はてなキーワード: フロギストン説とは
科学的実在論の中核的主張は、成熟した科学理論が記述する観測不可能な実体や過程が実在するというものだ。この立場の具体的な論拠を詳細に検討する。
Putnam と Boyd によって提唱された無奇跡論法は、科学の予測的成功を説明する最良の方法は、理論が真理に近いと考えることだと主張する。
1. ニュートン力学では説明できなかった水星軌道の異常を、アインシュタインの一般相対性理論が高精度で予測した。
2. この予測成功は、時空の曲率という観測不可能な概念の実在性を示唆する。
1. 過去の成功理論(フロギストン説、エーテル理論など)が誤りだったことを指摘。
2. 理論の経験的成功と真理性の相関関係に疑問を投げかける。
Worrall によって提唱された構造実在論は、理論の数学的構造のみが実在を反映すると主張する。
具体例:Maxwell の電磁気学からEinstein の特殊相対性理論への移行
1. エーテルという実体は否定されたが、Maxwell 方程式の数学的構造は保持された。
2. この構造の連続性が、より深い実在の反映だと解釈できる。
発展:Ontic Structural Realism (Ladyman, French)
1. 物理的対象を関係の束として捉え、実体概念を完全に放棄。
2. 量子力学における粒子の非個体性や、一般相対性理論における点事象の背景独立性と整合的。
量子力学の解釈は、客観的現実の存在に関する議論の核心だ。主要な解釈とその含意を詳細に検討する。
Bohr と Heisenberg によって提唱されたこの解釈は、測定問題を中心に据える。
1. 波動関数の確率的解釈:|ψ|^2 は粒子の位置の確率密度を表す。
2. 補完性原理:粒子性と波動性は相補的な性質であり、同時に観測できない。
問題点:
Everett によって提唱されたこの解釈は、波動関数の客観的実在性を主張する。
1. 分岐する宇宙:測定のたびに宇宙が分岐し、全ての可能な測定結果が実現する。
2. 相対状態の形式主義:観測者の状態も波動関数の一部として扱う。
利点:
問題点:
Zeh と Zurek らによって発展したデコヒーレンス理論は、量子から古典への移行を説明する。
1. 環境との相互作用により、量子的重ね合わせが急速に古典的な混合状態に移行。
2. 選択された基底(ポインター基底)のみが安定して観測される。
含意:
情報を基礎とする物理学の構築は、客観的現実の本質に新たな視点を提供する。
Susskind と Maldacena による ER=EPR 対応は、量子エンタングルメントと時空の構造を結びつける。
1. Einstein-Rosen ブリッジ(ワームホール)と Einstein-Podolsky-Rosen 対(量子もつれ)の等価性を示唆。
2. 量子情報と時空構造の深い関係を示唆し、量子重力理論への新たなアプローチを提供。
1. ブラックホール内部の時空の成長が、量子回路の計算複雑性の増大と対応。
2. 時空そのものが、より基本的な量子情報処理から創発する可能性を示唆。
客観的現実の存在問題は、現代物理学の最先端の問題と密接に結びついている。量子力学の基礎的解釈、構造実在論、情報理論的アプローチなど、様々な視点からの探求が進んでいるが、決定的な答えは得られていない。
今後の研究の方向性としては、量子重力理論の完成、意識と物理的実在の関係の解明、そして情報理論と物理学の更なる融合が重要になるだろう。これらの進展により、客観的現実の本質に関する我々の理解が大きく変わる可能性がある。
現時点では、客観的現実の存在を単純に肯定または否定するのではなく、我々の認識と独立した実在の可能性を探求しつつ、同時に観測者の役割や情報の本質的重要性を考慮に入れた、より洗練された存在論的枠組みの構築が必要だ。
地球を軸にその周りを宇宙が回っているという説で、プトレマイオスによって体系化された。中世のあいだは天体の運行を最も高い精度で計算できる理論であった。コペルニクスが地動説を復活させ、1627年にケプラーが地動説をもとにした高精度の天文表を発表したことで、地動説が広く支持されることとなった。ちなみに地動説がカトリック教会により迫害されたというのは真実ではないそうである。
物の状態・現象・性質を説明するための理論である。多くのバリエーションが存在するが、アリストテレスの「温・冷・湿・乾の四つの性質の組み合わせにより火・水・空気・土の四大元素が生まれる」という説が広く支持された。これが否定されたのは1661年、ロバート・ボイルの著書『懐疑的化学者』によってである。彼は近代的な「元素」観を確立し、後のラヴォアジエによる化学革命を準備した。
フロギストン(燃素)という元素が物質から分離することが「燃焼」であるとした説で、四大元素説のような迷信めいたものではない、科学的な理論として広く受け入れられた。1774年、ラヴォアジェは「燃焼とは物質と酸素が結びつくことである」と看破し、フロギストン説は否定された。
「熱」が物質に起因するか運動に起因するかということは長年にわたる議論の的であったが、ラヴォアジェは熱物質説を支持し、熱の原因となる物質を「カロリック(熱素)」と名付けた。1843年、マイヤーによって運動エネルギーと熱エネルギーが相互に変化することが明らかにされ、またエネルギー保存の法則が発見されたことにより、カロリック説は衰退した。
古代ギリシャのヒポクラテスが唱えたもので、人間の四つの体液のバランスが崩れることが病気の原因であるとする説である。四大元素説とも結びついたこの四体液説は、批判に晒されつつも長らく信じられていた。1858年、ウィルヒョウが「細胞病理学」を確立。すなわち病気とは細胞の異常によるものとされ、体液病理説は否定された。
アリストテレスが提唱したもので、「生物の中には親からではなく自然に発生するものがある」とする説である。たとえば虫やネズミなどがそうであるとされた。その後、レーウェンフックによる「微生物」の発見もあり、擁護と批判が繰り返されたが、パスツールが行った1861年の「白鳥の首フラスコ実験」などにより、自然発生説は完全に否定された。
ホイヘンスやニュートンらにより提唱されたもので、エーテルとは光が伝播するための媒質として想定された物質のことである。ニュートン力学とマクスウェルの電磁気学における光速度の矛盾を説明するために利用されたが、最終的に1905年、アインシュタインの特殊相対性理論によってエーテル説は否定された。