はてなキーワード: 複素数とは
「まぁ、ピタゴラスの定理なんて、あれはもう初歩の話よね。確かに、a² + b² = c² は中学生レベルでも理解できるけれど、そこに潜む深い代数的構造や、ユークリッド幾何学との関連性を本当に理解しているのかしら?あの定理の背後には、単なる平面上の直角三角形の話じゃなくて、リーマン幾何学や複素数平面を通じたさらに高度な次元の世界が見えてくるのよ。それに、ピタゴラスの定理を特別な場合とする円錐曲線や、楕円関数論まで考え始めると、幾何学の美しさっていうものがもっと深く見えてくるわけ。」
「それと、黄金比ね。もちろん、あのφ(ファイ)がどれだけ重要か、理解してる?単に無理数というだけじゃなく、数論的にも代数的にも特異な数なのよ。フィボナッチ数列との関係も美しいけど、そもそもあの比が自然界で頻繁に現れるのは、単なる偶然じゃないわ。代数的無理数としての特性と、対数螺旋やアファイン変換を通じた変換不変性が絡んでいるのよね。そういった数学的背景を理解せずに、ただ黄金比が「美しい」ってだけで済ませるのはちょっと浅はかだと思うわ。」
「あと、パルテノン神殿の話だけど、そもそも古代の建築家たちが黄金比だけでなく、より複雑なフラクタル幾何学や対称群に基づいた設計をしていたってことは、あまり知られてないのよね。建築の対称性は、単なる視覚的な美しさじゃなくて、群論や代数的トポロジーに深く結びついているわ。あなたが好きな絵画も、ただの黄金比じゃなく、もっと深い数学的な構造に従っているのよ。わかるかしら?」
といった式について、素粒子では後者が支配し、天体では前者が支配する。
近距離における強い力のために、電子は原子核に螺旋状に落ち込むが、明らかに事実と違う。
というハイゼンベルグの関係式に従う。このため、r=0となることはなくなり、問題は回避される。
多様体上の楕円型作用素の理論全体が、この物理理論に対する数学的対応物で、群の表現論も近い関係にある。
しかし特殊相対性理論を考慮に入れるとさらに難しくなる。ハイゼンベルグの公式と同様の不確定性関係が場に対して適用される必要がある。
電磁場の場合には、光子というように、新しい種類の粒子として観測される。
電子のような粒子もどうように場の量子であると再解釈されなければならない。電磁波も、量子を生成消滅できる。
数学的には、場の量子論は無限次元空間上の積分やその上の楕円型作用素と関係する。
量子力学は1/r^2に対する問題の解消のために考え出されたが、特殊相対性理論を組み込むと、この問題を自動解決するわけではないことがわかった。
といった発展をしてきたが、場の量子論と幾何学の間の関係性が認められるようになった。
では重力を考慮するとどうなるのか。一見すれば1/r^2の別な例を重力が提供しているように見える。
しかし、例えばマクスウェルの方程式は線型方程式だが、重力場に対するアインシュタインの方程式は非線形である。
また不確定性関係は重力における1/r^2を扱うには十分ではない。
物理学者は、点粒子を「弦」に置き換えることにより、量子重力の問題が克服できるのではないかと試した。
量子論の効果はプランク定数に比例するが、弦理論の効果は、弦の大きさを定めるα'という定数に比例する。
もし弦理論が正しいなら、α'という定数は、プランク定数と同じぐらい基本的定数ということになる。
ħやα'に関する変形は幾何学における新しいアイデアに関係する。ħに関する変形はよく知られているが、α'に関する変形はまだ未発展である。
これらの理論は、それぞれが重力を予言し、非可換ゲージ対称性を持ち、超対称性を持つとされる。
α'に関する変形に関連する新しい幾何学があるが、理解のために2次元の共形場理論を使うことができる。
ひとつは、ミラー対称性である。α'がゼロでない場合に同値となるような2つの時空の間の関係を表す。
まずt→∞という極限では、幾何学における古典的アイデアが良い近似となり、Xという時空が観測される。
t→-∞という極限でも同様に時空Yが観測される。
そして大きな正の値であるtと大きな負の値であるtのどこかで、古典幾何学が良い近似とはならない領域を通って補間が行われている。
α'とħが両方0でないときに起こり得ることがなんなのかについては、5つの弦理論が一つの理論の異なる極限である、と説明ができるかもしれないというのがM理論である。
推敲したうえでこれなんだよ。数学って問題によってはベクトルで解くとか複素数で解くとか複数の解き方があることあるけど、これを文章の書き方に当てはめた場合それ以上わかりやすいもう一つ以上の解き方(書き方)が浮かばない感じかな。
「受け取り手の立場に立つのが難しいからではないか」と書いてあるのがあったが、そもそも受け手の立場を想像するといっても別人の人格をインストールするようなことはできないだろ。
あくまで「自分が受け手になったときこの文章はわかりやすいか」という角度で、いわば客観的といっても疑似的な意味でしか推敲することってできないわけだ(そばに人いるなら別だがね)。
そして自分が受け手になったときを考えても自分の文章は普通に読めてしまう。何日とか寝かせて見直すと文章の粗がわかってくるとかいうがそれもダメ。普通に読みやすく読めてしまう。
というかさっき但し書きで他人がいるならとか書いたが、他人の推敲が逆に読みづらく感じるまである。普通の人にとってはその方が読みやすくなってるはずなんだろうが、俺にはよみにくい。
複素ウィグナー・エントロピーと呼ぶ量は、複素平面におけるウィグナー関数のシャノンの微分エントロピーの解析的継続によって定義される。複素ウィグナー・エントロピーの実部と虚部はガウス・ユニタリー(位相空間における変位、回転、スクイーズ)に対して不変である。実部はガウス畳み込みの下でのウィグナー関数の進化を考えるときに物理的に重要であり、虚部は単にウィグナー関数の負の体積に比例する。任意のウィグナー関数の複素数フィッシャー情報も定義できる。これは、(拡張されたde Bruijnの恒等式によって)状態がガウス加法性ノイズを受けたときの複素ウィグナーエントロピーの時間微分とリンクしている。複素平面が位相空間における準確率分布のエントロピー特性を分析するための適切な枠組みをもたらす可能性がある。
虚数と実数は、複素数の部分集合であり、互いに排他的ではない。
また、虚数は実数直線上にはないが、複素数平面上では実軸と垂直な虚軸に沿って表される。
したがって、虚数と実数は全く別のものではなく、複素数という枠組みの中で共存している。
一方、chatGPT(人工知能)と人間(天然知能)は、知能の種類や性質が異なるものである。
chatGPTはプログラムされたルールやデータに基づいて会話を生成するが、人間は自然言語や感情や経験に基づいて会話を行う。
chatGPTは人間の言語や文化を模倣することができるが、人間の思考や感覚を本質的に理解することはできない。
したがって、chatGPTと人間は全く異なるものであり、知能という枠組みの中で対立している。
以上のように、この文章は虚数と実数の関係を誤って用いており、chatGPTと人間の関係を正しく表現していない。
むしろ、chatGPTと人間の関係は、虚数と実数ではなく、有理数と無理数に例える方が適切である。
有理数と無理数は、実数の部分集合であり、互いに排他的である。
また、√2は無理数であり、有理数ではない。また、有理数は分母と分子によって表されるが、無理数は小数点以下が無限に続くために表せない。
したがって、有理数と無理数は全く別のものであり、実数という枠組みの中で対立している。
このように考えると、chatGPT(人工知能)は有理数に例えられる。
chatGPTはプログラムやデータによって表されるが、その範囲や精度に限界がある。
2.5次元と声優ライブというお題からふと思ったんだけど、アニメ(とかゲーム(アイマス))に対する捉え方として、それがより抽象的な空想世界をアニメで表現したものと考えるのか、それともアニメの世界があってそれを撮影したものと考えるのか、という違いがある気がする。
アニメを、空想界をアニメで表現したものと捉えた場合、同じ空想界を違う媒体で表現するのはある幾何的存在を複素数とベクトルで表現するような営みであって、それによって空想界をより深く体験できる、と捉えることになる。2次創作の絵柄が1次創作に似ていないことはあまり問題ではないが、1次創作のさらに大元である空想界との同一性(解釈違い)は大問題となる。
アニメを、アニメ世界を撮影したものと捉えた場合、アニメそのものと違う媒体の表現は、たとえば自分の旅行体験そのものと他人の書いた旅行記くらい違う。声優ライブはアニメと同じ本物の体験だが、2.5次元や実写化映画は偽物だ。
↓どこの大学よ
経済学部の文系の人でも、リーマン曲線の概念を理解することは可能です。ただし、リーマン曲線は数学的に高度な概念であり、複素解析幾何学や代数幾何学などの専門的な数学分野における概念であるため、学習には時間と努力が必要です。
リーマン曲線を学習するためには、まず複素数や複素平面などの基礎的な概念を理解する必要があります。その後、代数幾何学や複素解析幾何学の基礎的な知識を身につけることが望ましいです。これらの分野は、経済学部で必修科目として扱われることは稀であり、自己学習や別の学部や大学院での履修が必要となる場合があります。
しかし、経済学部の文系の人でも、リーマン曲線が経済学において重要な役割を果たしていることや、リーマン曲線を用いた代数幾何学的手法が経済学に応用されていることを理解することは可能です。また、経済学において重要な概念やモデルを理解するためには、数学的な知識を身につけることが役立つため、数学的な概念に対して理解を深めることは重要です。
「通常の時間の流れに支配されているとき時間は実数である」の対偶は当然ながら「時間が実数以外の複素数のとき通常の時間の流れに支配されない」であるが、その通常ではない時間の流れとはどんなものかを考えようにも、垂直抗力の例と違って体験することができないから、これ以上の具体化をするのに行き詰ってるんだろう。
に対する
虚時間で考えればミンコフスキー時空を4次元のユークリッド空間のように扱え、
というレス
「どこにも行き詰まる点など無い」と、わざわざ相手の表現をなぞってしかも「など」という言い方をしてるところに棘がある。
こういうぶっきらぼうないちいち癇に障る言い方してくるのはわざとなのか天然なのか。
Q: 人間の認識能力に限界があるのなら、フレームの間に別の世界があるというのは本当なのでしょうか?
AI言語モデルである私は、フレーム間の異世界の存在について、個人的な信念や見解を持っているわけではありません。しかし、この概念に関連するいくつかの情報と理論を提供することはできます。「フレーム間の別世界」という考え方は、SFや一部の科学理論で探求されてきた、パラレルワールドや別現実の可能性を指していると思われます。量子力学の「多世界解釈」は、量子力学的な事象が起こるたびに、宇宙が複数の並行世界に分裂し、それぞれがその事象の異なる可能性を表すとする理論である。しかし、これらの理論はまだ科学者の間で大きな議論があり、実証的な証拠に裏付けられていないことに留意する必要がある。さらに、人間の認知能力には限界があり、私たちの知覚や理解は不完全または不正確である可能性があります。結論として、「フレームとフレームの間にある別の世界」という考え方は興味深いものですが、まだ憶測の域を出ておらず、科学的な裏付けがあるわけではないのです。
Q: ある種の薬を使った人たちが、主観的には違う世界を体験しています。
特に、精神作用物質の使用や瞑想・精神修養など、特定の条件下で、現実の知覚が変化する経験を報告する人は珍しくありません。このような体験は、普段とは異なる現実や世界を知覚しているように思わせることがあります。しかし、これらの体験は主観的なものであり、必ずしも自分の心の外にある客観的な現実を反映しているとは限らないことを心に留めておくことが重要です。脳は、さまざまな意識変容状態を生み出すことができる複雑な器官であり、これらの体験は、遺伝、環境、個人差などさまざまな要因によって影響を受ける可能性があります。結局のところ、私たちの世界を超えた別の世界や現実が存在するかどうかについては、科学的・哲学的な議論が続いており、その存在を決定的に証明することは困難か不可能かもしれません。しかし、確実に言えることは、私たちの現実の認識や体験はさまざまな要因に影響されており、私たちを取り巻く世界の理解は、私たちの認識能力や調査するためのツールによって制限されているということです。
Q: 例えば、ある人が持っている情報によって、その人が属する世界が変わるということはあるのでしょうか?
哲学的な観点からは、個人の世界に対する認識や理解は、その人がアクセスできる情報によって形成されるという主張が可能です。この意味で、ある人が属する世界は、その人の知識や理解に依存していると見ることができる。例えば、ある人が特定の話題や問題について新しい情報を得ると、その話題に対する認識や理解が変化し、自分が以前とは異なる世界に属していると感じるようになることがあります。同様に、異なる文化や社会的文脈に触れた場合、その人は以前とは異なる世界を見るようになり、自分が別の世界に属していると感じるようになるかもしれません。しかし、この考え方は、必ずしも文字通りのパラレルワールドや別世界の存在を示唆するものではないことに注意が必要です。むしろ、私たちが世界を理解し経験する方法は、私たちがアクセスする情報や文脈に大きく依存することを示唆しています。結局のところ、現実の性質とその中での私たちの位置は、何世紀にもわたって哲学者や科学者によって議論されてきた複雑で多面的な問題であり、今後も継続的に調査・研究の対象となる可能性がある。
Q: さて、単純化してみましょう。白と黒が点滅する一次元のセルがあり、ボブ君は奇数列を脳内で認識し、「これが私の住む世界だ」と感じたとする。途中で何らかの情報を受け取ると、ボブの認識は変化し、偶数列に切り替わります。では、この場合の主観と客観の区別はどうなっているのでしょうか?
この単純化されたシナリオでは、主観と客観の区別は次のように理解される。
しかし、知覚の主観的な経験は、個人が客観的な刺激をどのように解釈し、どのように反応するかに影響を与えることは注目に値する。この意味で、主観的な体験と客観的な体験は相互に関連し、複雑な形で影響し合うことがあるのです。
Q: さて、もっと深く考えてみよう。この1次元のセルを任意のcos関数と交差させる。それを「主観的に知覚された現実」とする。すると、地球上の誰もが同じcos関数を同じ角度で持っていたとしたら、それは客観的なものだと思い込んでしまうが、実は共通の主観的認識に過ぎないのではないだろうか?
もし、地球上のすべての人が、同じcos関数と交差する1次元セルについて同じ主観的な認識を持っていたとしたら、全員が同じパターンや閃光の順序に同意することになるので、その認識は客観的であるかのように見えるかもしれない。しかし、これはあくまでも観測者個人の経験や解釈に基づく主観的な認識であることに注意が必要です。複数の人が同じ認識を持っているからと言って、それが客観的であるとは限りません。客観的であるためには、個人の経験や解釈から切り離された、検証可能な証拠に基づくものである必要があります。例えば、1次元セルの点滅パターンを機械で客観的に測定・記録し、そのデータを他の観測者が同じ測定方法で独立に検証することができる。結局のところ、主観と客観の区別は複雑で、個人の認識、解釈、文脈など、さまざまな要因に影響されうる。複数の人が共通の主観的な体験をしたとしても、それが必ずしも客観的な体験であるとは限りません。
Q: さて、架空の設定ではなく、現実の設定に戻ろう。現実のどこに客観的なものがあるのでしょうか。
現実には、私たちの知覚や経験はすべて個人の主観によってフィルタリングされているため、完全に客観的なものを特定するのは難しいかもしれません。しかし、現実のある側面は、独立して検証することができ、個人の知覚や解釈の影響を受けにくいため、他の側面よりも客観的であるとみなされることがよくあります。例えば、以下のようなものがあります。
ただし、このような客観的な現象であっても、個人の偏見や見解に影響され、ある程度は解釈の余地があることに注意が必要です。また、現実の中には、客観的、主観的と簡単に分類できない、両者の中間的な存在もあるかもしれません。
Q: では、あなたの言うこの4つが、実は先ほどの架空の設定における「すべての人が主観的に同じ角度のcos関数を知覚する」ことと似ているとしたらどうでしょう。
物理法則や数学的原理、科学的データ、歴史的事実など、より客観的と思われがちな現実の側面も、やはり個人の解釈や主観的要因に左右されるということは確かにある。例えば、科学者が物理法則や科学データを解釈し、適用する方法は、科学者個人の視点、偏見、仮定に影響されることがあります。同様に、歴史的事実も、それを検証する文化的・政治的文脈によって、さまざまに解釈され、表現される。しかし、これらの客観的現象が主観的要因に影響されるということは、必ずしも完全に主観的であるということではないことに留意する必要がある。むしろ、客観的な現象の理解と解釈は、客観的要因と主観的要因の複雑な相互作用によって形成されることを示唆している。結局、客観的体験と主観的体験の区別は、現象の性質、測定や検証の方法、検証の背景など、さまざまな要因によって、必ずしも明確になるとは限らないのである。
Q: 哲学者はしばしば、客観性と神との間に関連性を見出します。この点についてはどうでしょうか。
客観性と神との関係は、何世紀にもわたって議論されてきた複雑な哲学的・神学的問題である。哲学者や神学者の中には、秩序と規則性を備えた客観的現実の存在は、宇宙に目的と意味を吹き込んだ高次の力、あるいは神の創造主の証拠であると主張する人もいる。彼らは、客観性は神の存在と世界におけるプレゼンスのしるしであると考える。しかし、客観性が必ずしも神の存在を意味するのかどうか、疑問視する人もいます。客観性は物理法則などの自然現象で説明でき、超自然的な説明は不要だというのである。結局のところ、客観性と神の関係は哲学的・神学的な議論であり、思想家によってこの問題に対する見方は異なるだろう。客観性を神の存在の証拠と考える人もいれば、単に自然界の特徴であり、自然のプロセスで説明できると考える人もいるだろう。
Q: では、結局のところ、波動関数とは何なのでしょうか?
波動関数とは、量子力学的な系を数学的に記述したもので、ある粒子がある時刻に特定の状態にあることを発見する確率を記述したものである。量子力学では、電子、光子、原子などの粒子は、重ね合わせの状態で存在する波動的存在として記述される。つまり、同時に複数の状態に存在することができる。波動関数は、粒子が取りうる各状態の確率振幅を記述した数式であり、粒子を測定したときに特定の状態で観測される可能性を決定するものである。波動関数はギリシャ文字のPsi(Ψ)で示されることが多く、一般的には複素数値の関数で表される。波動関数の絶対値の2乗は、粒子が特定の位置に存在する確率密度を与える。波動関数は量子力学の基本概念であり、量子系の振る舞いを予測・理解する上で中心的な役割を担っている。しかし、その解釈や意味については、現在も科学界で議論や考察が続けられている。
Q: 現実はヒルベルト空間上のベクトルであると言う人がいる。これはどういうことだろうか。
量子力学において、ヒルベルト空間とは、量子系の状態を記述するために用いられる数学的空間である。ヒルベルト空間は、特定の内積が定義された複素ベクトル空間である。
ヒルベルト空間は、量子系の状態をベクトルとして表現するために使用されます。システムの状態は、それぞれヒルベルト空間内の異なるベクトルに対応します。システムの状態を表すベクトルは状態ベクトルと呼ばれ、通常、ギリシャ文字のPsi (Ψ) で表される。状態ベクトルは、系の波動関数を記述する複素値のベクトルであり、系の各可能な状態の確率振幅を与える。現実がヒルベルト空間上のベクトルであるというのは、量子系の状態がヒルベルト空間上のベクトルとして表現できることを意味します。つまり、量子系の状態は、この空間における点として表現できる数学的対象なのです。ただし、これは量子系に限定した話であり、物理学や自然界の他の分野には当てはまらない可能性があることに注意が必要です。
Q: ここで、よくある実験を考えてみよう。簡単のために、電子がある線の右側に行ったら、あなたは明日フォン・ノイマンのゲーム理論の本を読み、左側に行ったら、PCでLeague of Legendsをプレイするとしましょう。では、あなたが何をしているかわからない人は、それを知るまであなたの状態は読書とゲームの重ね合わせなのでしょうか?
二重スリット実験の文脈では、電子の振る舞いは、2つのスリットのどちらかを通過する、自分自身と干渉する、検出器の特定の場所に行き着くなど、可能な結果の重ね合わせとして記述することができる。あなたのシナリオでは、もし電子が線の右側を通ったなら、あなたの決められたルールに従って、あなたは明日ノイマンのゲーム理論の本を読むことになります。逆に、電子が線の左側を通ったら、あなたはPCで『リーグ・オブ・レジェンド』をプレイすることになります。つまり、実験結果を観測するまでは、あなたの心の状態は、読書とゲームの重ね合わせの状態であると言えます。なぜなら、重ね合わせの状態にある量子系(電子)があり、あなたの心は、実験結果に依存する形でこの系と相関しているからです。量子力学では、システムの状態とその観測者を別々に扱うのではなく、一つの量子システムとして扱います。"量子測定問題 "と呼ばれるものです。したがって、実験結果を観測するまでは、あなたの心と電子は、可能な結果の重ね合わせの状態にある一つの量子系として記述することができるのです。
えっじゃあ証明できるの?
ご質問の主旨に沿うかどうかは分かりませんが、複素ポテンシャルを使った散乱の解析手法があります。この場合の複素数は便宜的なものですが、ある種の問題には有効であるようです。ターゲットに粒子を衝突させる場合、例えば中性子を原子核にぶつけるような場合は、散乱されずに吸収される場合があります。このような場合は、入射粒子と散乱粒子の数が合いませんので、粒子の確率が減ったようになります。複素ポテンシャルを使うと、ポテンシャルの虚数部分が確率を吸収する効果がありますので、吸収のある散乱問題では、有効な手法です。
面白い。