「リー環」を含む日記 RSS

はてなキーワード: リー環とは

2024-06-09

理論物理学最前線を探る

自然界の法則の探索は、一般相対性理論量子力学の発展の中で行われてきた。

相対性理論アインシュタイン理論だが、これによれば、重力は時空の曲率から生じることになり、リーマン幾何学の枠組みで与えられる。

相対性理論においては、時空はアインシュタイン方程式に従って力学的に発展することになる。

すなわち初期条件入力データとして与えられていたときに、時空がどのように発展していくかを決定することが物理学問題になるわけである

相対性理論天体宇宙全体の振る舞いの理解のために使われるのに対し、量子力学原子分子原子構成する粒子の理解のために用いられる。

粒子の量子論(非相対論量子力学)は1925年までに現在の形が整えられ、関数解析や他の分野の発展に影響を与えた。

しか量子論深淵は場の量子論にあり、量子力学特殊相対性理論を組み合わせようとする試みからまれた。

場の量子論は、重力を除き、物理学法則について人類が知っているほどんどの事柄網羅している。

反物質理論に始まり原子のより精密な記述素粒子物理学標準模型加速器による検証が望まれている予言に至るまで、場の量子論の画期性は疑いの余地がない。

数学の中で研究されている多くの分野について、その自然な設定が場の量子論にあるような問題研究されている。

その例が、4次元多様体ドナルドソン理論、結び目のジョーンズ多項式やその一般化、複素多様体ミラー対称性、楕円コホモロジー、アフィン・リー環、などが挙げられる。

こういった断片的な研究はあるが、問題間の関係性の理解が困難である

このような関係性の研究において「ラングランズ・プログラム」が果たす役割に期待される。

2010-06-26

茂木健一郎うぜー

http://kenmogi.cocolog-nifty.com/qualia/2010/06/post-9d62.html

日本大学入試は「プロクラステスのベッド」とか聞いた風なことを言ってる割に、自分自身の学識のなさを暴露しているんだから噴飯ものだ。

上に挙げた東京大学入試のように、高校までのカリキュラムに出題範囲を限定した上で、その中で人工的な難しさを追求した出題をしていると、大学入試が終わるまでは、高校生はそのカリキュラムの範囲に足踏みすることになる。

こいつ本当に、自分リンク張ってる東大入試の問題見てみたのかと思う。どの科目も基本的な良問がおおむね揃っている(英語については言いたいこともあるがこれは日本英語教育自体の問題になる)。専門家がこの辺の問題に全く歯が立たなければ「廃業しろ」と言われても仕方ない種の問題だ。専門から離れていたら思い出すまでに時間こそかかるだろうが、一度は身につけておかなければ教科書の内容を習得したとは言えないレベルの、基本的な知識と考え方を試す問題でしかない。この程度に深く掘り下げる能力がなければ大学での本格的な勉強になんかついて行けないだろう。

というか、アメリカ大学生勉強量が多いのは、日本受験勉強と同じような内容を学部教育に詰め込んでいるからという面もかなりある日本大学の1年後期や2年前期の電磁気学解析力学で使う米国製の教科書の序文に「本書は学部上級生から大学院生を対象としている」とか書かれていることなんて結構ザラ。

本当は、さっさと量子力学統計力学線型代数か解析幾何の進んだ内容を修得すれば良いのに、18歳の段階では、いつまで経っても高校のカリキュラムの範囲であれこれと勉強をしなければならないことになる。

解析幾何wwwww知ったかぶりがもろばれなんですけど。

あのね、解析幾何っていうのは一口に言えば平面や空間に座標を引いて図形を扱うことで、思いっきり高校範囲です。せめて位相幾何とか微分幾何とか代数幾何とか言えないかね。門前の小僧でもそのぐらいの言葉は聞きかじっておいてくれよ。あんたこそ大学で何してたのかね。

それに、あの程度の数学物理がわからない奴に量子力学統計力学なんて理解できないよ。なんとかごまかして線型代数試験単位を取ることぐらいはまあできるかもしれないけど、線型代数なんて大学入学直後に習う「イロハのイ」なわけだからねえ。

学問というものは、ある程度の段階を超えると、標準化をすることが難しくなる。どの方向に伸びていくかは、分野によっても人によっても異なるからだ。

あのね、あなたが「進んだ内容」とか言ってる「線型代数」ですら「標準化」されたレベルの内容でしかないんですが何か?いわんや高校レベルをや。

アメリカSATは簡単だが、同時に、高校生の時から非可換代数無限集合論精通した学生をつくるかもしれない。

「非可換代数」とか「無限集合論」とか素人臭い用語法(せめて「非可換環論」とか「公理集合論」とかいえよ)が気になるが、東大京大数学科あたりに行けば、高校時代から大学レベル数学に手を出している学生はかなり沢山いるよ。

だいいち、東大入試レベル普通数学を理解せずにそんなマニアックな分野(リー環論とかならマニアックとは言えないだろうが)に手を出してもありがたみが理解できないと思うのだがどうだろうか。つーかお前、非可換って言いたいだけちゃうんかと。

こんなんに釣られている奴がブクマ見ると結構いるのが驚きだよ。

 
ログイン ユーザー登録
ようこそ ゲスト さん