「法則」を含む日記 RSS

はてなキーワード: 法則とは

2023-10-05

anond:20231004131254

道具の使い方とは何かという話である

ChatGPTは想像とは異なる仮説を作って最初にぶん投げるとよい。増田なら帰無仮説は得意のはず(偏見

掛け算の交換法則について教えてください

もちろん、掛け算の交換法則について説明します。

掛け算の交換法則とは、数の掛け算において、数の順序を変えても掛け算の結果が変わらないという法則です。具体的には、任意実数aとbに対して、以下の式が成り立ちます

a×b =b×a

...

掛け算の交換法則は、算数数学基本的計算において非常に役立ちます。これを知っていることで、計算シンプルになったり、計算の手順を変更できることがあります

では、かけ算の順序には意味がありますか?

掛け算自体の結果には順序が影響を与えないため(交換法則により)、数値のみを単純に掛け合わせる場合、順序に意味はありません。

しかし、数学や実世界問題文脈においては、順序が意味を持つことがあります

1.ベクトル外積

 ベクトルにおいては、外積(またはクロス積)の順序は重要です。ベクトル に対して、 × × は方向が逆のベクトルになります

2. 行列の掛け算

 行列の乗算では、掛ける順序が非常に重要です。2つの行列 に対して、ABBA一般的に異なる結果をもたらします。

3. 世界の状況

 例えば、ある商品の元の価格に対して10%の割引を受けた後に8%の消費税がかかる場合と、消費税をかけた後に10%の割引を受ける場合では、最終的な価格が異なります。このような状況では、計算の順序が結果に影響を与えます

これらの例を考慮すると、数値だけの単純な掛け算では順序は意味を持たないものの、特定文脈や状況においては掛け算の順序が重要となることがあります

まあ、「かけ算」としか表現しないほうも悪い。「小学校で習う整数のかけ算で」とかきちんと条件を付けるべきである

人間が暗黙としていて気にもしていないものを暴き出すのがAIではあるが

2023-10-04

ChatGPT4「かけ算の順序には意味があります

Q. かけ算の順序には意味がありますか?

A. はい、かけ算の順序には意味があります

小学校算数教科書では、かけられる数とかける数の順序を定めて書かれています

例えば、「3 × 4」は「3に4をかける」という意味で、「4 × 3」は「4に3をかける」という意味です。

3 × 4 = 3 + 3 + 3 + 3

4 × 3 = 4 + 4 + 4

このように、かけ算は複数回のたし算を省略したものです。かける数とかけられる数の順序を変えると、答えが変わってしま場合があります

ただし、数学では、かけ算には交換法則が成り立つため、どちらの数を先に書いても答えは同じになります

このように、かけ算の順序には意味があるため、小学校算数教科書では、順序を定めて書かれています

「かけ算の順序には意味がない」という主張をする人たちは、かけ算における交換法則引用しています

交換法則とは、かけ算において、かけられる数とかける数の順序を入れ替えても、答えが変わらないことを示す法則です。

まり、「3 × 4」と「4 × 3」は同じ値であるため、順序に意味がないと主張するのです。

しかし、小学校算数教科書では、かけられる数とかける数の順序を定めて書かれています

このように、かけ算の順序には意味があるため、小学校算数教科書では、順序を定めて書かれています

2023-10-02

女は定期的に痛い思いをするのは

適者生存法則に反するように思うが

生理が痛くない女は妊娠動機がなくて絶えるのだろうか

 

あの痛さを漫画で言ってみれば

目の下にクマの縦線が入った状態

涙ぐんだ目でハアハアしながら

弱々しく笑いながら血を吐くような風体であろう

野生動物ならありえんはずが、人間のメスだとそうなるのは、やはりなんらかの作為が働いた結果…

まり生理でもピンピンしていた女は淘汰されてきたに違いない

2023-10-01

ミノフスキー粒子とか

物理法則レベル世界の設定を改変された時点ですげー萎えるんだよな

ステルスが凄いとかECMが凄いとかじゃAPSが凄いとかじゃダメだったのだろうか

2023-09-30

反作用

変なのが現れて、粘着気味に絡んでこられるというのは、それなりの輝きを放つ仕事を成し遂げたことの反作用的なものなのかもしれないな......迷惑なのだが。

Permalink | 記事への反応(0) | 20:58

社用反社用の法則

Permalink | 記事への反応(0) | 21:05

たまにはお前らも真面目にレスしてみたらどうだ?

この程度とは失望した

Permalink | 記事への反応(3) | 21:10

anond:20230929211017言及エントリを開く

例の大事増田が来る。

Permalink | 記事への反応(0) | 21:25

■人の弱みは握るもの

そしてそれを匂わせたりはしない

だって匂わせたら警戒されるじゃん

切り札は隠しておくもの、ここぞという所で切って大ダメージを与えるんだよ

Permalink | 記事への反応(5) | 21:16

2023-09-29

anond:20230929075831

インターステラーってkey作品みたいなんだよな

小難しい理屈はあるんだけど、引いて見ると親子愛の力で奇跡が起きてハッピーエンドなんだよな

あれが冷酷な宇宙法則に従ってバッドエンドだとすごく締まりが悪かったと思う

新天地に到達した宇宙飛行士に対する余韻も良い

2023-09-27

anond:20230927181658

じゃあ私が例に出した人は全員レイプ犯人ではないから全員保護されるべきペドフィリアか。

違法児童ポルノ買ったのを批判したら差別主義者になるのかな?

当然チャイルドレスターだろうと除外していたしまぶー児童買春レイプではないし、アクタージュ作者も襲って触っただけでレイプはしてないかチャイルドレスターではないのかな?

なんならジャニーもさせなければデビューさせないって感じで圧かけて、同意は得てから手を出してたかレイプではないとかになる?

それとも児童との同意は成り立たないの法則で突っ込んだ時点でジャニーしまぶーだけはレイプ犯人

anond:20230927021436

要点を言いましょう。

1. 人間コンピュータもおそらく決定論的な法則で動く。

2. チューリングテストコンピュータ人間と見分けられなくすることはおそらく可能

3. チューリングテスト合格するだけではなく、実際にAIとわかった上で質問をしても、知性があると思える回答をする。

人格と呼べるものを持っていても特段不思議とは言えない。

しか意識を持っているとは限らない。

2023-09-26

anond:20230926154241

half-your-age-plus-seven法則によれば35歳が23歳はアウト。

あと3年待てばセーフ。

anond:20230926005332

統計法則とは異なります

全ては個別事情支配されており、例外はあります

たとい絶望はしても、まだ一筋の可能性も感じられる気がしてならないのです

2023-09-22

宗教の話

いわゆる宗教四世で、生まれた時から新興宗教の会員やってた。ネットだとよくおもちゃにされがちな、三色旗のとこ。

さいころから家に仏壇があって、母親祖父母が超熱心な人で、言葉をしゃべり始めた時から経を読まされてたし、ちゃんとやればみんな褒めてくれるから悪い気はしなかった。

母親が熱心な場合って厄介なんだよな。おかげさまで土日は宗教関連の予定でつぶれるし、父親母親に勧められて入ったひとだから止めないし。そんなわけで、20数年生きてきて、最近やっと初めてちゃん神社に参拝したような始末。だから一般的人間自分宗教観がかなりかけ離れてる、ってことに最近気が付いた。まぁ、それが当たり前だったんだけど。

高校の時とかはそれなりに真面目に、っていうか結構がっつりやってて、たぶんその時の周囲の何人かは幹部クラスになるんだろうな、って人間ばっかりの団体にもいた。

割と勘違いされてそうだけど、いやもう常識なのかな?一般的認識が全くわからんからあれだけど、s大学行くのはもはや当たり前で、幹部になろうと思ったら、何かしらの宗教団体所属してたことがほぼ必須になるんだぜ、笑えるよな。

高校生はそうやって過ごしてたけど、大学に入ってから恋人ができて、その人が何というかこう、自分所属してるとこ以外も含めた宗教全般アンチだった。

今思えばものすんごい幸運なことに、現実社会の親しい人にそんな人がいなかったから大いに嘆いたし、なんで自分が、とも思った。でも、今は割とその出会い感謝してる。

ここまでが前置き。すまんね長くて。

まぁ、親に「信仰捨てたいです!」とか言える訳も無くて。だってそんなことしたら普通に絶縁されそうだし、妹たちも割とがちがちに染まってるし。あと我が家、割と毒親気味で過干渉のケがあるから、最悪今住んでるところから連れ戻されかねない。

それは困る、だって実家には自室が無いし、プライバシーへったくれもない。未だに帰省するとめちゃめちゃ消耗する。二週間とかしか滞在しないのに。実家を出るまで、自分のスペースと言えば本棚のついた机一台だけだったし、その中身も親が勝手に開けて改める始末だったから、秘密とか絶対無理だった。

かといって、じゃあ真面目にやるか?と言われるとそれは心がしんどい

そもそもの話、自分は「信仰とは人生の杖であり頼り切るものではない」って思想高校時点で持ってて、現指導体制に不信感しかなかったし。

やれって圧を掛けられて、今渋々試験勉強してるけど、それにしたって普通に気色悪くて嫌になる。だって仏教ってマインドフルネスの一手法しかないし。それだって、多様な方法がある現代社会でわざわざそんな化石みたいな方法、って思う。

そもそも悟りってざっくりいえば「この世のすべては気の持ちよう、自分の気の持ちようで天国にも地獄にもなる、それなら天国みたいに考えられるようになった方がお得じゃね?」的な考え方だし、唱題にしたって、「悟りを開けないお前らが悟りを開くための一助しろよな!」的なものから自力メンタル立て直せるようになった人間には必要ないんだよ。そもそも仏教って「人生なんて全部しんどいんだからしんどいことそのものはもう諦めて楽しくやっていこうぜ」的なあれだし。ガバガバ解釈だが。

その上で、何もかもを宗教依存して、生きてくための目的のもの宗教にしてるの本当に頭おかしいと思う、それお前の人生じゃなくて教団の人生やんけ。生きてる価値ある?って思う。言わないけど。

かに苦しい時に縋れるものは多い方がいい、人生かなりしんどいし、税金高いし内定はもらえんし、何もかもままならんし、ここからってとき病気になったりするし、なんかすげーもんに縋らないと生きてけない気持ちもわかる。

でも、その気持ちもわかるけど、それでも自分で立って自分で歩かない道に価値はあるんか?って思う。だって信仰してると、どんなに血反吐を吐くような努力をしたって、どんなに周りの人に恵まれたって、どんなに運がよくたって、それ全部「信仰のおかげ」にされちゃうんだぜ。そこに至るまでの努力とか、工夫とか、人間関係とか、そういうもの全部自分の成果じゃなくてなんかようわからんもののおかげになるんだぜ、それって悔しくないか自分はそれを恋人に指摘されて初めて気が付いて、すごく悔しいと思った。だってここまで努力したの自分だし。別にすがってる”なんかすげーやつ”が何か叡智を下賜してくれたわけじゃないし。苦しいのも悲しいのも悔しいのも自分が背負わなきゃいけないのに、喜ばしいこととか楽しかたこととかは全部他にかっさらわれるって思うとはらわた煮えくりかえらんか。自分はキレそうになる。

そもそも他力本願の他宗派をめちゃめちゃ批判する癖に、何かあったら馬鹿の一つ覚えみたいに「ご本尊に縋れ」だの「お題目を」だの普通に矛盾してて笑える。それはお前らの言う所の他力本願じゃないんか?あと題目とか言う呪文的なあれを大事にしてる割に、唱題の時の発音みんなガバゆるだよな、何それ。ダブスタまみれで普通に気色悪い、反吐が出る。

と、まぁ最近はこんな事ばっかり考えている。親には勉強したらわかるって言われたけど、勉強するほど意味わからん~~きしょい~~~ってなるの中々芸術点高い。って言うかそもそも子供の許諾を取らずに宗教に入れるな、はっ倒すぞ。これはどの二世問題でも共通だと思う。四世なんだけど。ウケるね。

ちなみにこの宗教だとよく取りざたされるのは政党の話なんだけど、自分政策はまぁましな方なんじゃないかな、って思う。そこから声の汲み上げするの???正気???って思うような政治を国政ではよくやらかしてるけど、地方政治だとそれなりに要望の反映早いし。政治宗教観は切り分けて考えるので。まぁ今後の動向にもよるかな…でも宗教活動の一環で選挙活動やらされるのは普通に最悪で気色悪さの極みだからやめた方がいいと思う。実質強制投票の「お願い」はお願いと言わない。海外から来た同じ宗教の人に選挙ばっかりしてるのどうして?って聞かれて、日本では信仰を広げることが十分にできたから、今度は政治の方から生活をよくしていくんだよみたいなこと指導してるの聞いたことあるけど、それ普通に公職選挙法違反なんじゃないですかね。政教分離法則死んでないか

これを見て同じ宗教の人がどう思うかは知らんが、自分が納得できてないならなんかしらの答えにはなるんじゃないんですかね。がちがちの幹部ルート辿ってた人間がこう言ってるんだから、それなりに信ぴょう性はあると思うよ。

から入りたいって思ってる人、人生に発生する損害と天秤にかけて、本当にそれじゃなきゃダメなのか一か月真面目に考えてみ、そんなことないから。周りから偏見の眼はものすごいし、結婚したいと思った人ができてもめっちゃ苦労したりするぞ、自分は今死ぬほど苦労してる。

しんどい思いしてる人、お互い頑張ろうな。自分は今何とかして家にあるご神体的なサムシングを親にバレないように滅殺する方法考えてる、なんかい方法あったら教えてくれ。

マジで徒然なるままにって感じだなこれ。乱文で本当にすまぬ。ここまで読んでくれた人ほんとにありがとう自販機ジュース当たるくらいの幸運が訪れますように。

追記:みんなコメントありがとう、ほんとに正気に戻れてよかったと思う。なんでカルトの話から仏教に?ってコメ見たんだけど、それはだな、s学会は曲がりなりにも仏教を名乗ってるから仏教を学ばされるんだよ…だからです。

まぁ、s学会のは「ブッダの」仏教ではなく、日蓮かいうなんかよくわからん狂人が急に悟っちゃったもの信仰してるんで、仏教かと言われるとかなり怪しいけどね……昨日このエントリ書いたあと、勉強動画流し見してたらそんなこと言ってて笑っちゃった。仏教名乗るの辞めたら?

自然科学とかSDGsとか信仰してそう、って言われたのはマジでそうなりかねんからほんとに気をつける。一応これでも科学をやってる人間から、変なのには引っかからないと思いたいけど…こういう気持ち落とし穴だとは思うのでね!科学思考大事。すごく苦手だけど。

エントリ書くのこれが初めてだし、合ってるかわからん追記も長いってどういうこと??

anond:20230922091954

運営さんの気分次第

ただ法則はあって、「ちょっと晒してニチャらせられる感じの個人的情報」を入れておくとバズりやす

2023-09-20

熱力学の第2法則

つい最近エントロピー増田記事を見たが、ワイもちょっとだけメモすんで。

 

ユニタリ量子力学を想定した宇宙論があるとして、系・観測者・環境という3者がそこに存在すると考えられるわな。

 

から熱力学の第2法則は「系のエントロピーは観察者と相互作用しない限り減少できず、環境相互作用しない限り増加できない」と言い換えられんねん。

 

観察者と系の相互作用については、量子ベイズ定理から得られるわけや。

宇宙論インフレーションで生じる長距離エンタングルメントがあるが、宇宙エントロピー観測された情報ビット数に比例するのではなく、指数関数的に減少して、特定の観察者が脳が保存できる情報量よりもさらに多くのエントロピーを減少させられるってわけや。

 

ヌル職場こそギスギスの法則

給与が高くもないがそれほど忙しくもない仕事というのは、のんびりして平和そうに見えて、だいたいギスギスしてる。

暇ってのは、斜陽なのだ

受注が右肩下がり。

経営者コストカットしか言わなくなる。

それでギスギス。

業務改善したってしかたないので、みんな労働時間が8時間なら、ルーチンとして8時間きっかりかかるように仕事をしてる。

実際はそれより少し足が出る。

自分ボールを投げた。返答待ちで遅くなってるだけで仕方ない。」

自分仕事はしっかりやってるが、突発の相談が入った。」

新人に教える時間がない」

等々。

そういうことがあるからルーチンワークを効率化して、余った時間バッファタイムにすればいい、という発想には至らない。雇われ人だからだ。

じゃあ経営者が言うかと言えばそれもない。

経営層は自分任期を全うできればいいと思ってるし、いよいよとなっても取引先に迷惑がかからない自主廃業できればいいとすら考えてる。

現場に踏み入ってまで波風を立てたいとは思ってない。

そんなわけで、現場は忙しくもない仕事量を残業して、お互いに文句を言い合ってる。

うひょ~、クソカップル離婚が待ったなし!

「女が男の財力で教育を受けている場合、女が退学すると離婚する」という法則を見つけました。みなさんも応用例を探してみましょう!

2023-09-17

エンタルピーエントロピー関係について

承前https://anond.hatelabo.jp/20230916001142

前回の記事反響の中で、「エンタルピーについても解説して欲しい」というご意見複数いただいた。

エンタルピーエントロピーと同じく熱力学統計力学に登場する概念で、名前の紛らわしさもあってか、初学者がしばしば「分からない」と口にする用語の一つである

だが、実は、エンタルピーの難しさはせいぜい「名前が紛らわしい」くらいのもので、エントロピーと比べてもずっと易しい。

記事では、「エンタルピーエントロピーとどのように関連するのか」というところまでをまとめておきたい。前回の記事よりも数式がやや多くなってしまうが、それほど高度な数学概念を用いることはないので安心して欲しい。






まずは、円筒形のコップのような容器に入っている物質を考えて欲しい。

容器の内側底面の面積をAとし、物質は高さLのところまで入っているとしよう。物質の表面には大気から圧力Pがかかっており、物質もつエネルギーはUであるとする。

この容器内の物質に、外から熱Qを与えると、物質が膨張し、高さが⊿L高くなったとしよう。このとき物質もつエネルギーはどれだけ増加しただろうか?

熱をQ与えたのだからQ増加したのか、と言えばそうではない。物質が膨張するとき大気を押し上げる際に物質エネルギーを消費するからである。このエネルギーはそのまま大気が受け取る。

力を加えて物体を動かしたとき物体には、力と移動距離の積に等しいエネルギー仕事)が与えられる。

物質に与えられた熱Qは、物質がした仕事Wの分だけ大気に移り、残った分が物質エネルギーの増加分となるから

⊿U = Q - W

となる。これを「熱力学第一法則」と呼ぶ。

いま、物質大気に加えた力は F = PA であるから物質がした仕事は W = F⊿L = PA⊿L となる。

物質の体積は V = AL であり、その増加量は ⊿V = A⊿L であるから仕事の式は W = P⊿Vと書き直せる。従って

Q = ⊿U + P⊿V

とすることができる。


さて、ここで

H = U + PV

定義される状態量を新たに導入しよう。

この状態量の変化量は

⊿H = ⊿U + (P + ⊿P)(V + ⊿V) - PV

  ≒ ⊿U + P⊿V + V⊿P

となるが、圧力一定 (⊿P = 0 ) の条件下ならば

⊿H = ⊿U + P⊿V

とすることができる。

これは先程のQと同じ値である。つまり圧力一定の条件では、物体が受け取った熱は単純に状態量Hの増加分としてしまってよい。この状態量Hが「エンタルピーである

既にお分かりと思うが、この「エンタルピー」は「エントロピー」とは全く異なる状態量である

だが、熱力学においては、この二つはしばしばセットで登場するのである。それは、前回記事最後に述べた「エントロピー増大の法則」と関係がある。

しかし、それについて述べる前に、エントロピーについて一つ補足をしておきたい。







前回記事では、エントロピー変化と温度関係を「エネルギーのみが変化する場合」について考えた。

T = ⊿E/⊿S (体積・物質一定の条件で)

エンタルピーとの関係を考えるにあたっては、体積が変化する場合についても検討しておく必要がある。


そこで、「エネルギーと体積が変化するが、物質量は不変」という場合を考えよう。

(ここで、「物質量が不変」とは、物体構成する各成分の物質量がそれぞれ全て不変、という意味である。すなわち、化学反応相転移などが何も起こらないような変化を考えている。)

この場合には、エントロピー絶対温度関係はどうなるのだろうか?

結論を先に言えば、物質が外にした仕事」に関係なく、エントロピー一定量増加させるために要する「熱量」で絶対温度が決まるである

T = Q/⊿S (物質一定の条件で)

仕事の分だけエネルギー流出するにも関わらず、なぜそうなるのだろうか?

その理由は「膨張」という現象にある。

体積の増加によって物質構成分子の配置パターンが増加し、その分エントロピーも増加するのだ。この増加分が、エネルギー流出によるエントロピーの減少分をちょうど補うのである


このことをきちんと示すには、体積一定物体A(エントロピーSa)と、体積が変化するがAに対しては仕事をしないような物体B(エントロピーSb)を考えればよい(どちらも物質量は不変とする)。

両者を接触させ、絶対温度がどちらもTになったとしよう。このとき、AからBへ流れる熱とBからAへ流れる熱が等しく、巨視的には熱が移動しない「熱平衡」という状態になっている。

このとき、AからBに移動するわずかな熱をqとする。物体Aは体積一定なので、T = ⊿E/⊿S が適用できる。すなわち

T = -q/⊿Sa

となる。

熱平衡はエントロピー最大の状態であるから、微小な熱移動によって全体のエントロピーは増加しない。また、エントロピー自然に減少もしないので、

Sa +⊿Sb = 0

である

従って ⊿Sb = -⊿Sa より

q/⊿Sb = -q/⊿Sa = T

としてよいことになるのである

(この論法がよく分からない読者は、Aのエネルギー Ea を横軸に、全エントロピー Sa + Sb を縦軸にとった凸型のグラフを描いて考えてみて欲しい。エントロピー最大の点での接線を考えれば、ここで述べている内容が理解できると思う。)






では本題の、「エントロピーエンタルピー関係式」を見ていこう。

ビーカーのような容器に入った物質Xと、その周囲の外環境Yを考える。

Xは何らかの化学変化を起こすが、Yは物質量不変とする。X,YのエントロピーをそれぞれSx,SyエンタルピーをそれぞれHx,Hyと定める。X,Yの圧力はP、絶対温度はTで一定とする。

Xが化学反応を起こして熱Qを放出したならば、エンタルピー変化はそれぞれ

⊿Hx = -Q , ⊿Hy = Q

となるであろう。

一方、Yについては物質量不変より

T = Q/⊿Sy

であるので、

Sy = Q/T = -⊿Hx/T

と表せる。

これを用いると、エントロピー増大の法則

⊿Sx + ⊿Sy ≧ 0

T⊿Sx ≧ ⊿Hx

と書き直すことができる。これが最初に述べた「エントロピーエンタルピー関係式」である

エントロピー増大の法則」をこのように書き直すことにより、自発的な変化が起こるかどうか」を「物質自身状態量の変化」のみで考えることができるである。これが、エンタルピーエントロピーとセットでよく出てくる理由である

導出過程を見直せばすぐに分かるが、エンタルピー変化は「物質放出した熱による外環境のエントロピー変化」を表すために用いられているに過ぎない。

本質的には、「自発的に反応が進行するかどうか」はエントロピーによって、すなわち、微視的状態パターン数の増減に基づく確率によって決まっているのである

2023-09-16

anond:20230916001142

時間存在しないって本で読んだけど

エントロピー人間主観的錯覚だって

エントロピー増大則以外の物理法則時間を逆回ししても成り立つからエントロピー増大則が人間主観的ものだとすれば、

宇宙に不可逆な時間が流れてるように感じるのも人間主観にすぎないってさ

エントロピー無縁の法則

こちとらエントロピーなんて知的概念とは無縁の底辺社会で生きとるんで意味なんて知らなんでええんや

それより阪神選手名前覚える方が重要

エントロピーとは何か

エントロピー」という概念がよくわかりません。 - Mond

https://mond.how/ja/topics/25cvmio3xol00zd/t242v2yde410hdy

https://b.hatena.ne.jp/entry/s/mond.how/ja/topics/25cvmio3xol00zd/t242v2yde410hdy


エントロピー」は名前自体比較的よく知られているものの、「何を意味しているのか今一つ分からない」という人の多い概念である。その理由の一つは、きちんと理解するためには一定レベル数学概念特に微積分と対数)の理解必要とされるからであろう。これらを避けて説明しようとしても、「結局何を言いたいのかすっきりしない」という印象になってしまやすい。

エントロピー」を理解し難いものにしているもう一つの理由は、「エントロピー」という概念が生まれ歴史的経緯だと思われる。

エントロピー提唱された時代は、物質構成する「原子」や「分子」の存在がまだ十分に立証されておらず、それらの存在を疑う物理学者も少なくなかった。エントロピー提唱クラウジウスは、「原子分子存在を前提しなくても支障がないように」熱力学理論を構築し、現象の可逆性と不可逆性の考察からエントロピー」という量を発見し、非常に巧妙な手法定義づけたのである

その手法は実にエレガントで、筆者はクラウジウスの天才性を感じずにはいられない。だが、その反面、熱力学における「エントロピー概念簡単イメージしづらい、初学者には敷居の高いものとなってしまったのだ。

その後、ボルマン分子存在を前提とした(よりイメージやすい)形で「エントロピー」を表現し直したのだが、分子存在を認めない物理学者達との間で論争となった。その論争は、アインシュタインブラウン運動理論確立して、分子実在が立証されるまで続いたのである





現代では、原子分子存在を疑う人はまず居ないため、ボルマンによる表現を心置きなく「エントロピー定義」として採用することができる。それは次のようなものである

「ある巨視的状態を実現しうる、微視的状態パターンの多さ」



例えば、容積が変わらない箱に入れられた、何らかの物質を考えて欲しい。

箱の中の物質の「体積」や「圧力」「物質量」などは具体的に測定することができる。また、箱の中の物質の「全エネルギー」は測定は難しいが、ある決まった値をとっているものと考えることができる。

これらの量を「巨視的状態量」または単に「状態量」と呼ぶ。


ここに、全く同じ箱をもう一つ用意し、全く同じ物質を同じ量入れて、圧力や全エネルギーも等しい状態にするとしよう。このとき、二つの箱の「巨視的状態」は同じであるでは、内部の状態は「完全に」同じだろうか?

そうではあるまい。箱の中の物質構成分子の、それぞれの位置運動状態は完全に同じにはならない。これらの「分子状態」は刻一刻と変化し、膨大なパターンをとりうるだろう。

このような分子レベル位置運動状態のことを「微視的状態と呼ぶ。


「微視的状態」のパターンの個数(場合の数)はあまりに多いので、普通に数えたのでは数値として表現するのも難しい。そこで「対数」を用いる。


例えば、巨視的状態Aがとりうる微視的状態の数を1000通り、巨視的状態Bがとりうる微視的状態の数を10000通りとする。このとき、Aの「パターンの多さ」を3、Bの「パターンの多さ」を4、というように、桁数をとったものを考えるのである

この考え方には、単に「とてつもなく大きな数を表現するための便宜的手法」という以上の意味がある。

先の例では、AとBを合わせた微視的状態の数は1000×10000=10000000通りであるが、「パターンの多さ」は7となり、両者それぞれの「パターンの多さ」の和になるのである


この「パターンの多さ」がすなわち「エントロピー」Sである

「微視的状態パターンの個数」をΩ通りとしたときエントロピーSは次のように表現できる。

S = k*logΩ

(ただし、kはボルマン定数と呼ばれる定数であり、対数logは常用対数ではなく自然対数を用いる。)

この「エントロピー」は、同じ巨視的状態に対して同じ数値をとるものであるから、「体積」や「圧力」などと同じく「状態量」の一つである





このような「目に見えない状態量」を考えることに、どのような意味があるのだろうか?

その疑問に答えるには、エントロピーエネルギー関係について考える必要がある。


再び箱に入った物質を考えよう。この箱に熱を加え、箱内の物質エネルギーを増加させると、エントロピーはどうなるだろうか?

まず、総エネルギーが増加することにより、各分子に対する「エネルギーの分配パターン」が増える。さらに、個々の分子の平均エネルギーが増えた分、可能運動パターンも増える。このため、エネルギーが増えるとエントロピーは増加すると考えていいだろう。

では、エントロピーの「上がり方」はどうか?

エントロピーは微視的状態パターンの「桁数」(対数をとった値)であるからエネルギー継続的に与え続けた場合エントロピーの増加の仕方はだんだん緩やかになっていくだろうと考えられる。


ここで、多くのエネルギーを与えた「熱い物質A」の入った箱と、少量のエネルギーしか与えていない「冷たい物質B」の入った箱を用意しよう。箱同士を接触させることで熱のやりとりが可能であるものとする。

物質Aには、熱を与えてもエントロピーがさほど増加しない(同様に、熱を奪ってもエントロピーがさほど減少しない)。言いかえると、エントロピー一定量増加させるのに多くのエネルギーを要する

物質Bは、熱を与えるとエントロピーが大きく増加する(同様に、熱を奪うとエントロピーが大きく減少する)。つまりエントロピー一定量増加させるのに必要エネルギーが少ない


箱を接触させたとき、AからBに熱が流入したとしよう。Aのエントロピーは下がり、Bのエントロピーは上がるが、「Aのエントロピー減少分」より「Bのエントロピー増加分」の方が多くなるので、全体のエントロピーは増加するだろう。

もし、逆にBからAに熱が流入したとするとどうか? Aのエントロピーは上がり、Bのエントロピーは下がるが、「Aのエントロピー増加分」より「Bのエントロピー減少分」の方が多いので、全体のエントロピーは減少することになる。


エントロピーが多いとは、微視的状態パターンが多いということである。従って、「AからBに熱が流入した」状態パターンと、「BからAに熱が流入した」状態パターンとでは、前者のパターンの方が圧倒的に多いエントロピーは微視的状態パターン数の対数なので、エントロピーの数値のわずかな差でも、微視的状態パターン数の違いは何十桁・何百桁にもなる)。これは、前者の方が「起こる確率が圧倒的に高い」ということを意味している。

これが、「熱は熱い物体から冷たい物体に移動する」という現象の、分子論的な理解である

冷たい物体から熱い物体へ熱が移動する確率は0ではないが、無視できるほど小さいのである


物体が「熱い」ほど、先程のエントロピー一定量増加させるのに必要エネルギーが多いといえる。そこで、この量を「絶対温度」Tとして定義する。

T = ⊿E/⊿S (体積・物質一定の条件で)

エントロピー定義ときに出て来た「ボルマン定数」kは、このTの温度目盛が、我々が普段使っているセルシウス温度(℃)の目盛と一致するように定められている。



さて、ここで用いたエントロピーが減少するような変化は、そうなる確率が非常に低いので現実的にはほぼ起こらない」という論法は、2物体間の熱のやりとりだけでなく、自然界のあらゆる現象適用することができる。

すなわち、「自然な(自発的な)変化ではエントロピーは常に増加する」と言うことができる。これが「エントロピー増大の法則である


ただし、外部との熱のやりとりがある場合は、そこまで含めて考える必要がある。

例えば、冷蔵庫プリンを入れておくと、プリン温度は「自然に」下がってエントロピーは減少する。

しかし、冷蔵庫が内部の熱を外部に排出し、さら冷蔵庫自身電気エネルギーを熱に変えながら動いているため、冷蔵庫の外の空気エントロピーは内部の減少分以上に増加しており、そこまで含めた全体のエントロピーは増加しているのである





最初に、「エントロピー理解には微積分と対数理解必要であると述べたが、なるべくそうした数学概念に馴染みがなくても読み進められるようにエントロピーの初歩的な話をまとめてみた。如何だったであろうか。

筆者は熱力学統計力学専門家でもなんでもないので、間違ったことを書いている可能性もある。誤りがあればご指摘いただけると幸いである。


クラウジウスによる「原子分子存在を前提としない」エントロピー定義については、筆者よりはるかに優秀な多くの方が解説記事を書かれているが、中でも「EMANの熱力学https://eman-physics.net/thermo/contents.html個人的にはおすすめである。興味ある方はご参照いただきたい。

続き

エンタルピーエントロピー関係について

https://anond.hatelabo.jp/20230917090022

ログイン ユーザー登録
ようこそ ゲスト さん