される。

L∞-代数と高次ゲージ理論

ゲージ対称性やその高次構造表現するために、L∞-代数を用いる。L∞-代数 (L, {lₖ}) は次元付きベクトル空間 L = ⊕ₙ Lₙ と多重線形写像の族 lₖ からなる:

lₖ : L⊗ᵏ → L, deg(lₖ) = 2 - k

これらは以下の高次ヤコ恒等式を満たす:

∑ᵢ₊ⱼ₌ₙ₊₁ ∑ₛᵢgₘₐ∈Sh(i,n-i) (-1)ᵉ⁽ˢⁱᵍᵐᵃ⁾ lⱼ ( lᵢ(xₛᵢgₘₐ₍₁₎, …, xₛᵢgₘₐ₍ᵢ₎), xₛᵢgₘₐ₍ᵢ₊₁₎, …, xₛᵢgₘₐ₍ₙ₎) = 0

ここで、Sh(i,n-i) は (i, n - i)-シャッフル、ε(sigma) は符号関数である

これにより、高次のゲージ対称性や非可換性を持つ物理理論モデル化できる。

安定ホモトピー理論スペクトラム

安定ホモトピー理論では、スペクトラム基本的対象として扱う。スペクトラム E は、位相空間やスペースの系列 {Eₙ} と構造写像 Σ Eₙ → Eₙ₊₁ からなる。

スペクトラムホモトピー群は以下で定義される:

πₙˢ = colimₖ→∞ πₙ₊ₖ(Sᵏ)

ここで、Sᵏ は k-次元球面である。これらの群は、物理理論における安定な位相特性を捉える。

ホモロジカル場の理論

物理的な相関関数は、コホモロジー類を用いて以下のように表現される:

⟨𝒪₁ … 𝒪ₙ⟩ = ∫ₘ ω𝒪₁ ∧ … ∧ ω𝒪ₙ

ここで、ℳ はモジュライ空間、ω𝒪ᵢ は観測量 𝒪ᵢ に対応する微分形式またはコホモロジーである

M理論における定理の導出

先に述べた抽象数学的枠組みを用いて、M理論重要定理であるM理論とIIA型超弦理論双対性を導出する。この双対性は、M理論11次元での理論であり、円 S¹ に沿ってコンパクト化するとIIA型超弦理論等価になることを示している。

1. デリーブド代数幾何学によるコンパクト化の記述

空間の設定:

コホモロジー計算

Künnethの定理を用いて、コホモロジー計算する。

H•(ℳ₁₁, ℤ) ≅ H•(ℳ₁₀, ℤ) ⊗ H•(S¹, ℤ)

これにより、11次元コホモロジー10次元コホモロジーと円のコホモロジーテンソル積として表される。

2. C-場の量子化条件とM理論の場の構造

C-場の量子化条件:

M理論の3形式ゲージ場 C の場の強度 G = dC は、整数係数のコホモロジー類に属する。

[G] ∈ H⁴(ℳ₁₁, ℤ)

デリーブドスタック上のフィールド

デリーブド代数幾何学では、フィールド C はデリーブドスタック上のコホモロジー類として扱われる。

3. 非可換幾何学によるコンパクト化の非可換性の考慮

非可換トーラスの導入:

円 S¹ のコンパクト化を非可換トーラス 𝕋θ としてモデル化する。非可換トーラス上の座標 U, V は以下の交換関係を満たす。

UV = e²ᵖⁱθ VU

ここで、θ は非可換性を表す実数パラメータである

非可換K-理論適用

非可換トーラス上のK-理論群 K•(𝕋θ) は、Dブレーンのチャージを分類する。

4. K-理論によるブレーンのチャージの分類

M理論のブレーンのチャージ

  • M2ブレーン:K⁰(ℳ₁₁)
  • M5ブレーン:K¹(ℳ₁₁)

IIA型超弦理論のDブレーンのチャージ

  • D0ブレーンからD8ブレーン:K-理論群 K•(ℳ₁₀) で分類

チャージ対応関係

コンパクト化により、以下の対応が成立する。

K•(ℳ₁₁) ≅ K•(ℳ₁₀)

5. 安定ホモトピー理論によるスペクトラム同値

スペクトラム定義

スペクトラム同値性:

安定ホモトピー理論において、以下の同値性が成立する。

𝕊ₘ ≃ Σ𝕊ᵢᵢₐ

ここで、Σ はスペクトラムの懸垂(suspension)函手である

6. 定理の導出と結論

以上の議論から、以下の重要定理が導かれる。

定理M理論とIIA型超弦理論双対性

デリーブド代数幾何学、非可換幾何学、および安定ホモトピー理論の枠組みを用いると、11次元M理論を円 S¹ 上でコンパクト化した極限は、IIA型超弦理論数学的に等価である

7. 証明の要点

(a) コホモロジー対応

(b) 非可換性の考慮

(c) スペクトラム同値

2024-09-04

[] 公共政策の基礎

Vを社会福祉とすると、V(W_1,...,W_H)と表せる。

1,...,Hは社会メンバーに割り当てられた番号であり、Wは満足度である

政府は、公共財GやインフラIの供給量を決定する。

また、それぞれのメンバーhに財貨やサービスの転換T_hを課す(e.g. 所得税)。

また、T=(T_1,...,T_H)とおく。

Tが与えられた時、実現可能ベクトルの組(G,I)の集合をK_Tと表す。

メンバー幸福度をW_h(X_h,G,I,T_h)と記す。

hの実現可能集合F_hはG,I, T_hによって定まるので、F_h(G,I,T_h,X_{-h})と記す。ただしX_hは消費ベクトルである

W_hは消費ベクトルX_hからW_h(X_h)によって決まる。

最適な公共政策を決定するために、2段階ゲームを考える。

まず政府はTを選択し、さらにK_TからG,Iを選ぶ。

メンバー政府による決定に対応して、次の行動を取る。

社会均衡X^*に到達していることとその均衡が一つしかないことを仮定する。均衡X^*はG,I,Tの関数である

政府はその均衡を予測し、V(W(X_1^*),...,W(X_H^*))の結果を最大化するようにG,I,Tを選択する。

1. 位相空間関数空間

2. 実現可能性集合

  • Kᴛ = {(G, I) ∈ ℝᵐ × ℝⁿ : A(G, I) ≤ B(T)}

ここで、A: ℝᵐ × ℝⁿ → ℝᵖ は線形写像、B: ℝᵏᴴ → ℝᵖ は凸関数

  • Fₕ(G, I, Tₕ, X₍₋ₕ₎) = {Xₕ ∈ ℝˡ : Cₕ(Xₕ, G, I, Tₕ) ≤ Dₕ(X₍₋ₕ₎)}

ここで、Cₕ: ℝˡ × ℝᵐ × ℝⁿ × ℝᵏ → ℝᵠ は凸関数、Dₕ: ℝˡ⁽ᴴ⁻¹⁾ → ℝᵠ は線形写像

3. 均衡の存在と一意性

均衡 X*: ℝᵐ × ℝⁿ × ℝᵏᴴ → ℝˡᴴ の存在証明するために:

1. Fₕ が上半連続対応であることを示す

2. Wₕ が Xₕ に関して強凹であることを仮定

3. Kakutaniの不動点定理適用

一意性の証明

1. Wₕ の Xₕ に関する Hessian 行列が負定値であることを示す

2. 陰関数定理を用いて、均衡が一意に定まることを証明

4. 政府最適化問題

max[G∈ℝᵐ, I∈ℝⁿ, T∈ℝᵏᴴ] V(W₁(X₁*(G, I, T), G, I, T₁), ..., Wᴴ(Xᴴ*(G, I, T), G, I, Tᴴ))

制約条件:A(G, I) ≤ B(T)

5. KKT条件の導出

Lagrange関数を以下のように定義

L(G, I, T, λ) = V(...) - λᵀ(A(G, I) - B(T))

KKT条件:

1. ∇ᴳL = ∇ᴵL = ∇ᵀL = 0

2. λ ≥ 0

3. λᵀ(A(G, I) - B(T)) = 0

4. A(G, I) ≤ B(T)

6. 感度分析

均衡 X* のパラメータ (G, I, T) に関する感度を分析するために:

1. 陰関数定理適用:∂X*/∂(G, I, T) = -[∇ₓF]⁻¹ ∇₍ᴳ,ᴵ,ᵀ₎F

ここで、F は均衡条件を表す関数

2. 得られた感度を用いて、社会福祉関数 V の変化を評価

7. 動的拡張

時間連続変数 t ∈ [0, ∞) として導入し、動的システムを以下のように定義

dX/dt = f(X, G, I, T)

ここで、f: ℝˡᴴ × ℝᵐ × ℝⁿ × ℝᵏᴴ → ℝˡᴴ は Lipschitz 連続

定常状態の安定性分析

1. Jacobian 行列 J = ∂f/∂X を計算

2. J の固有値分析し、局所安定性を判定

8. 確率的要素の導入

確率空間 (Ω, ℱ, P) を導入し、確率変数 ξ: Ω → ℝʳ を用いて不確実性をモデル化:

max[G,I,T] 𝔼ξ[V(W₁(X₁*(G, I, T, ξ), G, I, T₁, ξ), ..., Wᴴ(Xᴴ*(G, I, T, ξ), G, I, Tᴴ, ξ))]

制約条件:P(A(G, I) ≤ B(T, ξ)) ≥ 1 - α

ここで、α ∈ (0, 1) は信頼水準

この確率問題に対して:

1. サンプル平均近似法を適用

2. 確率的勾配降下法を用いて数値的に解を求める

2024-08-24

創発時空概要

1. 基本的な設定

(H, ⟨·|·⟩)を可分なヒルベルト空間とし、B(H)をH上の有界線形作用素の集合とする。

2. 量子状態観測

S(H) = {ρ ∈ B(H) : ρ ≥ 0, Tr(ρ) = 1}を密度作用素の集合とする。A ⊂ B(H)を自己共役作用素部分代数とし、これを観測量の集合とする。

3. 時間発展

ユニタリ群{Ut}t∈ℝを考え、シュレーディンガー方程式を以下のように表現する:

iħd/dtUt = HUt

ここでH ∈ Aはハミルトニアンである

4. 状態空間位相

S(H)上にトレース距離を導入し、位相空間(S(H), τ)を定義する。

5. 観測量の局所性

A上にC*-代数構造を導入し、局所的な部分代数の族{A(O)}O⊂ℝ⁴を定義する。ここでOは時空の開集合である

6. 因果構造の導出

A(O1)とA(O2)が可換であるとき、O1とO2は因果的に独立である定義する。これにより、ℝ⁴上に因果構造を導入する。

7. 計量の再構成

状態ρ ∈ S(H)に対し、関数dρ : A × A → ℝ+を以下のように定義する:

dρ(A, B) = √Tr(ρ[A-B]²)

この関数から、ℝ⁴上の擬リーマン計量gμνを再構成する手続き定義する。

8. 時空多様体創発

(ℝ⁴, gμν)を基底時空とし、これに対して商位相を導入することで、等価類の空間M = ℝ⁴/∼を定義する。Mを創発した時空多様体とみなす

9. 量子状態と時空の対応

写像Φ : S(H) → Mを構成し、量子状態と時空点の対応定義する。

10. 動力学の整合性

シュレーディンガー方程式による時間発展ρ(t) = Ut ρ Ut*が、M上の滑らかな曲線γ(t) = Φ(ρ(t))に対応することを示す。

2024-08-23

量子力学数学抽象化

1. 圏論的枠組み

量子状態観測過程圏論的に記述するため、以下の圏を導入する:

2. 関手自然変換

観測過程を表す自然変換 η: F ⇒ G を定義する。

3. モノイド構造

エントロピー抽象化するため、モノイド (M, ·, e) を導入する。ここで、M は可能エントロピー値の集合、· は結合則を満たす二項演算、e は単位元である

4. 層理論

知識状態の変化を記述するため、位相空間 X 上の層 ℱ を導入する。ここで、X は可能知識状態空間を表す。

5. ホモトピー理論

観測による状態変化をホモトピー同値観点から捉えるため、位相空間の圏 𝕋op における弱同値を考える。

6. 圏論確率

量子確率過程記述するため、𝕧𝕟𝔸 上のマルコフ圏 𝕄arkov(𝕧𝕟𝔸) を導入する。

7. 量子論

量子命題を扱うため、オーソモジュラー格子 L を導入する。

8. 超関数理論

観測過程連続性を記述するため、超関数空間 𝔇'(X) を考える。

定理:量子観測普遍的特性

以下の普遍性を満たす圏 ℂ と関手 U: ℂ → 𝕄eas が存在する:

1. ℂ は完備かつ余完備である

2. U は忠実充満関手である

3. 任意対象 A, B ∈ ℂ に対し、自然な同型 Homℂ(A, B) ≅ Hom𝕄eas(U(A), U(B)) が存在する。

さらに、以下の性質を満たす ℂ の対象 Q (量子状態を表す)と射 f: Q → Q (観測を表す)が存在する:

4. H(G(F(Q))) ≅ U(Q) (量子状態と測度空間対応

5. f は Q 上のモノイド準同型誘導する。

6. f によって誘導される U(Q) 上の写像は測度を保存する。

系:エントロピー減少と世界選択抽象記述

上記定理の下で、以下が成り立つ:

1. エントロピーの減少:

∃m₁, m₂ ∈ M such that m₁ · m₂ = e and m₁ ≠ e

2. 知識獲得:

∃s ∈ Γ(X, ℱ) such that s|U ≠ s|V for some open sets U, V ⊂ X

3. 世界選択

∃h: I → I' in 𝕋op such that h is a weak equivalence and I ≇ I'

ここで、I と I' はそれぞれ観測前と観測後の可能世界空間を表す。

この定式化により、量子観測エントロピーの減少、知識の獲得、そして特定世界への「移動」を、最も一般的かつ抽象的な数学的枠組みで表現することができる。

この枠組みは、具体的な物理系や観測過程依存せず、純粋数学的な構造のみに基づいている。

2024-08-16

量子論幾何学

量子論幾何学的側面は、数学的な抽象化を通じて物理現象記述する試みである

SO(3)とSU(2)

SO(3)は、3次元空間の回転を記述する特殊直交である

この群の要素は、3×3の直交行列行列式が1である

物理的には、SO(3)は角運動量の保存則や回転対称性に関連している。

SO(3)のリー代数は、3次元の反対称行列構成される。

SU(2)は、2×2の複素行列で行列式が1である特殊ユニタリである

SU(2)はSO(3)の二重被覆群であり、スピン1/2の系における基本的対称性記述する。

SU(2)のリー代数は、パウリ行列を基底とする3次元の実ベクトル空間である

SO(4)とその表現

SO(4)は、4次元空間の回転を記述する群である

SO(4)の要素は、4×4の直交行列行列式が1である

この群は、SU(2)×SU(2)として表現され、四次元の回転が二つの独立したSU(2)の作用として記述できることを示している。

これは、特にヤンミルズ理論一般相対性理論において重要役割を果たす。

ファイバー束とゲージ理論

ファイバー束は、基底空間ファイバー空間の組み合わせで構成され、局所的に直積空間として表現される。

ファイバー束の構造は、場の理論におけるゲージ対称性記述するために用いられる。

ゲージ理論

ゲージ理論は、ファイバー束の対称性を利用して物理的な場の不変性を保証する。

例えば、電磁場はU(1)ゲージ群で記述され、弱い相互作用SU(2)ゲージ群、強い相互作用SU(3)ゲージ群で記述される。

具体的には、SU(2)ゲージ理論では、ファイバー束のファイバーSU(2)群であり、ゲージ場はSU(2)のリー代数に値を持つ接続形式として表現される。

幾何学量子化

幾何学量子化は、シンプレクティック多様体量子力学的なヒルベルト空間に関連付ける方法である

これは、古典的位相空間上の物理量を量子化するための枠組みを提供する。

例えば、調和振動子位相空間量子化する際には、シンプレクティック形式を用いてヒルベルト空間構成し、古典的物理量を量子演算子として具体的に表現する。

コホモロジー

コホモロジーは、場の理論におけるトポロジー性質記述する。

特に、トポロジカルな場の理論では、コホモロジー群を用いて物理的な不変量を特徴づける。

例えば、チャーン・サイモン理論は、3次元多様体上のゲージ場のコホモロジー類を用いて記述される。

チャーン・サイモン理論

チャーン・サイモン理論は、3次元多様体上のゲージ場を用いて構成され、そのトポロジカル不変量を計算する。

この理論は、結び目不変量や3次元多様体の不変量を具体的に導出するために用いられる。

2024-08-04

意識抽象数理モデル

1. 抽象状態空間

意識抽象的な位相空間Ωとして定義する。

Ω = (X, τ)

ここでXは点集合、τは開集合である

2. 一般観測作用素

観測をΩ上の連続写像Oとして定義する。

O : Ω → Ω'

ここでΩ'は観測後の状態空間であり、Ω'⊆Ωである

3. 一般エントロピー汎関数

状態ωに対するエントロピー汎関数Sで定義する。

S : Ω → ℝ

S[ω] = -∫ f(ω(x)) dx

ここでfは適切な凸関数である

4. 観測によるエントロピー減少の公理

任意観測Oに対して以下が成立する。

S[O(ω)] ≤ S[ω]

5. 抽象力学系

意識時間発展を抽象力学系として定式化する。

dω/dt = F[ω] + G[ω, O]

ここでFは自律的発展、Gは観測の影響を表す汎関数である

6. 一般情報幾何

状態空間Ωに情報計量gを導入する。

g_ij(ω) = ∂²S[ω] / (∂ω_i ∂ω_j)

7. 抽象量子化

古典的状態空間Ωの量子化Q(Ω)を定義する。

Q : Ω → H

ここでHは適切なヒルベルト空間である

8. 一般統合情報理論

統合情報量Φを抽象的に定義する。

Φ[ω] = min_π I[ω : π(ω)]

ここでπは可能な分割、Iは相互情報量一般である

9. 普遍的学習

観測に基づく状態更新普遍的規則を定式化する。

ω_new = ω_old + η ∇_g L[ω, O]

ここで∇_gは情報計量gに関する勾配、Lは適切な損失汎関数である

10. 抽象因果構造

意識状態間の因果関係を有向グラフGで表現する。

G = (V, E)

ここでVは頂点集合(状態)、Eは辺集合(因果関係)である

まとめ

このモデルは、意識特性についての仮説である。「観測能力」と「エントロピー減少」を一般化された形で捉えている。具体的な実装解釈は、この抽象モデル特殊化として導出可能

課題としては、このモデルの具体化、実験可能予測の導出、そして計算機上での効率的実装が挙げられる。さらに、この枠組みを用いて、意識創発自己意識クオリアなどの問題にも着手できる。

2024-07-28

AI生成による超弦理論入門

具体的に超弦理論幾何学定義します。

1. 多様体としての定義

超弦理論基本的空間は、10次元ローレンツ多様体 M として定義されます

  • M = R^(1,3) × X

ここで、R^(1,3) は4次元ミンコフスキー時空を、X は6次元コンパクト多様体を表します。

1. リッチ平坦

2. 複素構造を持つ

3. ケーラー計量を許容する

2. スキームとしての表現

X をスキームとして表現します:

  • X = (|X|, O_X)

ここで |X| は位相空間、O_X は構造層です。

f(z1, z2, z3) = 0

ここで f は複素多項式です。

3. 射による記述

超弦理論空間を、モジュライ空間 M_CY からの射として記述します:

  • φ: M → M_CY

ここで M_CY はカラビ・ヤウ多様体のモジュライ空間です。

4. コホモロジー論的アプローチ

X の位相性質を以下のコホモロジー群で特徴づけます

特に、ホッジ数 h^p,q = dim H^p,q(X) が重要です。

5. 組み合わせ論的再構築

X を単体的複体として再構築します:

  • X ≃ |K|

ここで K は単体的複体、|K| はその幾何学的実現です。

6. 対称性群による特徴づけ

超弦理論対称性を以下の群で特徴づけます

  • Diff(M) : M のディフェオモルフィズム群
  • G : ゲージ群(例:E8 × E8 または SO(32))

7. 距離空間としての定義

M 上に擬リーマン計量 g を導入します:

  • ds^2 = g_μν dx^μ dx^ν

ここで g_μν は計量テンソルです。

この計量から、2点間の固有距離定義します:

  • d(p,q) = ∫_γ √(|g_μν dx^μ dx^ν|)

ここで γ は p と q を結ぶ測地線です。

これらの定義を組み合わせることで、超弦理論幾何学をより具体的に特徴づけることができます。各アプローチ理論の異なる側面を捉え、全体として超弦理論の豊かな数学構造表現しています

2024-07-18

TKG分析するでぇ

おっはよーございまーす!今日脳みそフル回転や!朝メシの卵かけご飯見てたら、突如として数学構造が目の前に展開されてもうたわ!

まずはな、卵かけご飯位相空間 (X, τ) として定義すんねん。ここで、Xは米粒の集合で、τはその上の開集合族やで。この時、卵黄をX内の開球B(x, r)と見なせるんや。ほんで、醤油の浸透具合を連続写像 f: X → R で表現できんねん。

さらにな、かき混ぜる過程群作用 G × X → X としてモデル化すんで。ここでGは、かき混ぜ方の対称群やねん。すると、均一に混ざった状態は、この作用軌道 G(x) の閉包みたいなもんや!

ほんで、味の評価関数 V: X → R を導入すんねん。これは凸関数になってて、最適な味を表す大域的最小値を持つわけや。でもな、ここがミソなんよ。この関数の Hessian 行列固有値分布が、実は食べる人の嗜好性を表してんねん!

さらに突っ込んで、時間発展も考慮せなアカンで。卵かけご飯状態を表す確率密度関数 ρ(x,t) の時間発展は、非線形 Fokker-Planck 方程式記述できんねん:

∂ρ/∂t = -∇・(μ(x)ρ) + (1/2)∇²(D(x)ρ)

ここで μ(x) は米粒の移流速度場、D(x) は拡散係数やで。

最後にな、食べ終わった後の茶碗の染みを、写像の像の境界f(X) として捉えると、これが人生における「痕跡」の数学表現になるんや!

なんぼ考えても、この卵かけご飯数理モデルには驚愕せざるを得んわ!これは間違いなく、数理哲学における新パラダイムや!明日学会発表が楽しみやで!

せやけど、なんでワイがこんな斬新な理論構築できんねやろ?もしかして統合失調症のおかげで、通常の認知の枠組みを超えた数学直観が働いてんのかもしれんなぁ。ほんま、ありがとう、我が病よ!

あかん、興奮して頭がクラクラしてきた...。今日はもう寝るで!おやすみー!

2023-11-06

[] 複素ウィグナーエントロピー

複素ウィグナー・エントロピーと呼ぶ量は、複素平面におけるウィグナー関数のシャノンの微分エントロピーの解析的継続によって定義される。複素ウィグナー・エントロピーの実部と虚部はガウスユニタリー(位相空間における変位、回転、スクイーズ)に対して不変である。実部はガウス畳み込みの下でのウィグナー関数進化を考えるとき物理的に重要であり、虚部は単にウィグナー関数の負の体積に比例する。任意のウィグナー関数複素数フィッシャー情報定義できる。これは、(拡張されたde Bruijnの恒等式によって)状態ガウス加法ノイズを受けたときの複素ウィグナーエントロピー時間微分リンクしている。複素平面位相空間における準確率分布エントロピー特性分析するための適切な枠組みをもたらす可能性がある。

2023-09-25

anond:20230925124532

というか順序構造自体が「最小値」を定義可能な最小構成なんだろ。知らんけど。

位相空間だけでは最小値は定義できないはずなので、順序構造から誘導される位相必要ということだと思う。

無限集合はもちろんダメ

2022-10-11

anond:20221011163407

コンパクト自体イメージは以下のサイトのおかげでつかめたつもり

https://zellij.hatenablog.com/entry/20120515/p1

が、その概念が出て来る証明になると初歩から理解ができない

https://takataninote.com/topology/compact.html

位相空間 Xがコンパクトならば, X の任意閉集合 Aもコンパクトである.

証明にたとえば

Aの開被覆uを持ち出してAの補集合またはuはXの開被覆だって言ってるけど

それって俺の理解だとAとuは同値でそのuとAの補集合との和集合なんじゃAがXの部分集合なんだからもはや単にX全体を指してるだけじゃね?コンパクトという概念とはまた違くね?って混乱する

もうちょっと順を追って解説してほしいもんだけど数学を教えるような人ってそんな親切じゃなんだよね…

2022-08-19

なんで観念的な興味と現実への興味とどっちかしかないんだろう

位相空間論における「貼り合わせ」について質問です

https://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q12164673062

こんな感じで専門的な概念から質問を構築するネット質問者は、その答えとして出て来る数式等の現実的意味(代表的な例として、虚時間とは現実的にはどういう意味なのか、みたいな)については関心を持ってないような人が多い気がする

数式上の結果とその証明さえ得られれば満足している感じかな

宇宙の形について質問です。

https://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q12266546052

こういう現実への旺盛な興味を見せている質問者は、その心意気はよいが文章日常用語ばかりなために言わんとすることがいまいちはっきりせず、回答者とのやり取りが燃焼不良になっているみたいなことが多い

理念に興味がある人は理念だけに完結しているし、現実に興味がある人は理念概念を学ぼうとせず前のめりに自分が伝えられないような内容の疑問を投げかけて失敗する

なぜネット人間はこの二つに一つなのだろう?

おかげでネットには正確だが難解で素人にはとうてい理解できない(しかもそれが現実においてどういう意味かも分からない)情報と分かった気にはなるが実は中身が無い情報しかないことについてもお前らはどう思うか

2021-12-09

anond:20211209024805

まあだから集合論知ってる」なんて言う人はいないよね。というか数学科でも「集合論知ってる」なんて言い方する人ほぼいないんじゃないかと思うけど。

「一応勉強したことある」とか「多少はわかる」とかそのくらいの言い方になるよね普通別に集合論に限らんけど。C++分かるなんてストラウストラップジェフディーンくらいじゃないと言えなくねみたいな。

てか集合論なんてまじでわかんなくない?無限個の積集合がどうやばいのかとか、位相空間で第二可算公理を満たなかったらどうやばいのかとか、全くピンと来てないんだけど。

2021-10-12

anond:20211012122230

ミートパイには虚の電磁波が含まれていて視床下部の神経位相空間を変質させるからミートパイ好きは一生ミートパイを食わなければならなくなるんだぞ。

2020-07-21

宇宙宇宙をつなぐ数学 - IUT理論の衝撃」の感想

Amazonレビューなどに書くと過去レビューから身バレする可能性があるのと、わざわざ別アカウントを作ってまで批評するほどのものではないと思ったので、こちらに書きます

初めに断っておきますが、本稿は別に加藤文元先生人格や業績などを否定しているわけではありません。また、IUT理論やその研究者に対する批判でもありません。「IUT理論が間違っている」とか「望月論文査読体制問題がある」などと言う話と本稿は全く無関係です。単純にこの本に対する感想しかありません。

----

加藤文元先生の「宇宙宇宙をつなぐ数学 - IUT理論の衝撃」を読みました。結論から言って、読む価値の無い本でした。その理由は、

ほとんど内容がない」

この一言に尽きます数学書としても、一般書としてもです。

本書の内容と構成

本書は、RIMS(京都大学数理解析研究所)の望月新一教授が発表した数学理論である、IUT理論宇宙タイミューラー理論)の一般向けの解説書です。

1~3章では、数学研究活動一般説明や、著者と望月教授交流の話をし、それを踏まえて、IUT理論画期的であること、またそれ故に多くの数学者には容易には受け入れられないことなどを説明しています

4~7章では、IUT理論の基本理念(だと著者が考えているアイデア)を説明しています技術的な詳細には立ち入らず、アイデア象徴する用語フレーズを多用し、それに対する概念的な説明や喩えを与えています

8章がIUT理論解説です。

まず、数学科の学部3年生以上の予備知識がある人は、8章だけ読めばいいです。1~7章を読んで得られるものはありません。これはつまり「本書の大部分は、IUT理論本質的関係ない」ということです。これについては後述します。

各章の内容

1~3章は、論文受理されるまでの流れなどの一般向けに興味深そうな内容もありましたが、本質的には「言い訳」をしているだけです。

IUT理論が多くの数学者に受け入れられないのは、従来の数学常識を覆す理論から

望月教授が公開された研究集会などを開かないのは、多数の人に概要だけを話しても理解できないから。

などの言い訳が繰り返し述べられているだけであり、前述の論文発表の流れなどもその補足のために書かれているに過ぎません。こういうことは、数学コミュニティの中でIUT理論懐疑的人達説明すればいい話であって、一般人に長々と説明するような内容ではないと思いますもっとも、著者が一般大衆も含めほとんどの人がIUT理論懐疑的である認識して本書を書いたのなら話は別ですが。

4~7章は、「足し算と掛け算の『正則構造』を分離する」とか「複数の『舞台』の間で対称性通信を行う」などの抽象的なフレーズが繰り返し出てくるだけで、それ自体の内容は実質的説明されていません。

正則構造とは、正方形の2辺のように独立に変形できないもの

対称性とは群のことで、回転や鏡映などの操作抽象化したもの

のように、そこに出てくる「用語」にごく初等的な喩えを与えているだけであり、それが理論の中で具体的にどう用いられるのかは全く分かりません(これに関して何が問題なのかは後述します)。そもそも、本書を手に取るような人、特に1~3章の背景に共感できるような人は、ここに書いてあるようなことは既に理解しているのではないでしょうか。特に6~7章などは、多くのページを費やしているわりに、数学書に換算して1~2ページ程度の内容しか無く(誇張ではなく)、極めて退屈でした。

8章はIUT理論解説ですが、前章までに述べたことを形式的につなぎ合わせただけで、実質的な内容はありません。つまり、既に述べたことを並べて再掲して「こういう順番で議論が進みます」と言っているだけであり、ほとんど新しい情報は出て来ません。この章で新しく出てくる、あるいはより詳しく解説される部分にしても、

複数数学舞台対称性通信をすることで、「N logΘ ≦ log(q) + c」という不等式が示されます。Θやqの意味は分からなくてもいいです。

今まで述べたことは局所的な話です。局所的な結果を束ねて大域的な結果にする必要がありますしかし、これ以上は技術的になるので説明できません。

のような調子で話が進みますいくら専門書ではないとはいえ、これが許されるなら何書いてもいいってことにならないでしょうか。力学解説書で「F = maという式が成り立ちます。Fやmなどの意味は分からなくていいです」と言っているようなものだと思います

本書の問題

本書の最大の問題点は、「本書の大部分がIUT理論本質的関係ない」ということです(少なくとも、私にはそうとしか思えません)。もちろん、どちらも「数学である」という程度の意味では関係がありますが、それだけなのです。これがどういうことか、少し説明します。

たとえば、日本には「類体論」の一般向けの解説書がたくさんあります。そして、そのほとんどの本には、たとえば

素数pに対して、√pは三角関数特殊値の和で表される。(たとえば、√5 = cos(2π/5) - cos(4π/5) - cos(6π/5) + cos(8π/5)、√7 = sin(2π/7) + sin(4π/7) - sin(6π/7) + sin(8π/7) - sin(10π/7) - sin(12π/7))

4で割って1あまる素数pは、p = x^2 + y^2の形に表される。(たとえば、5 = 1^2 + 2^2、13 = 2^2 + 3^2)

のような例が載っていると思います。なぜこういう例を載せるかと言えば、それが類体論典型的重要な例だからです。もちろん、これらはごく特殊な例に過ぎず、類体論一般論を説明し尽くしているわけではありません。また、類体論一般的な定理証明に伴う困難は、これらの例とはほとんど関係ありません。そういう意味では、これらの例は類体論理論的な本質を示しているわけではありません。しかし、これらの例を通じて「類体論が論ずる典型的現象」は説明できるわけです。

もう一つ、より初等的な例を出しましょう。理系なら誰でも知っている微分積分です。何回でも微分可能実関数fをとります。そして、fが仮に以下のような無限級数に展開できたとします。

f(x) = a_0 + a_1 x + a_2 x^2 + ... (a_n ∈ ℝ)

このとき、両辺を微分して比較すれば、各係数a_nは決まります。「a_n = (d^n f/dx^n (0))/n!」です。右辺の級数を項別に微分したり積分したりしていい場合、これはかなり豊かな理論を生みます。たとえば、等比級数の和の公式から

1/(1 + x^2) = 1 - x^2 + x^4 - x^6 + ... (|x| < 1)

両辺を積分し、形式的にx = 1を代入すると

arctan(x) = x - x^3/3 + x^5/5 - x^7/7 + ...

π/4 = 1 -1/3 + 1/5 - 1/7 + ...

のような非自明な等式を得ることができます。これは実際に正しい式です。また、たとえば

dy/dx - Ay = B (A, B ∈ ℝ、A≠0)

のような微分方程式も「y(x) = a_0 + a_1 x + a_2 x^2 + ...」のように展開できて項別に微分していいとすれば、

Σ((n+1)a_{n+1} - Aa_n) = B

  • a_1 - Aa_0 = B
  • (n+1)a_{n+1} - Aa_n = 0 (n ≧ 1)

よって、

  • a_{n+1} = Aa_n/(n+1) = A^n (B + A a_0)/(n+1)! (n ≧ 0)

a_0 = -B/A + C (Cは任意の定数)とおけば、

  • a_n = C A^n/n! (n ≧ 1)

「e^x = Σx^n/n!」なので、これを満たすのは「y = -B/A + Ce^(Ax)」と分かります

上の計算正当化する過程で最も困難な箇所は、このような級数収束するかどうか、または項別に微分積分ができるかどうかを論ずるところです。当然、これを数学科向けに説明するならば、そこが最も本質的な箇所になりますしかし、そのような厳密な議論とは独立に「微分積分が論ずる典型的現象」を説明することはできるわけです。

一般向けの数学の本に期待されることは、この「典型的現象」を示すことだと思います。ところが、本書では「IUT理論が論ずる典型的現象」が数学的に意味のある形では全く示されていません。その代わり、「足し算と掛け算を分離する」とか「宇宙間の対称性通信を行う」などの抽象的なフレーズと、それに対するたとえ話が羅列されているだけです。本書にも群論などの解説は出て来ますが、これは単に上のフレーズに出てくる単語注釈しかなく、「実際にIUT理論の中でこういう例を考える」という解説ではありません。これは、上の類体論の例で言えば、二次体も円分体も登場せず、「剰余とは、たとえば13 = 4 * 3 + 1の1のことです」とか「素因数分解ができるとは、たとえば60 = 2^2 * 3 * 5のように書けるということです」のような本質的関係のない解説しかないようなものです。

もちろん、「本書はそういう方針で書く」ということは本文中で繰り返し述べられていますから、そこを批判するのはお門違いなのかも知れません。しかし、それを考慮しても本書はあまりにも内容が薄いです。上に述べたように、誇張でも何でもなく、数学的に意味のある内容は数学書に換算して数ページ程度しか書かれていません。一般向けの数学の本でも、たとえば高木貞治の「近世数学史談」などは平易な言葉で書かれつつも非常に内容が豊富です。そういう内容を期待しているなら、本書を読む意味はありません。

繰り返し述べるように本書には数学的に意味のある内容はほとんどありません。だから、極端なことを言えば「1 + 1 = 2」や「1 + 2 = 3」のような自明な式を「宇宙宇宙をつなぐ」「正則構造を変形する」みたいに言い換えたとしても、本書と形式的に同じものが書けてしまうでしょう。いやもっと言えば、そのような言い換えの裏にあるもの数学的に正しい命題意味のある命題である必要すらありません。本書は少なくとも著者以外にはそういうもの区別が付きません。

本書の続編があるなら望むこと

ここまでネガティブなことを書いておいて、何食わぬ顔でTwitter加藤先生ツイートを拝見したり、東工大京大に出向いたりするのは、人としての信義に反する気がするので、前向きなことも書いておきます

まず、私は加藤先生ファンなので、本書の続編が出たら買って読むと思います。まあ、ご本人はこんな記事は読んでいないでしょうが、私の考えが人づてに伝わることはあるかも知れませんから、「続編が出るならこんなことを書いてほしい」ということを書きます

まず、上にも書いたような「IUT理論が論ずる典型的現象」を数学的に意味のある形で書いていただきたいです。類体論で言う、二次体や円分体における素イデアル分解などに相当するものです。

そして、IUT理論既存数学との繋がりを明確にしていただきたいです。これは論理的な側面と直感的な側面の両方を意味します。

論理的な側面は単純です。つまり、IUT理論に用いられる既存重要定理、およびIUT理論から導かれる重要定理を、正式ステートメント証明抜きで紹介していただきたいです。これはたとえば、Weil予想からRamanujan予想が従うとか、谷山-志村予想からFermatの最終定理が従うとか、そういう類のものです。

直感的な側面は、既存数学からアナロジーの部分をより専門的に解説していただきたいです。たとえば、楕円曲線のTate加群が1次のホモロジー群のl進類似であるとか、Galois理論位相空間における被覆空間理論類似になっているとか、そういう類のものです。

以上です。

加藤文元先生望月新一先生、およびIUT理論研究・普及に努めていらっしゃるすべての方々の益々のご健勝とご活躍を心から祈り申し上げます

2020-06-10

anond:20200610175544

位相空間論のどの教科書にも書いてある基本的事実をよくもまあ自信満々に間違えられるもんだ

開集合定義を与えてないのに開集合系は与えられない」みたいな頓珍漢な発言から数学勉強していないことは分かるが

anond:20200610165033

基本的に”ってわざわざ強調していることは特別に覚えるものもあるってのがおたくの主張でしょ?

そうだけど。

それで、「位相空間公理」がその「特別に覚える必要のあるものであることは、どこから読み取ったの?

anond:20200610163019

まさに「位相空間定義を覚える必要はない」「コンパクト空間定義を覚える必要はない」ということを一貫して述べているのだけど

R^nの開集合性質や、有界閉集合性質を知らんの?

ログイン ユーザー登録
ようこそ ゲスト さん