厚生経済学の基本定理を多様体の言葉で定式化することにより、経済的効率性と市場均衡の概念を幾何学的に表現することができる。以下にその試みを示す。
厚生経済学の第1基本定理は、「完全競争市場において、すべての市場均衡はパレート効率的である」というものである。これを多様体の言葉で表現する。
消費者の選択空間を多様体 𝑀 とする。ここで、各点 𝑥 ∈ 𝑀 は異なる消費バンドルを表す。消費者の効用関数は、𝑈: 𝑀 → ℝ として定義され、多様体上で滑らかな関数とする。
生産者の技術集合を多様体 𝑁 とし、各点 𝑦 ∈ 𝑁 が異なる生産計画を示す。生産技術は、技術制約関数 𝑇: 𝑁 → ℝⁿ により記述される。
市場均衡は、消費者と生産者の選択が整合する点として、多様体 𝑀 × 𝑁 上の点 (𝑥*, 𝑦*) により表される。この点は、需要と供給が一致し、価格ベクトル 𝑝 により支持される。
パレート効率性は、選択空間 𝑀 と技術空間 𝑁 上の接ベクトル場により定義される。具体的には、任意の改善方向が存在しないことを意味し、接ベクトル場がゼロとなる点 (𝑥*, 𝑦*) がパレート最適である。
厚生経済学の第1基本定理を多様体の言葉で表現すると、以下のようになる:
定理: 多様体 𝑀 × 𝑁 上の市場均衡点 (𝑥*, 𝑦*) は、接ベクトル場がゼロとなる点であり、パレート効率的である。
この定式化により、厚生経済学の基本定理を幾何学的に理解することが可能になる。
市場均衡がパレート効率性を持つことは、選択空間と技術空間の接ベクトル場の観点から、改善の余地がないことを示している。
digraph WelfareEconomics { node [shape=ellipse]; // Nodes for main concepts M [label="選択空間 (M)"]; N [label="技術空間 (N)"]; Utility [label="効用関数 (U)"]; TechConstraint [label="技術制約 (T)"]; MarketEquilibrium [label="市場均衡"]; ParetoEfficiency [label="パレート効率性"]; Cohomology [label="コホモロジー条件"]; // Edges to show relationships M -> Utility [label="スカラー場"]; N -> TechConstraint [label="技術写像"]; M -> MarketEquilibrium; N -> MarketEquilibrium; MarketEquilibrium -> ParetoEfficiency [label="接ベクトル場"]; MarketEquilibrium -> Cohomology [label="整合性保証"]; ParetoEfficiency -> Cohomology [label="ホモトピー同値"]; } |<