2024-11-14

AdS/CFT対応ブラックホール情報パラドックス

AdS/CFT対応

AdS/CFT対応は、d+1次元の反ド・ジッター空間AdS_{d+1}における重力理論と、その境界上のd次元共形場理論CFT_dとの間の双対性を主張する。この対応は以下の等式で表現される:

Z_gravity[φ_0] = ⟨exp(∫_∂AdS d^dx φ_0(x)O(x))⟩_CFT

ここで、Z_gravityはAdS重力理論の生成汎関数、右辺はCFTの相関関数の生成汎関数である。φ_0はAdS空間境界での場の値、OはCFT演算子である

ブラックホールのホログラフィック表現

AdS空間内のシュワルツシルト・ブラックホールは、CFTの有限温度状態対応する。ブラックホール温度TとCFT温度は一致し、以下のように与えられる:

T = (d r_+)/(4π L²)

ここで、r_+はブラックホールの地平線半径、LはAdS空間の曲率半径である

エンタングルメントエントロピーと面積法則

CFTのある領域AのエンタングルメントエントロピーS_Aは、AdS空間内の極小面γ_Aの面積と関連付けられる:

S_A = Area(γ_A)/(4G_N)

ここで、G_Nはニュートン定数である。この関係は、Ryu-Takayanagi公式として知られている。

情報パラドックス解決

AdS/CFT対応は、ブラックホール情報パラドックスに対して以下の洞察提供する:

1. ユニタリ性: CFT時間発展はユニタリであり、これはAdS空間でのブラックホール形成蒸発過程全体がユニタリであることを意味する。

2. 情報の保存: ブラックホールに落ち込んだ情報は、CFT状態に完全に符号化される。形式的には:

S(ρ_CFT,initial) = S(ρ_CFT,final)

ここで、S(ρ)はフォン・ノイマンエントロピーである

3. スクランブリング: 情報スクランブリングは、CFTの非局所演算子の成長によって記述される:

⟨[W(t), V(0)]²⟩ ∼ e^(λ_L t)

ここで、λ_Lはリャプノフ指数で、λ_L ≤ 2πT(カオス束縛)を満たす。

量子誤り訂正ブラックホール

AdS/CFTは量子誤り訂正コードとしても解釈できる。境界CFTの部分系Aに符号化された情報は、バルクのサブリージョンaに再構成できる:

Φ_a = ∫_A dx K(x; a) O(x)

ここで、Φ_aはバルク場、K(x; a)は再構成カーネル、O(x)は境界演算子である

  • AdS/CFTは量子誤り訂正コードとしても解釈できる。 ほんとか? これの納得行く説明聞いたことないんよな

記事への反応(ブックマークコメント)

ログイン ユーザー登録
ようこそ ゲスト さん