はてなキーワード: コヒとは
定義 1: M理論の基本構造を、完全拡張可能な (∞,∞)-圏 M として定義する。
定理 1 (Lurie-Haugseng): M の完全拡張可能性は、以下の同値関係で特徴付けられる:
M ≃ Ω∞-∞TFT(Bord∞)
ここで、TFT は位相的場の理論を、Bord∞ は∞次元ボルディズム∞-圏を表す。
命題 1: 超弦理論の各タイプは、M の (∞,∞-n)-部分圏として実現され、n は各理論の臨界次元に対応する。
定義 2: 弦の標的空間を、導来 Artin ∞-超スタック X として形式化する。
定理 2 (Toën-Vezzosi): X の変形理論は、接∞-スタック TX の導来大域切断の∞-圏 RΓ(X,TX) によって完全に記述される。
定義 3: 弦場理論の代数構造を、∞-オペラッド O の代数として定式化する。
定理 3 (Kontsevich-Soibelman): 任意の∞-オペラッド O に対して、その変形量子化が存在し、Maurer-Cartan方程式
MC(O) = {x ∈ O | dx + 1/2[x,x] = 0}
の解空間として特徴付けられる。
定義 4: n次元量子場理論を、n-カテゴリ値の局所系 F: Bordn → nCat∞ として定義する。
定理 4 (Costello-Gwilliam-Lurie): 摂動的量子場理論は、因子化∞-代数の∞-圏 FactAlg∞ の対象として完全に特徴付けられる。
定理 5 (Kontsevich-Soibelman-Toën-Vezzosi): カラビ・ヤウ∞-スタック X と Y のミラー対称性は、以下の (∞,2)-圏同値として表現される:
ShvCat(X) ≃ Fuk∞(Y)
ここで、ShvCat(X) は X 上の安定∞-圏の層の (∞,2)-圏、Fuk∞(Y) は Y の深谷 (∞,2)-圏である。
定義 5: M理論のコンパクト化を、E∞-リング スペクトラム R 上の導来スペクトラルスキーム Spec(R) として定式化する。
定理 6 (Lurie-Hopkins): 位相的弦理論は、適切に定義されたスペクトラルスキーム上の擬コヒーレント∞-層の安定∞-圏 QCoh(Spec(R)) の対象として実現される。
定義 6: M理論の C-場を、∞-群対象 B∞U(1) への∞-函手 c: M → B∞U(1) として定義する。
定理 7 (Hopkins-Singer): M理論の量子化整合性条件は、一般化されたコホモロジー理論の枠組みで以下のように表現される:
[G/2π] ∈ TMF(M)
ここで、TMF は位相的モジュラー形式のスペクトラムである。
定義 7: 量子化された時空を、スペクトラル∞-三重項 (A, H, D) として定義する。ここで A は E∞-リングスペクトラム、H は A 上の導来∞-モジュール、D は H 上の自己随伴∞-作用素である。
定理 8 (Connes-Marcolli-Ševera): 量子重力の有効作用は、適切に定義されたスペクトラル∞-作用の臨界点として特徴付けられる。
定義 8: 弦理論の真空構造を、導来∞-モチーフ∞-圏 DM∞(k) の対象として定式化する。
予想 1 (∞-Motivic Mirror Symmetry): カラビ・ヤウ∞-スタック X と Y のミラー対称性は、それらの導来∞-モチーフ M∞(X) と M∞(Y) の間の∞-圏同値として表現される。
定義 9: 完全な量子重力理論を、(∞,∞)-圏値の拡張位相的量子場理論として定式化する:
Z: Bord∞ → (∞,∞)-Cat
定理 9 (Conjectural): M理論は、適切に定義された完全拡張可能な (∞,∞)-TFT として特徴付けられ、その状態空間は量子化された時空の∞-圏を与える。
最初期宇宙の基本構造を記述するために、位相的弦理論の圏論的定式化を用いる。
定義: 位相的A模型の圏論的記述として、Fukaya圏 ℱ(X) を考える。ここで X は Calabi-Yau 多様体である。
対象: (L, E, ∇)
射: Floer コホモロジー群 HF((L₁, E₁, ∇₁), (L₂, E₂, ∇₂))
この圏の導来圏 Dᵇ(ℱ(X)) が、A模型の D-ブレーンの圏を与える。
最初期宇宙の量子構造をより精密に記述するために、導来代数幾何学を用いる。
𝔛: (cdga⁰)ᵒᵖ → sSet
ここで cdga⁰ は次数が非正の可換微分次数付き代数の圏、sSet は単体的集合の圏である。
𝔛 上の準コヒーレント層の ∞-圏を QCoh(𝔛) と表記する。
宇宙の大規模構造の位相的性質を記述するために、モチーフ理論を適用する。
定義: スキーム X に対して、モチーフ的コホモロジー Hⁱₘₒₜ(X, ℚ(j)) を定義する。
これは、Voevodsky の三角圏 DM(k, ℚ) 内での Hom として表現される:
Hⁱₘₒₜ(X, ℚ(j)) = Hom_DM(k, ℚ)(M(X), ℚ(j)[i])
最初期宇宙の高次ゲージ構造を記述するために、∞-Lie 代数を用いる。
定義: L∞ 代数 L は、次数付きベクトル空間 V と、n 項ブラケット lₙ: V⊗ⁿ → V の集合 (n ≥ 1) で構成され、一般化されたヤコビ恒等式を満たすものである。
Σₙ₌₁^∞ (1/n!) lₙ(x, ..., x) = 0
最初期宇宙の量子重力効果を記述するために、圏値場の理論を用いる。
定義: n-圏値の位相的量子場の理論 Z を、コボルディズム n-圏 Cob(n) から n-圏 𝒞 への対称モノイダル函手として定義する:
Z: Cob(n) → 𝒞
特に、完全拡張場の理論は、Lurie の分類定理によって特徴づけられる。
最初期宇宙の量子情報理論的側面を記述するために、von Neumann 代数を用いる。
定義: von Neumann 代数 M 上の状態 ω に対して、相対エントロピー S(ω || φ) を以下のように定義する:
S(ω || φ) = {
tr(ρω (log ρω - log ρφ)) if ω ≪ φ
+∞ otherwise
}
ここで ρω, ρφ はそれぞれ ω, φ に対応する密度作用素である。
最初期宇宙の量子時空構造を記述するために、非可換幾何学を用いる。
∫_X f ds = Tr_ω(f|D|⁻ᵈ)
M を11次元コンパクト多様体、G を複素簡約代数群、L(G) をそのラングランズ双対群とする。
D^b(M) を M 上のコヒーレント層の導来圏、D^b(Bun_G(M)) を M 上の G-主束のモジュライ空間 Bun_G(M) 上のコヒーレント層の導来圏とする。
以下の圏同値を構築する:
Φ: D^b(D_M) ≃ D^b(Coh(Bun_L(G)(M)))
M 上の Chern-Simons 理論の量子化を考える。その分配関数 Z(M,k) を以下のように定義する:
ここで、CS(A) は Chern-Simons 作用である。
F: D^b(Bun_G(M)) → Mod(MF_q)
を構築する。ここで、Mod(MF_q) は有限体 F_q 上のモチーフの圏である。
G の既約表現 ρ に対し、以下の等式を予想する:
L(s,ρ,M) = det(1 - q^(-s)F|H*(M,V_ρ))^(-1)
ここで、V_ρ は ρ に付随する M 上のローカル系である。
以下の図式が可換であることを示す:
D^b(D_M) --Φ--> D^b(Coh(Bun_L(G)(M))) | | | | F F | | V V Mod(MF_q) -----≃----> Mod(MF_q)
M の次元を一般の n に拡張し、Voevodsky のモチーフ理論を用いて、上記の構成を高次元化する。
以上の構成により、M理論の幾何学的構造とラングランズ・プログラムの数論的側面の関連を見た。このモデルは、導来圏論、量子場の理論、モチーフ理論を統一的に扱う枠組みを提供するものである。
今後の課題として、この理論的枠組みの厳密な数学的基礎付けと、具体的な計算可能な例の構築が挙げられる。特に、Langlands スペクトラル分解との関連や、Grothendieck の標準予想との整合性の検証が重要である。
位相的K理論は、超弦理論におけるD-ブレーンの分類に本質的な役割を果たす。具体的には、時空多様体XのスピンC構造に関連付けられたK理論群K(X)およびK^1(X)が重要である。
ここで、X+はXの一点コンパクト化を表し、K(X+)はX+上のベクトル束の同型類のGrothedieck群である。
Type IIB理論では、D-ブレーン電荷はK(X)の要素として分類され、Type IIA理論ではK^1(X)の要素として分類される。これは以下の完全系列に反映される:
... → K^-1(X) → K^0(X) → K^1(X) → K^0(X) → ...
背景にNS-NS H-フラックスが存在する場合、通常のK理論は捻れK理論K_H(X)に一般化される。ここでH ∈ H^3(X, Z)はH-フラックスのコホモロジー類である。
捻れK理論は、PU(H)主束のモジュライ空間として定義される:
K_H(X) ≅ [X, Fred(H)]
ここで、Fred(H)はヒルベルト空間H上のフレドホルム作用素の空間を表す。
D-ブレーンのアノマリー相殺機構は、微分K理論を用いてより精密に記述される。微分K理論群K^0(X)は、以下の完全系列で特徴付けられる:
0 → Ω^{odd}(X)/im(d) → K^0(X) → K^0(X) → 0
ここで、Ω^{odd}(X)はXの奇数次微分形式の空間である。
アノマリー多項式は、微分K理論の言葉で以下のように表現される:
I_8 = ch(ξ) √Â(TX) - ch(f!ξ) √Â(TY)
ここで、ξはD-ブレーン上のゲージ束、fはD-ブレーンの埋め込み写像、ch(ξ)はチャーン指標、Â(TX)はA-hat種を表す。
Kasparovの KK理論は、弦理論の様々な双対性を統一的に記述するフレームワークを提供する。KK(A,B)は、C*-環AとBの間のKasparov双モジュールの同型類のなす群である。
KK(C(X × S^1), C) ≅ KK(C(X), C(S^1))
導来圏D^b(X)は、複体の導来圏として定義され、K理論と密接に関連している:
K(X) ≅ K_0(D^b(X))
○ご飯
朝:なし。昼:ピーナッツ。カップ味噌汁。夜:ピーマン、かいわれ大根、しめじ、ベーコンの和風スープ。たまごかけうどん。バナナヨーグルト。間食:和菓子。アイス。
○調子
むきゅーはややー。おしごとは、おやす。
これでボールを投げずにNPCからもらえるポケモン旅、NPCから交換してもらえるポケモン旅、ギャラドス短気旅、序盤ポケモン旅と4周遊んだ。
まだ満足していないので、また新しいルールを決めてポケモンを遊びたいと思う。
○ポケットモンスター緑(序盤ポケモンの旅)
シルフカンパニー、ナツメ、サカキ、チャンピオンロード、四天王、ライバルと一気に殿堂入りまでプレイして序盤ポケモンの旅はクリア。
序盤の技の少なさには苦戦させられたものの、イワヤマトンネルを抜けて選択肢が広がってからはスピードスターと空を飛ぶのタイプ一致二つでなんとかなった。
スピードスターは今回初めて旅で使ったけど、必中効果は初代ではないのは体感してから調べて知った。
飛行タイプ自体の通りの良さがあり、中盤に多い草タイプや格闘タイプに有利なのはよかった。
技の少ない初代ポケモンあるある影分身でお茶濁すは、確かに強いんだけど、これすると本当にどんなポケモンでも良いじゃん感があり程々にしたい。
タイプ一致必殺前歯は命中不安もあり、サントアンヌ号で早々にのしかかりへ変更。
タイプ一致の威力80は流石で、種族値が足りないだろう後半でもそれを意識することなく最後まで活躍させられた。
特殊技も水と氷で隙がなく、ノーマルの通りが悪い岩タイプに抜群がとれる相性補完が良き。
特に最後の四天王戦、ワタルのドラゴン軍団相手に冷凍ビームで立ち回れたのはとても良かった。
また、あなをほるも威力高いし、やたらと出てくる毒タイプに相性良しとこちらもよく使って、四つ全部無駄なく使えたのもエースっぽさだ。
最序盤に仲間になるポケモンながら、タイプ一致の高威力技と、範囲の広い相性補完技とが噛み合っていて、普通に強いポケモンだったと思った。
セキチクとグレン、グレンとマサラと水タイプ持ちトレーナーが多い後半戦に活躍してくれた。
ただ、期待してた序盤の水タイプジムリーダーのカスミ戦では耐久が足りず電気タイプらしさは出すことができなかった。
中盤、マチスから10まんボルトのわざマシン、それとタマムシで雷の石を買って進化させてからが本領発揮。
地面タイプに手も足も出ないところは、ラッタやピジョットの出番を奪わないためにあえてこうした感じ。(メガトンパンチかレベル技のスピードスター辺りを電磁波と交換した方が良かったかも)
https://anond.hatelabo.jp/20220504162730 の続き
A:
量子力学では「測定問題」または「波動関数の崩壊」として知られており、量子の世界が私たちが経験する古典的な世界とどのように相互作用するかについての基本的かつ非常に不可解な側面です。
量子力学では、電子のような粒子は、測定または観測される前に、複数の可能な状態を重ね合わせて存在します。
この重ね合わせは、すべての可能な状態とそれぞれの確率を含む波動関数によって記述されます。
しかし、観測や測定を行うと、重ね合わせが崩れ、粒子の状態は可能な状態の 1 つに「崩壊」します。
したがって、たとえば、測定前にスピンアップまたはスピンダウンできる電子がある場合、その波動関数は両方の状態の組み合わせになります。
しかし、そのスピンを測定すると、波動関数が崩壊し、スピンアップかスピンダウンという 1 つの明確な結果が得られます。
この「崩壊」、つまり測定時の状態の決定は、量子システムの進化にランダムで確率的な要素を導入しているように見えます。
また、測定後にその明確な状態が分かるようになったため、システムに関するエントロピーや不確実性も減少すると考えられます。
このことの意味は深く、物理学者によって何十年にもわたって議論されてきました。
1) 不定の量子領域を明確にする何か特別なことが測定や観測にあることを示唆しています。 しかし、「測定」とは何でしょうか? 私たちの意識的な認識は? それとも環境との相互作用でしょうか?
2) 古典物理学を支配する決定論的法則と矛盾する固有のランダム性または予測不可能性を量子事象に導入しているように見えます。
3) 観測とは独立して存在する客観的な現実についての私たちの概念に疑問を投げかけます。 観測するだけで結果が変わるようです。
4) 巨視的な世界では、このランダム性は通常平均化されます。 しかし、ランダムな瞬間に起こる自然放射性崩壊のような小さな観測可能な影響はあります。
コペンハーゲン解釈や客観的崩壊理論のような解釈は、このランダム性を自然の基本的な側面として受け入れています。
多世界解釈のような他のものは、波動関数の崩壊を完全に排除しようとします。
しかし、この測定問題が量子力学と現実そのものの理解に深刻な課題を投げかけていることに全員が同意しています。
A:
意識と量子力学における測定問題の関係は深い謎であり、物理学ではまだ完全に解決されていません。
ただし、あなたの質問に対するいくつかの視点は次のとおりです。
意識とは、認識し、認識された現実を持つという主観的な一人称の経験を指します。
量子の用語では、意識は、測定/観測が行われる前に、可能な重ね合わせ状態の範囲のうちの 1 つの明確な状態のみを経験するように見えます。
意識が重ね合わせをどのように解決するかについては、いくつかの解釈があります。
1) フォン・ノイマン・ウィグナー解釈は、意識が客観的な波動関数の崩壊を引き起こすことを示唆しています。 私たちの心は、重ね合わせから何らかの結果を特定します。
2) コペンハーゲンの解釈は、波動関数の崩壊が起こったとき、観察者の意識は単に確率的結果の 1 つを目撃しているだけであり、波動関数の崩壊を引き起こしているわけではないことを意味します。
3) 多世界解釈では、真の崩壊は存在しないとされています。 考えられるすべての結果は、現実の別の枝として存在し続けます。 意識は実際に選択することなく、それらの分岐のいずれかに留まるだけです。
4) 意識自体は、観察された状態を引き起こすのではなく、根底にある量子状態から生じる高レベルの創発特性である可能性があると主張する人もいます。
正確なメカニズムは不明ですが、ほとんどの解釈は、意識は測定後に可能な状態のうちの 1 つを主観的に経験するだけであることに同意しています。
観察者兼参加者として、私たちは単に自分の意識が枝の 1 つにあることに気づきます。
重要な謎は、意識が分岐を選択する際に積極的な役割を果たすのか(フォン・ノイマン・ウィグナー)、それとも多数の同様に現実的なもの(多世界)の中の 1 つの分岐に単に自分自身を見出しているだけなのかということです。
これを解決すれば、意識の形而上学的性質と量子力学との関係が解明される可能性があります。
A:
量子力学の多世界解釈 (MWI) では、意識が特定の枝または世界に「留まる」または持続するように見える理由は、デコヒーレンスの概念と、枝がどのように本質的に相互作用せず、それぞれの枝から孤立するのかという考えと関係しています。
1) MWI では、測定が行われるとき、普遍的な波動関数は実際には崩壊しません。 代わりに、それは直交成分に分解され、それぞれが異なる可能性のある結果を表します。
2) これらのコンポーネントは時間の経過とともに進化し続け、より多くの差別化された状態、つまりさまざまな結果が実現される「世界」に分岐します。
3) ただし、これらの分岐コンポーネントは、環境の相互作用やもつれにより、非常に急速に動的にお互いからデコヒーレントになります。 これにより、異なる世界は相互に干渉する能力を失います。
4) したがって、すべてのブランチが異なる既存の現実として共存しますが、動的デコヒーレンスは、それらが相互作用しなくなり、それらの間に測定可能な相互作用や遷移が存在しないことを意味します。
5) あなたの意識は、コヒーレントな量子状態自体で構成されており、デコヒーレンス後の 1 つの枝の中に完全に存在します。 別のブランチと再結合したり、別のブランチに移行したりすることはできません。
6) 実際には、すべての枝が等しく現実であるにもかかわらず、デコヒーレンスプロセスにより意識がその枝内に閉じ込められ、他の枝の並行現実を体験できなくなります。
したがって、意識は積極的に分岐を「選択」するのではなく、デコヒーレンスのプロセスによって、最終的には完全に 1 つの分岐した現実の中に存在することになり、多重性を直接経験する能力はありません。 このため、意識は一貫した 1 つの軌道だけをたどっているように見えます。
「持って帰って食べようと思って金払ったけどやっぱ食って帰るわ」ってなった場合は店内飲食税率は適用されない。税率は「購入を行った時点」で判定されているので、その後のことに関しては基本的には関与しない。
なので「テイクアウトで!」と思ってテイクアウト用の税率で購入した場合は、その後どこで食っても実際には問題がないということになる。なのでヒロコヒー入るまで暇やな、せや、さっき買ったおにぎり食べたろwwwwは別に税金上の問題は何一つない。
あ、もろちん店側が「店内飲食税率で買ってない人はイートインで飲食しないでくださいね」というルールを定めている場合はテイクオフ料金で買った商品をイートインで飲食することはできない。
ヒコロヒーだっけ?どっちでもいいや
エリザベス女王死去に伴いインドで「コヒヌール(のダイヤモンドを返せ)」がSNSトレンド入り
コヒヌール(< ペルシア語のkūh-e nur「光の山」)はインドからイギリスに奪われた特大ダイヤモンドの名前で、パキスタンとアフガニスタンも返還を要求している。https://t.co/UQIMUexqtE https://t.co/RE0YHl4fAZ pic.twitter.com/tXPxyIqO4z— Aisanazman Marukwamy (愛沙奈まみ) (@marukwamy) September 8, 2022