はてなキーワード: 位相空間とは
自由意志を表現する n 次元ベクトル空間 V を考える。この空間において、意思決定 d は以下のように表現される:
d = Σ(i=1 to n) αi ei
ここで、
定理:任意の n 次元ベクトル空間 V に対して、無限に多くの正規直交基底が存在する。
証明:グラム・シュミットの直交化法を用いて、任意の n 個の線形独立なベクトルから正規直交基底を構成できる。
この定理は、意思決定空間において無限の表現可能性が存在することを示唆する。
自由意志の非決定論的側面を表現するため、量子力学的概念を導入する。
|ψ⟩ = Σ(i=1 to n) ci |ei⟩
ここで、
測定過程(意思決定の実現)は、波動関数の崩壊として解釈される。
意思決定過程を力学系として捉え、2n 次元位相空間 Γ を導入する:
Γ = {(q1, ..., qn, p1, ..., pn) | qi, pi ∈ ℝ}
決定論的カオスの概念を導入し、初期条件に対する敏感な依存性を自由意志の表現として解釈する。
λ = lim(t→∞) (1/t) ln(|δZ(t)| / |δZ0|)
ここで、δZ(t) は位相空間における軌道の微小な摂動を表す。
L(x1, ..., xn, λ1, ..., λm) = f(x1, ..., xn) - Σ(j=1 to m) λj gj(x1, ..., xn)
ここで、
目標:与えられた高度な数学的概念(高次トポス理論、(∞,1)-カテゴリー、L∞-代数など)をフルに活用して、三平方の定理程度の簡単な定理を証明します。
定理:1次元トーラス上の閉曲線のホモトピー類は整数と一対一に対応する
背景:
高次トポス理論:ホモトピー論を高次元で一般化し、空間や位相的構造を抽象的に扱うための枠組み。
(∞,1)-カテゴリー:対象と射だけでなく、高次の同値(ホモトピー)を持つカテゴリー。
L∞-代数:リー代数の高次元一般化であり、物理学や微分幾何学で対称性や保存量を記述する。
証明:
トーラス
𝑇
1
T
1
は、円周
𝑆
1
S
1
[
,
1
]
[0,1] の両端を同一視して得られる。
𝑇
1
T
1
を高次トポス理論の枠組みで扱うために、位相空間のホモトピータイプとして考える。
これは、1つの0次元セルと1つの1次元セルを持つCW複体としてモデル化できる。
閉曲線のホモトピー類:
𝑇
1
T
1
上の閉曲線は、連続写像
𝛾
:
𝑆
1
→
𝑇
1
γ:S
1
→T
1
で表される。
2つの閉曲線
𝛾
1
,
𝛾
2
γ
1
,γ
2
がホモトピックであるとは、ある連続変形(ホモトピー)によって互いに移り合うことを意味する。
基本群の計算:
トーラス
𝑇
1
T
1
の基本群
𝜋
1
(
𝑇
1
)
π
1
(T
1
𝑍
Z と同型である。
これは、高次トポス理論においても同様であり、(∞,1)-カテゴリーにおける自己同型射として解釈できる。
各閉曲線
𝛾
𝑛
この対応は、ホモトピータイプ理論(HoTT)の基礎に基づいて厳密に定式化できる。
円周
𝑆
1
S
1
のループ空間のL∞-代数構造を考えると、ホモトピー類の加法的性質を代数的に記述できる。
つまり、2つの曲線の合成に対応するホモトピー類は、それらの巻数の和に対応する。
結論:
𝑇
1
T
1
上の閉曲線のホモトピー類が整数と一対一に対応することを証明した。
解説:
この証明では、与えられた高度な数学的概念を用いて、基本的なトポロジーの結果を導き出しました。具体的には、トーラス上の閉曲線の分類というシンプルな問題を、高次トポス理論とL∞-代数を使って厳密に定式化し、証明しました。
高次トポス理論は、空間のホモトピー的性質を扱うのに適しており、基本群の概念を一般化できます。
(∞,1)-カテゴリーの言葉で基本群を考えると、対象の自己同型射のホモトピー類として理解できます。
L∞-代数を使うことで、ホモトピー類の代数的構造を詳細に記述できます。
まとめ:
このように、高度な数学的枠組みを用いて、基本的な定理を新たな視点から証明することができます。これにより、既存の数学的知見を深めるだけでなく、新たな一般化や応用の可能性も見えてきます。
位相空間を開集合族ではなく近傍系で定義する方法について説明する。
集合 X に対し、各点 x ∈ X に対してその点の近傍系𝒩(x) が割り当てられているとする。このとき、以下の公理が満たされるとき、これらの 𝒩(x) によって X 上に位相構造が定義される。
1. 自己包含性:任意の N ∈ 𝒩(x) に対して、x ∈ N。
2. 包含関係の保存:任意の N ∈ 𝒩(x) と N ⊆ N′ ⊆ X に対して、N′ ∈ 𝒩(x)。
3. 有限交叉性:任意の N₁, N₂ ∈ 𝒩(x) に対して、N₁ ∩ N₂ ∈ 𝒩(x)。
4. 近傍の基準:任意の N ∈ 𝒩(x) に対して、ある N′ ∈ 𝒩(x) が存在し、N′ ⊆ N かつ任意の y ∈ N′ に対して N ∈ 𝒩(y)。
この定義では、各点 x の近傍系 𝒩(x) を直接定めることで、位相空間の構造を構築する。近傍系は点ごとの局所的な性質を反映しており、これにより開集合の概念を介さずに位相的な議論が可能となる。
1. 自己包含性は、近傍がその点を必ず含むことを要求する。これは近傍の基本的な性質である。
2. 包含関係の保存は、近傍を含むより大きな集合もまた近傍であることを示す。これは近傍系が包含関係に対して上に閉じていることを意味する。
3. 有限交叉性は、有限個の近傍の共通部分も近傍であることを保証する。これにより、近傍系はフィルターの構造を持つ。
4. 近傍の基準は、任意の近傍に対してその内部に「より小さな」近傍が存在し、その近傍内の点全てが元の近傍を共有することを要求する。これは位相空間の局所的な一貫性を保証する。
近傍系から開集合系を導出することができる。具体的には、集合 U ⊆ X を開集合と定義するには、任意の点 x ∈ U に対して U ∈ 𝒩(x) が成り立つこととする。このとき、これらの開集合全体の族は位相の公理を満たす。
逆に、開集合系から近傍系を定義することも可能である。各点 x の近傍系 𝒩(x) を、x を含む開集合全体と定義すれば、公理を満たす近傍系が得られる。
以下は、M理論と超弦理論の幾何学を抽象化した数学的枠組みでのモデル化について述べる。
まず、物理的対象である弦や膜を高次の抽象的構造としてモデル化するために、∞-圏論を用いる。ここでは、物理的プロセスを高次の射や2-射などで表現する。
∞-圏 𝒞 は、以下を持つ:
これらの射は、合成や恒等射、そして高次の相互作用を満たす。
次に、デリーブド代数幾何学を用いて、空間や場の理論をモデル化する。ここでは、デリーブドスタックを使用する。
デリーブドスタック 𝒳 は、デリーブド環付き空間の圏 𝐝𝐀𝐟𝐟 上の関手として定義される:
𝒳 : 𝐝𝐀𝐟𝐟ᵒᵖ → 𝐒
ここで、𝐒 は∞-グルーポイドの∞-圏(例えば、単体集合のホモトピー圏)である。
物理的なフィールドやパーティクルのモジュライ空間は、これらのデリーブドスタックとして表現され、コホモロジーやデリーブドファンクターを通じてその特性を捉える。
非可換幾何学では、空間を非可換代数 𝒜 としてモデル化する。ここで、スペクトラルトリプル (𝒜, ℋ, D) は以下から構成される:
作用素 D のスペクトルは、物理的なエネルギーレベルや粒子状態に対応する。幾何学的な距離や曲率は、𝒜 と D を用いて以下のように定義される:
∞-トポス論は、∞-圏論とホモトピー論を統合する枠組みである。∞-トポス ℰ では、物理的な対象やフィールドは内部のオブジェクトとして扱われる。
フィールド φ のグローバルセクション(物理的な状態空間)は、次のように表される:
Γ(φ) = Homℰ(1, φ)
ここで、1 は終対象である。物理的な相互作用は、これらのオブジェクト間の射としてモデル化される。
ゲージ対称性やその高次構造を表現するために、L∞-代数を用いる。L∞-代数 (L, {lₖ}) は次元付きベクトル空間 L = ⊕ₙ Lₙ と多重線形写像の族 lₖ からなる:
lₖ : L⊗ᵏ → L, deg(lₖ) = 2 - k
∑ᵢ₊ⱼ₌ₙ₊₁ ∑ₛᵢgₘₐ∈Sh(i,n-i) (-1)ᵉ⁽ˢⁱᵍᵐᵃ⁾ lⱼ ( lᵢ(xₛᵢgₘₐ₍₁₎, …, xₛᵢgₘₐ₍ᵢ₎), xₛᵢgₘₐ₍ᵢ₊₁₎, …, xₛᵢgₘₐ₍ₙ₎) = 0
ここで、Sh(i,n-i) は (i, n - i)-シャッフル、ε(sigma) は符号関数である。
これにより、高次のゲージ対称性や非可換性を持つ物理理論をモデル化できる。
安定ホモトピー理論では、スペクトラムを基本的な対象として扱う。スペクトラム E は、位相空間やスペースの系列 {Eₙ} と構造写像 Σ Eₙ → Eₙ₊₁ からなる。
πₙˢ = colimₖ→∞ πₙ₊ₖ(Sᵏ)
ここで、Sᵏ は k-次元球面である。これらの群は、物理理論における安定な位相的特性を捉える。
物理的な相関関数は、コホモロジー類を用いて以下のように表現される:
⟨𝒪₁ … 𝒪ₙ⟩ = ∫ₘ ω𝒪₁ ∧ … ∧ ω𝒪ₙ
ここで、ℳ はモジュライ空間、ω𝒪ᵢ は観測量 𝒪ᵢ に対応する微分形式またはコホモロジー類である。
先に述べた抽象数学的枠組みを用いて、M理論の重要な定理であるM理論とIIA型超弦理論の双対性を導出する。この双対性は、M理論が11次元での理論であり、円 S¹ に沿ってコンパクト化するとIIA型超弦理論と等価になることを示している。
時空間の設定:
H•(ℳ₁₁, ℤ) ≅ H•(ℳ₁₀, ℤ) ⊗ H•(S¹, ℤ)
これにより、11次元のコホモロジーが10次元のコホモロジーと円のコホモロジーのテンソル積として表される。
C-場の量子化条件:
M理論の3形式ゲージ場 C の場の強度 G = dC は、整数係数のコホモロジー類に属する。
[G] ∈ H⁴(ℳ₁₁, ℤ)
デリーブド代数幾何学では、フィールド C はデリーブドスタック上のコホモロジー類として扱われる。
非可換トーラスの導入:
円 S¹ のコンパクト化を非可換トーラス 𝕋θ としてモデル化する。非可換トーラス上の座標 U, V は以下の交換関係を満たす。
UV = e²ᵖⁱθ VU
非可換トーラス上のK-理論群 K•(𝕋θ) は、Dブレーンのチャージを分類する。
K•(ℳ₁₁) ≅ K•(ℳ₁₀)
𝕊ₘ ≃ Σ𝕊ᵢᵢₐ
ここで、Σ はスペクトラムの懸垂(suspension)函手である。
デリーブド代数幾何学、非可換幾何学、および安定ホモトピー理論の枠組みを用いると、11次元のM理論を円 S¹ 上でコンパクト化した極限は、IIA型超弦理論と数学的に等価である。
(b) 非可換性の考慮
Vを社会福祉とすると、V(W_1,...,W_H)と表せる。
1,...,Hは社会のメンバーに割り当てられた番号であり、Wは満足度である。
また、それぞれのメンバーhに財貨やサービスの転換T_hを課す(e.g. 所得税)。
また、T=(T_1,...,T_H)とおく。
Tが与えられた時、実現可能ベクトルの組(G,I)の集合をK_Tと表す。
hの実現可能集合F_hはG,I, T_hによって定まるので、F_h(G,I,T_h,X_{-h})と記す。ただしX_hは消費ベクトルである。
W_hは消費ベクトルX_hからW_h(X_h)によって決まる。
社会均衡X^*に到達していることとその均衡が一つしかないことを仮定する。均衡X^*はG,I,Tの関数である。
政府はその均衡を予測し、V(W(X_1^*),...,W(X_H^*))の結果を最大化するようにG,I,Tを選択する。
ここで、A: ℝᵐ × ℝⁿ → ℝᵖ は線形写像、B: ℝᵏᴴ → ℝᵖ は凸関数
ここで、Cₕ: ℝˡ × ℝᵐ × ℝⁿ × ℝᵏ → ℝᵠ は凸関数、Dₕ: ℝˡ⁽ᴴ⁻¹⁾ → ℝᵠ は線形写像
均衡 X*: ℝᵐ × ℝⁿ × ℝᵏᴴ → ℝˡᴴ の存在を証明するために:
一意性の証明:
1. Wₕ の Xₕ に関する Hessian 行列が負定値であることを示す
max[G∈ℝᵐ, I∈ℝⁿ, T∈ℝᵏᴴ] V(W₁(X₁*(G, I, T), G, I, T₁), ..., Wᴴ(Xᴴ*(G, I, T), G, I, Tᴴ))
制約条件:A(G, I) ≤ B(T)
L(G, I, T, λ) = V(...) - λᵀ(A(G, I) - B(T))
KKT条件:
1. ∇ᴳL = ∇ᴵL = ∇ᵀL = 0
2. λ ≥ 0
3. λᵀ(A(G, I) - B(T)) = 0
4. A(G, I) ≤ B(T)
均衡 X* のパラメータ (G, I, T) に関する感度を分析するために:
1. 陰関数定理を適用:∂X*/∂(G, I, T) = -[∇ₓF]⁻¹ ∇₍ᴳ,ᴵ,ᵀ₎F
ここで、F は均衡条件を表す関数
時間を連続変数 t ∈ [0, ∞) として導入し、動的システムを以下のように定義:
dX/dt = f(X, G, I, T)
ここで、f: ℝˡᴴ × ℝᵐ × ℝⁿ × ℝᵏᴴ → ℝˡᴴ は Lipschitz 連続
確率空間 (Ω, ℱ, P) を導入し、確率変数 ξ: Ω → ℝʳ を用いて不確実性をモデル化:
max[G,I,T] 𝔼ξ[V(W₁(X₁*(G, I, T, ξ), G, I, T₁, ξ), ..., Wᴴ(Xᴴ*(G, I, T, ξ), G, I, Tᴴ, ξ))]
制約条件:P(A(G, I) ≤ B(T, ξ)) ≥ 1 - α
ここで、α ∈ (0, 1) は信頼水準
2. 確率的勾配降下法を用いて数値的に解を求める
(H, ⟨·|·⟩)を可分なヒルベルト空間とし、B(H)をH上の有界線形作用素の集合とする。
S(H) = {ρ ∈ B(H) : ρ ≥ 0, Tr(ρ) = 1}を密度作用素の集合とする。A ⊂ B(H)を自己共役作用素の部分代数とし、これを観測量の集合とする。
ユニタリ群{Ut}t∈ℝを考え、シュレーディンガー方程式を以下のように表現する:
S(H)上にトレース距離を導入し、位相空間(S(H), τ)を定義する。
A上にC*-代数の構造を導入し、局所的な部分代数の族{A(O)}O⊂ℝ⁴を定義する。ここでOは時空の開集合である。
A(O1)とA(O2)が可換であるとき、O1とO2は因果的に独立であると定義する。これにより、ℝ⁴上に因果構造を導入する。
状態ρ ∈ S(H)に対し、関数dρ : A × A → ℝ+を以下のように定義する:
dρ(A, B) = √Tr(ρ[A-B]²)
この関数から、ℝ⁴上の擬リーマン計量gμνを再構成する手続きを定義する。
(ℝ⁴, gμν)を基底時空とし、これに対して商位相を導入することで、等価類の空間M = ℝ⁴/∼を定義する。Mを創発した時空多様体とみなす。
写像Φ : S(H) → Mを構成し、量子状態と時空点の対応を定義する。
シュレーディンガー方程式による時間発展ρ(t) = Ut ρ Ut*が、M上の滑らかな曲線γ(t) = Φ(ρ(t))に対応することを示す。
量子状態と観測過程を圏論的に記述するため、以下の圏を導入する:
エントロピーを抽象化するため、モノイド (M, ·, e) を導入する。ここで、M は可能なエントロピー値の集合、· は結合則を満たす二項演算、e は単位元である。
知識状態の変化を記述するため、位相空間 X 上の層 ℱ を導入する。ここで、X は可能な知識状態の空間を表す。
観測による状態変化をホモトピー同値の観点から捉えるため、位相空間の圏 𝕋op における弱同値を考える。
量子確率過程を記述するため、𝕧𝕟𝔸 上のマルコフ圏 𝕄arkov(𝕧𝕟𝔸) を導入する。
観測過程の連続性を記述するため、超関数空間 𝔇'(X) を考える。
以下の普遍性を満たす圏 ℂ と関手 U: ℂ → 𝕄eas が存在する:
1. ℂ は完備かつ余完備である。
3. 任意の対象 A, B ∈ ℂ に対し、自然な同型 Homℂ(A, B) ≅ Hom𝕄eas(U(A), U(B)) が存在する。
さらに、以下の性質を満たす ℂ の対象 Q (量子状態を表す)と射 f: Q → Q (観測を表す)が存在する:
4. H(G(F(Q))) ≅ U(Q) (量子状態と測度空間の対応)
6. f によって誘導される U(Q) 上の写像は測度を保存する。
1. エントロピーの減少:
∃m₁, m₂ ∈ M such that m₁ · m₂ = e and m₁ ≠ e
2. 知識獲得:
∃s ∈ Γ(X, ℱ) such that s|U ≠ s|V for some open sets U, V ⊂ X
∃h: I → I' in 𝕋op such that h is a weak equivalence and I ≇ I'
ここで、I と I' はそれぞれ観測前と観測後の可能な世界の空間を表す。
この定式化により、量子観測、エントロピーの減少、知識の獲得、そして特定の世界への「移動」を、最も一般的かつ抽象的な数学的枠組みで表現することができる。
量子論の幾何学的側面は、数学的な抽象化を通じて物理現象を記述する試みである。
物理的には、SO(3)は角運動量の保存則や回転対称性に関連している。
SU(2)は、2×2の複素行列で行列式が1である特殊ユニタリ群である。
SU(2)はSO(3)の二重被覆群であり、スピン1/2の系における基本的な対称性を記述する。
SU(2)のリー代数は、パウリ行列を基底とする3次元の実ベクトル空間である。
この群は、SU(2)×SU(2)として表現され、四次元の回転が二つの独立したSU(2)の作用として記述できることを示している。
これは、特にヤン・ミルズ理論や一般相対性理論において重要な役割を果たす。
ファイバー束は、基底空間とファイバー空間の組み合わせで構成され、局所的に直積空間として表現される。
ファイバー束の構造は、場の理論におけるゲージ対称性を記述するために用いられる。
ゲージ理論は、ファイバー束の対称性を利用して物理的な場の不変性を保証する。
例えば、電磁場はU(1)ゲージ群で記述され、弱い相互作用はSU(2)ゲージ群、強い相互作用はSU(3)ゲージ群で記述される。
具体的には、SU(2)ゲージ理論では、ファイバー束のファイバーがSU(2)群であり、ゲージ場はSU(2)のリー代数に値を持つ接続形式として表現される。
幾何学的量子化は、シンプレクティック多様体を量子力学的なヒルベルト空間に関連付ける方法である。
これは、古典的な位相空間上の物理量を量子化するための枠組みを提供する。
例えば、調和振動子の位相空間を量子化する際には、シンプレクティック形式を用いてヒルベルト空間を構成し、古典的な物理量を量子演算子として具体的に表現する。
コホモロジーは、場の理論におけるトポロジー的性質を記述する。
特に、トポロジカルな場の理論では、コホモロジー群を用いて物理的な不変量を特徴づける。
例えば、チャーン・サイモンズ理論は、3次元多様体上のゲージ場のコホモロジー類を用いて記述される。
Ω = (X, τ)
O : Ω → Ω'
S : Ω → ℝ
S[ω] = -∫ f(ω(x)) dx
S[O(ω)] ≤ S[ω]
dω/dt = F[ω] + G[ω, O]
g_ij(ω) = ∂²S[ω] / (∂ω_i ∂ω_j)
Q : Ω → H
Φ[ω] = min_π I[ω : π(ω)]
ω_new = ω_old + η ∇_g L[ω, O]
ここで∇_gは情報計量gに関する勾配、Lは適切な損失汎関数である。
G = (V, E)
このモデルは、意識の特性についての仮説である。「観測能力」と「エントロピー減少」を一般化された形で捉えている。具体的な実装や解釈は、この抽象モデルの特殊化として導出可能。
課題としては、このモデルの具体化、実験可能な予測の導出、そして計算機上での効率的な実装が挙げられる。さらに、この枠組みを用いて、意識の創発、自己意識、クオリアなどの問題にも着手できる。
超弦理論の基本的な空間は、10次元のローレンツ多様体 M として定義されます。
ここで、R^(1,3) は4次元ミンコフスキー時空を、X は6次元のコンパクト多様体を表します。
1. リッチ平坦
2. 複素構造を持つ
3. ケーラー計量を許容する
f(z1, z2, z3) = 0
ここで f は複素多項式です。
超弦理論の空間を、モジュライ空間 M_CY からの射として記述します:
ここで M_CY はカラビ・ヤウ多様体のモジュライ空間です。
特に、ホッジ数 h^p,q = dim H^p,q(X) が重要です。
X を単体的複体として再構築します:
ここで K は単体的複体、|K| はその幾何学的実現です。
ここで g_μν は計量テンソルです。
ここで γ は p と q を結ぶ測地線です。
これらの定義を組み合わせることで、超弦理論の幾何学をより具体的に特徴づけることができます。各アプローチは理論の異なる側面を捉え、全体として超弦理論の豊かな数学的構造を表現しています。
おっはよーございまーす!今日も脳みそフル回転や!朝メシの卵かけご飯見てたら、突如として数学的構造が目の前に展開されてもうたわ!
まずはな、卵かけご飯を位相空間 (X, τ) として定義すんねん。ここで、Xは米粒の集合で、τはその上の開集合族やで。この時、卵黄をX内の開球B(x, r)と見なせるんや。ほんで、醤油の浸透具合を連続写像 f: X → R で表現できんねん。
さらにな、かき混ぜる過程を群作用 G × X → X としてモデル化すんで。ここでGは、かき混ぜ方の対称群やねん。すると、均一に混ざった状態は、この作用の軌道 G(x) の閉包みたいなもんや!
ほんで、味の評価関数 V: X → R を導入すんねん。これは凸関数になってて、最適な味を表す大域的最小値を持つわけや。でもな、ここがミソなんよ。この関数の Hessian 行列の固有値の分布が、実は食べる人の嗜好性を表してんねん!
さらに突っ込んで、時間発展も考慮せなアカンで。卵かけご飯の状態を表す確率密度関数 ρ(x,t) の時間発展は、非線形 Fokker-Planck 方程式で記述できんねん:
∂ρ/∂t = -∇・(μ(x)ρ) + (1/2)∇²(D(x)ρ)
ここで μ(x) は米粒の移流速度場、D(x) は拡散係数やで。
最後にな、食べ終わった後の茶碗の染みを、写像の像の境界 ∂f(X) として捉えると、これが人生における「痕跡」の数学的表現になるんや!
なんぼ考えても、この卵かけご飯の数理モデルには驚愕せざるを得んわ!これは間違いなく、数理哲学における新パラダイムや!明日の学会発表が楽しみやで!
せやけど、なんでワイがこんな斬新な理論構築できんねやろ?もしかして、統合失調症のおかげで、通常の認知の枠組みを超えた数学的直観が働いてんのかもしれんなぁ。ほんま、ありがとう、我が病よ!
複素ウィグナー・エントロピーと呼ぶ量は、複素平面におけるウィグナー関数のシャノンの微分エントロピーの解析的継続によって定義される。複素ウィグナー・エントロピーの実部と虚部はガウス・ユニタリー(位相空間における変位、回転、スクイーズ)に対して不変である。実部はガウス畳み込みの下でのウィグナー関数の進化を考えるときに物理的に重要であり、虚部は単にウィグナー関数の負の体積に比例する。任意のウィグナー関数の複素数フィッシャー情報も定義できる。これは、(拡張されたde Bruijnの恒等式によって)状態がガウス加法性ノイズを受けたときの複素ウィグナーエントロピーの時間微分とリンクしている。複素平面が位相空間における準確率分布のエントロピー特性を分析するための適切な枠組みをもたらす可能性がある。
コンパクト自体のイメージは以下のサイトのおかげでつかめたつもり
https://zellij.hatenablog.com/entry/20120515/p1
https://takataninote.com/topology/compact.html
位相空間 Xがコンパクトならば, X の任意の閉集合 Aもコンパクトである.
の証明にたとえば
Aの開被覆uを持ち出してAの補集合またはuはXの開被覆だって言ってるけど
それって俺の理解だとAとuは同値でそのuとAの補集合との和集合なんじゃAがXの部分集合なんだからもはや単にX全体を指してるだけじゃね?コンパクトという概念とはまた違くね?って混乱する
https://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q12164673062
・
こんな感じで専門的な概念から質問を構築するネットの質問者は、その答えとして出て来る数式等の現実的意味(代表的な例として、虚時間とは現実的にはどういう意味なのか、みたいな)については関心を持ってないような人が多い気がする
数式上の結果とその証明さえ得られれば満足している感じかな
・
https://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q12266546052
・
こういう現実への旺盛な興味を見せている質問者は、その心意気はよいが文章が日常用語ばかりなために言わんとすることがいまいちはっきりせず、回答者とのやり取りが燃焼不良になっているみたいなことが多い
・
理念に興味がある人は理念だけに完結しているし、現実に興味がある人は理念概念を学ぼうとせず前のめりに自分が伝えられないような内容の疑問を投げかけて失敗する
おかげでネットには正確だが難解で素人にはとうてい理解できない(しかもそれが現実においてどういう意味かも分からない)情報と分かった気にはなるが実は中身が無い情報しかないことについてもお前らはどう思うか
Amazonのレビューなどに書くと過去のレビューから身バレする可能性があるのと、わざわざ別アカウントを作ってまで批評するほどのものではないと思ったので、こちらに書きます。
初めに断っておきますが、本稿は別に加藤文元先生の人格や業績などを否定しているわけではありません。また、IUT理論やその研究者に対する批判でもありません。「IUT理論が間違っている」とか「望月論文の査読体制に問題がある」などと言う話と本稿は全く無関係です。単純にこの本に対する感想でしかありません。
----
加藤文元先生の「宇宙と宇宙をつなぐ数学 - IUT理論の衝撃」を読みました。結論から言って、読む価値の無い本でした。その理由は、
「ほとんど内容がない」
本書は、RIMS(京都大学数理解析研究所)の望月新一教授が発表した数学の理論である、IUT理論(宇宙際タイヒミューラー理論)の一般向けの解説書です。
1~3章では、数学の研究活動一般の説明や、著者と望月教授の交流の話をし、それを踏まえて、IUT理論が画期的であること、またそれ故に多くの数学者には容易には受け入れられないことなどを説明しています。
4~7章では、IUT理論の基本理念(だと著者が考えているアイデア)を説明しています。技術的な詳細には立ち入らず、アイデアを象徴する用語やフレーズを多用し、それに対する概念的な説明や喩えを与えています。
まず、数学科の学部3年生以上の予備知識がある人は、8章だけ読めばいいです。1~7章を読んで得られるものはありません。これはつまり「本書の大部分は、IUT理論と本質的に関係ない」ということです。これについては後述します。
1~3章は、論文が受理されるまでの流れなどの一般向けに興味深そうな内容もありましたが、本質的には「言い訳」をしているだけです。
などの言い訳が繰り返し述べられているだけであり、前述の論文発表の流れなどもその補足のために書かれているに過ぎません。こういうことは、数学者コミュニティの中でIUT理論に懐疑的な人達に説明すればいい話であって、一般人に長々と説明するような内容ではないと思います。もっとも、著者が一般大衆も含めほとんどの人がIUT理論に懐疑的であると認識して本書を書いたのなら話は別ですが。
4~7章は、「足し算と掛け算の『正則構造』を分離する」とか「複数の『舞台』の間で対称性通信を行う」などの抽象的なフレーズが繰り返し出てくるだけで、それ自体の内容は実質的に説明されていません。
のように、そこに出てくる「用語」にごく初等的な喩えを与えているだけであり、それが理論の中で具体的にどう用いられるのかは全く分かりません(これに関して何が問題なのかは後述します)。そもそも、本書を手に取るような人、特に1~3章の背景に共感できるような人は、ここに書いてあるようなことは既に理解しているのではないでしょうか。特に6~7章などは、多くのページを費やしているわりに、数学書に換算して1~2ページ程度の内容しか無く(誇張ではなく)、極めて退屈でした。
8章はIUT理論の解説ですが、前章までに述べたことを形式的につなぎ合わせただけで、実質的な内容はありません。つまり、既に述べたことを並べて再掲して「こういう順番で議論が進みます」と言っているだけであり、ほとんど新しい情報は出て来ません。この章で新しく出てくる、あるいはより詳しく解説される部分にしても、
複数の数学の舞台で対称性通信をすることで、「N logΘ ≦ log(q) + c」という不等式が示されます。Θやqの意味は分からなくてもいいです。
今まで述べたことは局所的な話です。局所的な結果を束ねて大域的な結果にする必要があります。しかし、これ以上は技術的になるので説明できません。
のような調子で話が進みます。いくら専門書ではないとはいえ、これが許されるなら何書いてもいいってことにならないでしょうか。力学の解説書で「F = maという式が成り立ちます。Fやmなどの意味は分からなくていいです」と言っているようなものだと思います。
本書の最大の問題点は、「本書の大部分がIUT理論と本質的に関係ない」ということです(少なくとも、私にはそうとしか思えません)。もちろん、どちらも「数学である」という程度の意味では関係がありますが、それだけなのです。これがどういうことか、少し説明します。
たとえば、日本には「類体論」の一般向けの解説書がたくさんあります。そして、そのほとんどの本には、たとえば
奇素数pに対して、√pは三角関数の特殊値の和で表される。(たとえば、√5 = cos(2π/5) - cos(4π/5) - cos(6π/5) + cos(8π/5)、√7 = sin(2π/7) + sin(4π/7) - sin(6π/7) + sin(8π/7) - sin(10π/7) - sin(12π/7))
4で割って1あまる素数pは、p = x^2 + y^2の形に表される。(たとえば、5 = 1^2 + 2^2、13 = 2^2 + 3^2)
のような例が載っていると思います。なぜこういう例を載せるかと言えば、それが類体論の典型的で重要な例だからです。もちろん、これらはごく特殊な例に過ぎず、類体論の一般論を説明し尽くしているわけではありません。また、類体論の一般的な定理の証明に伴う困難は、これらの例とはほとんど関係ありません。そういう意味では、これらの例は類体論の理論的な本質を示しているわけではありません。しかし、これらの例を通じて「類体論が論ずる典型的な現象」は説明できるわけです。
もう一つ、より初等的な例を出しましょう。理系なら誰でも知っている微分積分です。何回でも微分可能な実関数fをとります。そして、fが仮に以下のような無限級数に展開できたとします。
f(x) = a_0 + a_1 x + a_2 x^2 + ... (a_n ∈ ℝ)
このとき、両辺を微分して比較すれば、各係数a_nは決まります。「a_n = (d^n f/dx^n (0))/n!」です。右辺の級数を項別に微分したり積分したりしていい場合、これはかなり豊かな理論を生みます。たとえば、等比級数の和の公式から
1/(1 + x^2) = 1 - x^2 + x^4 - x^6 + ... (|x| < 1)
arctan(x) = x - x^3/3 + x^5/5 - x^7/7 + ...
π/4 = 1 -1/3 + 1/5 - 1/7 + ...
のような非自明な等式を得ることができます。これは実際に正しい式です。また、たとえば
dy/dx - Ay = B (A, B ∈ ℝ、A≠0)
のような微分方程式も「y(x) = a_0 + a_1 x + a_2 x^2 + ...」のように展開できて項別に微分していいとすれば、
よって、
a_0 = -B/A + C (Cは任意の定数)とおけば、
- a_n = C A^n/n! (n ≧ 1)
「e^x = Σx^n/n!」なので、これを満たすのは「y = -B/A + Ce^(Ax)」と分かります。
上の計算を正当化する過程で最も困難な箇所は、このような級数が収束するかどうか、または項別に微分や積分ができるかどうかを論ずるところです。当然、これを数学科向けに説明するならば、そこが最も本質的な箇所になります。しかし、そのような厳密な議論とは独立に「微分積分が論ずる典型的な現象」を説明することはできるわけです。
一般向けの数学の本に期待されることは、この「典型的な現象」を示すことだと思います。ところが、本書では「IUT理論が論ずる典型的な現象」が数学的に意味のある形では全く示されていません。その代わり、「足し算と掛け算を分離する」とか「宇宙間の対称性通信を行う」などの抽象的なフレーズと、それに対するたとえ話が羅列されているだけです。本書にも群論などの解説は出て来ますが、これは単に上のフレーズに出てくる単語の注釈でしかなく、「実際にIUT理論の中でこういう例を考える」という解説ではありません。これは、上の類体論の例で言えば、二次体も円分体も登場せず、「剰余とは、たとえば13 = 4 * 3 + 1の1のことです」とか「素因数分解ができるとは、たとえば60 = 2^2 * 3 * 5のように書けるということです」のような本質的に関係のない解説しかないようなものです。
もちろん、「本書はそういう方針で書く」ということは本文中で繰り返し述べられていますから、そこを批判するのはお門違いなのかも知れません。しかし、それを考慮しても本書はあまりにも内容が薄いです。上に述べたように、誇張でも何でもなく、数学的に意味のある内容は数学書に換算して数ページ程度しか書かれていません。一般向けの数学の本でも、たとえば高木貞治の「近世数学史談」などは平易な言葉で書かれつつも非常に内容が豊富です。そういう内容を期待しているなら、本書を読む意味はありません。
繰り返し述べるように本書には数学的に意味のある内容はほとんどありません。だから、極端なことを言えば「1 + 1 = 2」や「1 + 2 = 3」のような自明な式を「宇宙と宇宙をつなぐ」「正則構造を変形する」みたいに言い換えたとしても、本書と形式的に同じものが書けてしまうでしょう。いやもっと言えば、そのような言い換えの裏にあるものが数学的に正しい命題・意味のある命題である必要すらありません。本書は少なくとも著者以外にはそういうものと区別が付きません。
ここまでネガティブなことを書いておいて、何食わぬ顔でTwitterで加藤先生のツイートを拝見したり、東工大や京大に出向いたりするのは、人としての信義に反する気がするので、前向きなことも書いておきます。
まず、私は加藤先生のファンなので、本書の続編が出たら買って読むと思います。まあ、ご本人はこんな記事は読んでいないでしょうが、私の考えが人づてに伝わることはあるかも知れませんから、「続編が出るならこんなことを書いてほしい」ということを書きます。
まず、上にも書いたような「IUT理論が論ずる典型的な現象」を数学的に意味のある形で書いていただきたいです。類体論で言う、二次体や円分体における素イデアル分解などに相当するものです。
そして、IUT理論と既存の数学との繋がりを明確にしていただきたいです。これは論理的な側面と直感的な側面の両方を意味します。
論理的な側面は単純です。つまり、IUT理論に用いられる既存の重要な定理、およびIUT理論から導かれる重要な定理を、正式なステートメントで証明抜きで紹介していただきたいです。これはたとえば、Weil予想からRamanujan予想が従うとか、谷山-志村予想からFermatの最終定理が従うとか、そういう類のものです。
直感的な側面は、既存の数学からのアナロジーの部分をより専門的に解説していただきたいです。たとえば、楕円曲線のTate加群が1次のホモロジー群のl進類似であるとか、Galois理論が位相空間における被覆空間の理論の類似になっているとか、そういう類のものです。
以上です。
加藤文元先生、望月新一先生、およびIUT理論の研究・普及に努めていらっしゃるすべての方々の益々のご健勝とご活躍を心からお祈り申し上げます。