「状態量」を含む日記 RSS

はてなキーワード: 状態量とは

2023-09-17

anond:20230916150141

エントロピーは「熱」と深い関係があって、たとえば注目する物体に熱が入ったとき状態がどう変化するか記述するとき必要になるんだよ(たとえば小学校で習った比熱はエントロピー記号S)をつかってT∂S/∂Tと書ける)。

エントロピーは熱を温度で割っただけの量(ちょっと厳密じゃないけど)で、熱と似た感じの量なんだけどエントロピーのほうは「状態量」というのが重要(熱は違う)。

色々端折るけど、昔の人が熱だけに注目していたら熱力学という体系は完成しなかった。

エンタルピーエントロピー関係について

承前https://anond.hatelabo.jp/20230916001142

前回の記事反響の中で、「エンタルピーについても解説して欲しい」というご意見複数いただいた。

エンタルピーエントロピーと同じく熱力学統計力学に登場する概念で、名前の紛らわしさもあってか、初学者がしばしば「分からない」と口にする用語の一つである

だが、実は、エンタルピーの難しさはせいぜい「名前が紛らわしい」くらいのもので、エントロピーと比べてもずっと易しい。

記事では、「エンタルピーエントロピーとどのように関連するのか」というところまでをまとめておきたい。前回の記事よりも数式がやや多くなってしまうが、それほど高度な数学概念を用いることはないので安心して欲しい。






まずは、円筒形のコップのような容器に入っている物質を考えて欲しい。

容器の内側底面の面積をAとし、物質は高さLのところまで入っているとしよう。物質の表面には大気から圧力Pがかかっており、物質もつエネルギーはUであるとする。

この容器内の物質に、外から熱Qを与えると、物質が膨張し、高さが⊿L高くなったとしよう。このとき物質もつエネルギーはどれだけ増加しただろうか?

熱をQ与えたのだからQ増加したのか、と言えばそうではない。物質が膨張するとき大気を押し上げる際に物質エネルギーを消費するからである。このエネルギーはそのまま大気が受け取る。

力を加えて物体を動かしたとき物体には、力と移動距離の積に等しいエネルギー仕事)が与えられる。

物質に与えられた熱Qは、物質がした仕事Wの分だけ大気に移り、残った分が物質エネルギーの増加分となるから

⊿U = Q - W

となる。これを「熱力学第一法則」と呼ぶ。

いま、物質大気に加えた力は F = PA であるから物質がした仕事は W = F⊿L = PA⊿L となる。

物質の体積は V = AL であり、その増加量は ⊿V = A⊿L であるから仕事の式は W = P⊿Vと書き直せる。従って

Q = ⊿U + P⊿V

とすることができる。


さて、ここで

H = U + PV

定義される状態量を新たに導入しよう。

この状態量の変化量は

⊿H = ⊿U + (P + ⊿P)(V + ⊿V) - PV

  ≒ ⊿U + P⊿V + V⊿P

となるが、圧力一定 (⊿P = 0 ) の条件下ならば

⊿H = ⊿U + P⊿V

とすることができる。

これは先程のQと同じ値である。つまり圧力一定の条件では、物体が受け取った熱は単純に状態量Hの増加分としてしまってよい。この状態量Hが「エンタルピーである

既にお分かりと思うが、この「エンタルピー」は「エントロピー」とは全く異なる状態量である

だが、熱力学においては、この二つはしばしばセットで登場するのである。それは、前回記事最後に述べた「エントロピー増大の法則」と関係がある。

しかし、それについて述べる前に、エントロピーについて一つ補足をしておきたい。







前回記事では、エントロピー変化と温度関係を「エネルギーのみが変化する場合」について考えた。

T = ⊿E/⊿S (体積・物質一定の条件で)

エンタルピーとの関係を考えるにあたっては、体積が変化する場合についても検討しておく必要がある。


そこで、「エネルギーと体積が変化するが、物質量は不変」という場合を考えよう。

(ここで、「物質量が不変」とは、物体構成する各成分の物質量がそれぞれ全て不変、という意味である。すなわち、化学反応相転移などが何も起こらないような変化を考えている。)

この場合には、エントロピー絶対温度関係はどうなるのだろうか?

結論を先に言えば、物質が外にした仕事」に関係なく、エントロピー一定量増加させるために要する「熱量」で絶対温度が決まるである

T = Q/⊿S (物質一定の条件で)

仕事の分だけエネルギー流出するにも関わらず、なぜそうなるのだろうか?

その理由は「膨張」という現象にある。

体積の増加によって物質構成分子の配置パターンが増加し、その分エントロピーも増加するのだ。この増加分が、エネルギー流出によるエントロピーの減少分をちょうど補うのである


このことをきちんと示すには、体積一定物体A(エントロピーSa)と、体積が変化するがAに対しては仕事をしないような物体B(エントロピーSb)を考えればよい(どちらも物質量は不変とする)。

両者を接触させ、絶対温度がどちらもTになったとしよう。このとき、AからBへ流れる熱とBからAへ流れる熱が等しく、巨視的には熱が移動しない「熱平衡」という状態になっている。

このとき、AからBに移動するわずかな熱をqとする。物体Aは体積一定なので、T = ⊿E/⊿S が適用できる。すなわち

T = -q/⊿Sa

となる。

熱平衡はエントロピー最大の状態であるから、微小な熱移動によって全体のエントロピーは増加しない。また、エントロピー自然に減少もしないので、

Sa +⊿Sb = 0

である

従って ⊿Sb = -⊿Sa より

q/⊿Sb = -q/⊿Sa = T

としてよいことになるのである

(この論法がよく分からない読者は、Aのエネルギー Ea を横軸に、全エントロピー Sa + Sb を縦軸にとった凸型のグラフを描いて考えてみて欲しい。エントロピー最大の点での接線を考えれば、ここで述べている内容が理解できると思う。)






では本題の、「エントロピーエンタルピー関係式」を見ていこう。

ビーカーのような容器に入った物質Xと、その周囲の外環境Yを考える。

Xは何らかの化学変化を起こすが、Yは物質量不変とする。X,YのエントロピーをそれぞれSx,SyエンタルピーをそれぞれHx,Hyと定める。X,Yの圧力はP、絶対温度はTで一定とする。

Xが化学反応を起こして熱Qを放出したならば、エンタルピー変化はそれぞれ

⊿Hx = -Q , ⊿Hy = Q

となるであろう。

一方、Yについては物質量不変より

T = Q/⊿Sy

であるので、

Sy = Q/T = -⊿Hx/T

と表せる。

これを用いると、エントロピー増大の法則

⊿Sx + ⊿Sy ≧ 0

T⊿Sx ≧ ⊿Hx

と書き直すことができる。これが最初に述べた「エントロピーエンタルピー関係式」である

エントロピー増大の法則」をこのように書き直すことにより、自発的な変化が起こるかどうか」を「物質自身状態量の変化」のみで考えることができるである。これが、エンタルピーエントロピーとセットでよく出てくる理由である

導出過程を見直せばすぐに分かるが、エンタルピー変化は「物質放出した熱による外環境のエントロピー変化」を表すために用いられているに過ぎない。

本質的には、「自発的に反応が進行するかどうか」はエントロピーによって、すなわち、微視的状態パターン数の増減に基づく確率によって決まっているのである

2023-09-16

エントロピーとは何か

エントロピー」という概念がよくわかりません。 - Mond

https://mond.how/ja/topics/25cvmio3xol00zd/t242v2yde410hdy

https://b.hatena.ne.jp/entry/s/mond.how/ja/topics/25cvmio3xol00zd/t242v2yde410hdy


エントロピー」は名前自体比較的よく知られているものの、「何を意味しているのか今一つ分からない」という人の多い概念である。その理由の一つは、きちんと理解するためには一定レベル数学概念特に微積分と対数)の理解必要とされるからであろう。これらを避けて説明しようとしても、「結局何を言いたいのかすっきりしない」という印象になってしまやすい。

エントロピー」を理解し難いものにしているもう一つの理由は、「エントロピー」という概念が生まれ歴史的経緯だと思われる。

エントロピー提唱された時代は、物質構成する「原子」や「分子」の存在がまだ十分に立証されておらず、それらの存在を疑う物理学者も少なくなかった。エントロピー提唱クラウジウスは、「原子分子存在を前提しなくても支障がないように」熱力学理論を構築し、現象の可逆性と不可逆性の考察からエントロピー」という量を発見し、非常に巧妙な手法定義づけたのである

その手法は実にエレガントで、筆者はクラウジウスの天才性を感じずにはいられない。だが、その反面、熱力学における「エントロピー概念簡単イメージしづらい、初学者には敷居の高いものとなってしまったのだ。

その後、ボルマン分子存在を前提とした(よりイメージやすい)形で「エントロピー」を表現し直したのだが、分子存在を認めない物理学者達との間で論争となった。その論争は、アインシュタインブラウン運動理論確立して、分子実在が立証されるまで続いたのである





現代では、原子分子存在を疑う人はまず居ないため、ボルマンによる表現を心置きなく「エントロピー定義」として採用することができる。それは次のようなものである

「ある巨視的状態を実現しうる、微視的状態パターンの多さ」



例えば、容積が変わらない箱に入れられた、何らかの物質を考えて欲しい。

箱の中の物質の「体積」や「圧力」「物質量」などは具体的に測定することができる。また、箱の中の物質の「全エネルギー」は測定は難しいが、ある決まった値をとっているものと考えることができる。

これらの量を「巨視的状態量」または単に「状態量」と呼ぶ。


ここに、全く同じ箱をもう一つ用意し、全く同じ物質を同じ量入れて、圧力や全エネルギーも等しい状態にするとしよう。このとき、二つの箱の「巨視的状態」は同じであるでは、内部の状態は「完全に」同じだろうか?

そうではあるまい。箱の中の物質構成分子の、それぞれの位置運動状態は完全に同じにはならない。これらの「分子状態」は刻一刻と変化し、膨大なパターンをとりうるだろう。

このような分子レベル位置運動状態のことを「微視的状態と呼ぶ。


「微視的状態」のパターンの個数(場合の数)はあまりに多いので、普通に数えたのでは数値として表現するのも難しい。そこで「対数」を用いる。


例えば、巨視的状態Aがとりうる微視的状態の数を1000通り、巨視的状態Bがとりうる微視的状態の数を10000通りとする。このとき、Aの「パターンの多さ」を3、Bの「パターンの多さ」を4、というように、桁数をとったものを考えるのである

この考え方には、単に「とてつもなく大きな数を表現するための便宜的手法」という以上の意味がある。

先の例では、AとBを合わせた微視的状態の数は1000×10000=10000000通りであるが、「パターンの多さ」は7となり、両者それぞれの「パターンの多さ」の和になるのである


この「パターンの多さ」がすなわち「エントロピー」Sである

「微視的状態パターンの個数」をΩ通りとしたときエントロピーSは次のように表現できる。

S = k*logΩ

(ただし、kはボルマン定数と呼ばれる定数であり、対数logは常用対数ではなく自然対数を用いる。)

この「エントロピー」は、同じ巨視的状態に対して同じ数値をとるものであるから、「体積」や「圧力」などと同じく「状態量」の一つである





このような「目に見えない状態量」を考えることに、どのような意味があるのだろうか?

その疑問に答えるには、エントロピーエネルギー関係について考える必要がある。


再び箱に入った物質を考えよう。この箱に熱を加え、箱内の物質エネルギーを増加させると、エントロピーはどうなるだろうか?

まず、総エネルギーが増加することにより、各分子に対する「エネルギーの分配パターン」が増える。さらに、個々の分子の平均エネルギーが増えた分、可能運動パターンも増える。このため、エネルギーが増えるとエントロピーは増加すると考えていいだろう。

では、エントロピーの「上がり方」はどうか?

エントロピーは微視的状態パターンの「桁数」(対数をとった値)であるからエネルギー継続的に与え続けた場合エントロピーの増加の仕方はだんだん緩やかになっていくだろうと考えられる。


ここで、多くのエネルギーを与えた「熱い物質A」の入った箱と、少量のエネルギーしか与えていない「冷たい物質B」の入った箱を用意しよう。箱同士を接触させることで熱のやりとりが可能であるものとする。

物質Aには、熱を与えてもエントロピーがさほど増加しない(同様に、熱を奪ってもエントロピーがさほど減少しない)。言いかえると、エントロピー一定量増加させるのに多くのエネルギーを要する

物質Bは、熱を与えるとエントロピーが大きく増加する(同様に、熱を奪うとエントロピーが大きく減少する)。つまりエントロピー一定量増加させるのに必要エネルギーが少ない


箱を接触させたとき、AからBに熱が流入したとしよう。Aのエントロピーは下がり、Bのエントロピーは上がるが、「Aのエントロピー減少分」より「Bのエントロピー増加分」の方が多くなるので、全体のエントロピーは増加するだろう。

もし、逆にBからAに熱が流入したとするとどうか? Aのエントロピーは上がり、Bのエントロピーは下がるが、「Aのエントロピー増加分」より「Bのエントロピー減少分」の方が多いので、全体のエントロピーは減少することになる。


エントロピーが多いとは、微視的状態パターンが多いということである。従って、「AからBに熱が流入した」状態パターンと、「BからAに熱が流入した」状態パターンとでは、前者のパターンの方が圧倒的に多いエントロピーは微視的状態パターン数の対数なので、エントロピーの数値のわずかな差でも、微視的状態パターン数の違いは何十桁・何百桁にもなる)。これは、前者の方が「起こる確率が圧倒的に高い」ということを意味している。

これが、「熱は熱い物体から冷たい物体に移動する」という現象の、分子論的な理解である

冷たい物体から熱い物体へ熱が移動する確率は0ではないが、無視できるほど小さいのである


物体が「熱い」ほど、先程のエントロピー一定量増加させるのに必要エネルギーが多いといえる。そこで、この量を「絶対温度」Tとして定義する。

T = ⊿E/⊿S (体積・物質一定の条件で)

エントロピー定義ときに出て来た「ボルマン定数」kは、このTの温度目盛が、我々が普段使っているセルシウス温度(℃)の目盛と一致するように定められている。



さて、ここで用いたエントロピーが減少するような変化は、そうなる確率が非常に低いので現実的にはほぼ起こらない」という論法は、2物体間の熱のやりとりだけでなく、自然界のあらゆる現象適用することができる。

すなわち、「自然な(自発的な)変化ではエントロピーは常に増加する」と言うことができる。これが「エントロピー増大の法則である


ただし、外部との熱のやりとりがある場合は、そこまで含めて考える必要がある。

例えば、冷蔵庫プリンを入れておくと、プリン温度は「自然に」下がってエントロピーは減少する。

しかし、冷蔵庫が内部の熱を外部に排出し、さら冷蔵庫自身電気エネルギーを熱に変えながら動いているため、冷蔵庫の外の空気エントロピーは内部の減少分以上に増加しており、そこまで含めた全体のエントロピーは増加しているのである





最初に、「エントロピー理解には微積分と対数理解必要であると述べたが、なるべくそうした数学概念に馴染みがなくても読み進められるようにエントロピーの初歩的な話をまとめてみた。如何だったであろうか。

筆者は熱力学統計力学専門家でもなんでもないので、間違ったことを書いている可能性もある。誤りがあればご指摘いただけると幸いである。


クラウジウスによる「原子分子存在を前提としない」エントロピー定義については、筆者よりはるかに優秀な多くの方が解説記事を書かれているが、中でも「EMANの熱力学https://eman-physics.net/thermo/contents.html個人的にはおすすめである。興味ある方はご参照いただきたい。

続き

エンタルピーエントロピー関係について

https://anond.hatelabo.jp/20230917090022

2023-02-18

わかったような口をきく5ch

物理参考書を捲ってみたら下記リンク先のimgurにアップしたグラフと共にこういうことが書いてありました。

i.imgur.com/2tZQ9jk.png

(完全なurl記載したら書き込めなかったのでご容赦ください)

まり、(モル比熱C)=(熱量Q)/(モル数n)×(温度の変位ΔT)で定義されるが、同じ温度(ΔT)だけ温めるのにも温め方によって必要熱量はいくらでも変わるから、比熱は具体的な数値としては何通りも定義できると書いてありました。

たとえば体積一定状態で温める場合グラフでいうならAからBに向かってP軸に平行に等温線にぶつかるまでの経路上必要になる熱量定義される。これが定積比熱だとありました。

圧力一定場合もまた同様の考え方でV軸に平行な経路をとったとき熱量定義され、これが定圧比熱だというわけです。

それなら気体の状態方程式の気体定数もそれに対応する熱量から見れば等温線にたどり着くまでの経路として表現されるはずなわけですが、それについては書いてありませんでした。

一体気体定数はどのような経路を取た場合対応しているのでしょうか?

に対して返ってきた答え

経路に依存しないのが状態

答えになってねーよ。わかったような口きくぐらいなら黙ってろよ虚栄心まみれの暇人が。

なのでこう補足してやった

ありがとうございます

経路に依存しないのを状態量というのはわかりました。

ではなぜ気体定数は経路に依存しないのでしょうか?

経路に依存しないという条件で定義のつじつまを合わせて概念を作ったのではなく、あくま定義したもの状態量の条件を満たしていた、ということですよね?

それなら定圧・定積比熱が経路に依存するのに対し、経路に依存しないことはどうやって示すことができるのでしょうか?解説いただけるとありがたいです。

758ご冗談でしょう?名無しさん2023/02/18(土) 11:10:15.83ID:???

というより、今調べると定圧・定積比熱も状態量のようですね。

とすると、定圧比熱などにおける「経路に依存しない」とは、二次元グラフ上で圧力一定を満たす経路が一通りしかないという意味においてだと考えられます

(そういうの詭弁がましい状況を「経路に依存しないと言っていいのか初学者としては違和感がありますが」)

結局そうすると、気体定数熱量に相当する経路はどのような経路か、という最初質問に戻ると思います

 
ログイン ユーザー登録
ようこそ ゲスト さん