2024-08-23

量子力学数学抽象化

1. 圏論的枠組み

量子状態観測過程圏論的に記述するため、以下の圏を導入する:

2. 関手自然変換

観測過程を表す自然変換 η: F ⇒ G を定義する。

3. モノイド構造

エントロピー抽象化するため、モノイド (M, ·, e) を導入する。ここで、M は可能エントロピー値の集合、· は結合則を満たす二項演算、e は単位元である

4. 層理論

知識状態の変化を記述するため、位相空間 X 上の層 ℱ を導入する。ここで、X は可能知識状態空間を表す。

5. ホモトピー理論

観測による状態変化をホモトピー同値観点から捉えるため、位相空間の圏 𝕋op における弱同値を考える。

6. 圏論確率

量子確率過程記述するため、𝕧𝕟𝔸 上のマルコフ圏 𝕄arkov(𝕧𝕟𝔸) を導入する。

7. 量子論

量子命題を扱うため、オーソモジュラー格子 L を導入する。

8. 超関数理論

観測過程連続性を記述するため、超関数空間 𝔇'(X) を考える。

定理:量子観測普遍的特性

以下の普遍性を満たす圏 ℂ と関手 U: ℂ → 𝕄eas が存在する:

1. ℂ は完備かつ余完備である

2. U は忠実充満関手である

3. 任意対象 A, B ∈ ℂ に対し、自然な同型 Homℂ(A, B) ≅ Hom𝕄eas(U(A), U(B)) が存在する。

さらに、以下の性質を満たす ℂ の対象 Q (量子状態を表す)と射 f: Q → Q (観測を表す)が存在する:

4. H(G(F(Q))) ≅ U(Q) (量子状態と測度空間対応

5. f は Q 上のモノイド準同型誘導する。

6. f によって誘導される U(Q) 上の写像は測度を保存する。

系:エントロピー減少と世界選択抽象記述

上記定理の下で、以下が成り立つ:

1. エントロピーの減少:

∃m₁, m₂ ∈ M such that m₁ · m₂ = e and m₁ ≠ e

2. 知識獲得:

∃s ∈ Γ(X, ℱ) such that s|U ≠ s|V for some open sets U, V ⊂ X

3. 世界選択

∃h: I → I' in 𝕋op such that h is a weak equivalence and I ≇ I'

ここで、I と I' はそれぞれ観測前と観測後の可能世界空間を表す。

この定式化により、量子観測エントロピーの減少、知識の獲得、そして特定世界への「移動」を、最も一般的かつ抽象的な数学的枠組みで表現することができる。

この枠組みは、具体的な物理系や観測過程依存せず、純粋数学的な構造のみに基づいている。

記事への反応(ブックマークコメント)

ログイン ユーザー登録
ようこそ ゲスト さん