「ユニタリ性」を含む日記 RSS

はてなキーワード: ユニタリ性とは

2024-11-14

AdS/CFT対応ブラックホール情報パラドックス

AdS/CFT対応

AdS/CFT対応は、d+1次元の反ド・ジッター空間AdS_{d+1}における重力理論と、その境界上のd次元共形場理論CFT_dとの間の双対性を主張する。この対応は以下の等式で表現される:

Z_gravity[φ_0] = ⟨exp(∫_∂AdS d^dx φ_0(x)O(x))⟩_CFT

ここで、Z_gravityはAdS重力理論の生成汎関数、右辺はCFTの相関関数の生成汎関数である。φ_0はAdS空間境界での場の値、OはCFT演算子である

ブラックホールのホログラフィック表現

AdS空間内のシュワルツシルト・ブラックホールは、CFTの有限温度状態対応する。ブラックホール温度TとCFT温度は一致し、以下のように与えられる:

T = (d r_+)/(4π L²)

ここで、r_+はブラックホールの地平線半径、LはAdS空間の曲率半径である

エンタングルメントエントロピーと面積法則

CFTのある領域AのエンタングルメントエントロピーS_Aは、AdS空間内の極小面γ_Aの面積と関連付けられる:

S_A = Area(γ_A)/(4G_N)

ここで、G_Nはニュートン定数である。この関係は、Ryu-Takayanagi公式として知られている。

情報パラドックス解決

AdS/CFT対応は、ブラックホール情報パラドックスに対して以下の洞察提供する:

1. ユニタリ性: CFT時間発展はユニタリであり、これはAdS空間でのブラックホール形成蒸発過程全体がユニタリであることを意味する。

2. 情報の保存: ブラックホールに落ち込んだ情報は、CFT状態に完全に符号化される。形式的には:

S(ρ_CFT,initial) = S(ρ_CFT,final)

ここで、S(ρ)はフォン・ノイマンエントロピーである

3. スクランブリング: 情報スクランブリングは、CFTの非局所演算子の成長によって記述される:

⟨[W(t), V(0)]²⟩ ∼ e^(λ_L t)

ここで、λ_Lはリャプノフ指数で、λ_L ≤ 2πT(カオス束縛)を満たす。

量子誤り訂正ブラックホール

AdS/CFTは量子誤り訂正コードとしても解釈できる。境界CFTの部分系Aに符号化された情報は、バルクのサブリージョンaに再構成できる:

Φ_a = ∫_A dx K(x; a) O(x)

ここで、Φ_aはバルク場、K(x; a)は再構成カーネル、O(x)は境界演算子である

2024-09-20

量子力学圏論的定式化とブラックホール情報パラドックス解決

前提:

1. 現実ヒルベルト空間上のベクトルである

2. 波動関数シュレーディンガー方程式に従って時間発展する。

1. ヒルベルト空間圏論的定式化

1.1 ヒルベルト空間の圏 Hilb

Hilb は次の性質を持つ。

1.2 ダガー圏としての Hilb

- (S ∘ T)† = T† ∘ S†

- (T†)† = T

- id_H† = id_H

1.3 対称モノイドダガー圏としての Hilb

- (T ⊗ S)† = T† ⊗ S†

1.4 コンパクト閉圏としての Hilb

- 評価射: eval_H: H* ⊗ H → ℂ

- 共評価射: coeval_H: ℂ → H ⊗ H*

- (id_H ⊗ eval_H) ∘ (coeval_H ⊗ id_H) = id_H

- (eval_H ⊗ id_H*) ∘ (id_H* ⊗ coeval_H) = id_H*

2. 状態と射の対応

2.1 状態の射としての表現

⟨φ|ψ⟩ = (φ† ∘ ψ): ℂ → ℂ

2.2 観測量の射としての表現

⟨A⟩ψ = (ψ† ∘ A ∘ ψ): ℂ → ℂ

3. シュレーディンガー方程式圏論表現

3.1 ユニタリ時間発展作用素

U(t) = exp(-iHt/ħ): H → H

3.2 時間の圏 Time関手 F

- 対象: 実数 t ∈ ℝ

- 射: t₁ → t₂ は t₂ - t₁ ∈ ℝ

- 対象対応: F(t) = H

- 射の対応: F(t₁ → t₂) = U(t₂ - t₁)

3.3 状態時間発展の射としての表現

ψ(t₂) = U(t₂ - t₁) ∘ ψ(t₁)

  • 射の合成による時間累積性:

U(t₃ - t₁) = U(t₃ - t₂) ∘ U(t₂ - t₁)

4. ブラックホール情報パラドックス圏論解決

4.1 パラドックスの定式化
4.2 圏論的枠組みにおける情報保存

H_total = H_BH ⊗ H_rad

- H_BH: ブラックホール内部のヒルベルト空間

- H_rad: ホーキング放射ヒルベルト空間

U_total(t): H_total → H_total

- U_total(t) はユニタリ射。

4.3 完全正な量子チャネルスタインスプリング表現

E(ρ_in) = Tr_H_BH (U_total ρ_in ⊗ ρ_BH U_total†)

- ρ_BH: ブラックホールの初期状態

- Tr_H_BH: H_BH 上の部分トレース

- 存在定理: 任意の完全正なトレース保存マップ E は、あるヒルベルト空間 K とユニタリ作用素 V: H_in → H_out ⊗ K を用いて表現できる。

E(ρ) = Tr_K (V ρ V†)

4.4 情報ユニタリな伝搬
4.5 ホログラフィー原理圏論的定式化

- バルクの圏 Hilb_bulk: ブラックホール内部の物理記述

- 境界の圏 Hilb_boundary: 境界上の物理記述

- G は忠実かつ充満なモノイドダガー関手であり、情報の完全な写像保証

4.6 自然変換による情報の保存

- バルク: F_bulk: Time → Hilb_bulk

- 境界: F_boundary: Time → Hilb_boundary

  • 自然変換 η: F_bulk ⇒ G ∘ F_boundary:

- 各時刻 t に対し、η_t: F_bulk(t) → G(F_boundary(t)) は同型射。

η_t₂ ∘ U_bulk(t₂ - t₁) = G(U_boundary(t₂ - t₁)) ∘ η_t₁

- これにより、バルク境界での時間発展が対応し、情報が失われないことを示す。

5. 結論

量子力学圏論的に定式化し、ユニタリダガー対称モノイド圏として表現した。ブラックホール情報パラドックスは、全体系のユニタリ性とホログラフィー原理圏論的に導入することで解決された。具体的には、ブラックホール内部と境界理論の間に忠実かつ充満な関手自然変換を構成し、情報が圏全体で保存されることを示した。

2024-09-02

ブラックホール情報パラドックスについて

ブラックホール情報パラドックスは、量子場の理論一般相対性理論整合性に関する根本的な問題だ。以下、より厳密な数学的定式化を示す。

1. 量子力学ユニタリ性

量子力学では、系の時間発展はユニタリ演算子 U(t) によって記述される:

|ψ(t)⟩ = U(t)|ψ(0)⟩

ここで、U(t) は以下の性質を満たす:

U†(t)U(t) = U(t)U†(t) = I

これは、情報が保存されることを意味し、純粋状態から混合状態への遷移を禁じる。

2. ブラックホール形成蒸発

ブラックホール形成過程は、一般相対性理論の枠組みで記述される。シュワルツシルト解を考えると、事象の地平面の半径 rₛ は:

rₛ = 2GM/c²

ここで、G は重力定数、M はブラックホール質量、c は光速

ホーキング放射による蒸発過程は、曲がった時空上の量子場の理論を用いて記述される。ホーキング温度 T_H は:

T_H = ℏc³/(8πGMk_B)

ここで、ℏ はプランク定数、k_B はボルツマン定数

3. 情報喪失問題

ブラックホールが完全に蒸発した後、初期の純粋状態 |ψᵢ⟩ が混合状態 ρ_f に遷移したように見える:

|ψᵢ⟩⟨ψᵢ| → ρ_f

これは量子力学ユニタリ性矛盾する。

超弦理論から解決アプローチ

ホログラフィー原理

ホログラフィー原理は、(d+1) 次元重力理論が d 次元場の理論等価であることを示唆する。ブラックホールエントロピー S は:

S = A/(4Gℏ)

ここで、A は事象の地平面の面積。これは、情報事象の地平面上に符号化されていることを示唆する。

AdS/CFT対応

AdS/CFT対応は、d+1 次元の反ド・ジッター空間 (AdS) における重力理論と、その境界上の d 次元共形場理論 (CFT) の間の等価性を示す。AdS 空間の計量は:

ds² = (L²/z²)(-dt² + d𝐱² + dz²)

ここで、L は AdS 空間の曲率半径、z は動径座標。

CFT の相関関数は、AdS 空間内のフェイマン図に対応する。例えば、2点相関関数は:

⟨𝒪(x)𝒪(y)⟩_CFT ∼ exp(-mL)

ここで、m は AdS 空間内の粒子の質量、L は測地線の長さ。

量子エンタングルメントER=EPR 仮説

量子エンタングルメントは、ブラックホール情報パラドックス解決重要役割を果たす可能性がある。2粒子系のエンタングルした状態は:

|ψ⟩ = (1/√2)(|0⟩_A|1⟩_B - |1⟩_A|0⟩_B)

ER=EPR 仮説は、量子エンタングルメントEPR)とアインシュタインローゼン橋(ER)の等価性を示唆する。これにより、ブラックホール内部の情報が外部と量子的に結合している可能性が示される。

結論

超弦理論は、ブラックホール情報パラドックスに対する完全な解決策を提供するには至っていないが、問題に取り組むための数学的に厳密なフレームワーク提供している。

ホログラフィー原理、AdS/CFT対応量子エンタングルメントなどの概念は、このパラドックス解決に向けた重要な手がかりとなっている。

今後の研究では、量子重力の完全な理論を構築することが必要特に、非摂動的な超弦理論の定式化や、時空の創発メカニズムの解明が重要課題となるだろう。

 
ログイン ユーザー登録
ようこそ ゲスト さん