「Cuda」を含む日記 RSS

はてなキーワード: Cudaとは

2024-09-10

anond:20240910143816

ゆうてSwitchの主要部品アメリカ企業製造から

ドルベースなんだろう

SoC: Nvidia Tegra X1

CPU: ARM 4 Cortex-A57 cores 1.02 GHz

Memory: Micron 4 4 GB 1,331/1,600 MHz

Storage ?

Graphics NVIDIA Maxwell-based CUDA cores

2024-06-27

anond:20240626103929

機械学習出身者は恐ろしいよ

あいつら数百GBモデルファイルを平気な顔して配布物にぶち込むし

CUDA SDKを丸ごと配布物にぶち込む馬鹿もいた

Python以外触らせたら何しでかすかわからん

2024-05-17

anond:20240517102911

はいGPUの仕組みや重要性を分かりやす説明した本や教材はいくつかあります。例えば以下のようなものが挙げられます

1. 『GPUを支える技術株式会社ボーンデジタル (2023年)

GPU基本的な仕組みから、最新のGPU技術まで幅広く解説されています技術者向けですが、図解も多く分かりやすい内容です。

2. 『つくりながら学ぶ! PyTorchによる発展ディープラーニング小川雄太郎 (2020年)

機械学習フレームワークPyTorchを使ってGPUプログラミングを学べる実践的な書籍です。サンプルコードを動かしながら理解を深められます

3. 『GPU教科書福井真二 (2022年)

GPU歴史から最新アーキテクチャまでを網羅的に解説コンピュータサイエンスの基礎知識がある大学生大学院生向けです。

4. UdemyGPUプログラミング入門 - CUDAOpenCLで学ぶGPUコンピューティング」

オンライン学習プラットフォームUdemy動画講座。GPUの基本からCUDAOpenCLでのプログラミング方法まで解説しています

ただし、ご指摘の通り小中学生向けのGPUの仕組みを分かりやすく教える本は少ないかもしれません。GPUCPUに比べると新しい技術なので、教育現場での普及はこれからという面があるでしょう。

技術の発展に合わせて、今後さらに分かりやす入門書子ども向けの教材が増えていくことが期待されますITリテラシー教育の一環として、GPUについても触れる機会が増えるかもしれませんね。

2024-03-22

anond:20240321185747

ハードウェアソフトウェアの合わせ技だよ

HPC用途のためにCUDAを早い段階で整備していて、

PyTorchやTensorFlowからの利用で2010年代中盤からCNN需要一人勝ち

ニューラルネットワーク学習GPUは切っても切り離せない関係になった

その時点で勝負あり

2024-03-04

CUDAは、AI向けでエコシステムというほど資産あるのか?

ゲームゲームエンジンがあるからわかる。

DirectXなどとも密接だろう。

AIはどうなのか?

まだアーキテクチャコロコロ変わっている印象があるのだが。

2024-02-23

NVIDIAAIの小史

未だに「謎の半導体メーカー」程度の認識の方になぜNVIDIA時価総額世界4位なのかをあれこれ説明する必要があるので短めにメモ半導体業界すみっこ人間なので機械学習まわりの説明適当です

・~1993年 AI冬の時代エージェントシステムがさほど成果を挙げられなかったり。まだ半導体メモリの性能は現代とくらべてはるかに劣り、現代のような大規模データを用いた統計的処理など考えられなかった。2006年ディープラーニング発明まで実質的な停滞は続く。

1993年 NVIDIA設立

1995年 NVIDIA最初グラフィックアクセラレータ製品NV1を発売。

1999年 NVIDIAGeForce 256発売。GPUという名が初めて使われる。以降、NVIDIAGPU業界1位の座を守り続ける。

2006年 GPGPU向け開発基盤CUDAを発表。以降、その並列計算に特化した性能を大規模コンピューティング活用しようという動きが続く。

2006年 ディープラーニング発明。のちのビッグデータブームに乗り、これまでよりはるかに高性能なAI模索する動きが始まる(第3次AIブームのおこり)

2006年 CPU業界2位のAMDGPU業界2位のATIを買収、チップセットGPU統合することで事実上自社製品NVIDIAと切り離す戦略に出る。CPU業界1位のインテルも、同じく自社CPUに自社製GPU統合する動きを強める。NVIDIAはこれまでの主力だったGPUチップセット製品販売を終了し、データセンター向けGPGPUのTeslaシリーズゲーム用外付けGPUGeForceシリーズARMCPUと自社GPU統合したTegraシリーズの3製品に整理する。このうちTeslaシリーズが性能向上やマイクロアーキテクチャ変更を経て現代AIサーバ製品に直接つながる。GeForceシリーズゲーマー向け需要暗号通貨マイニング向け需要も取り込み成長。Tegraシリーズは後継品がNintendoSwitchに採用される。

2012年 ディープラーニング画像認識コンテストで圧倒的な成績を収め、実質的な第3次AIブームが始まる。

2015年 AlphaGoイ・セドル勝利

2016年 NVIDIA自動運転向けシステムを発表。

2017年 Transformerモデル発表。これまでのNN・DLと異なり並列化で性能を上げるのが容易=デカ計算機を使えばAIの性能が上がる時代突入

2018年 IBMNVIDIAと開発した「Summit」がスパコン世界ランキング1位の座を5年ぶりに中国から奪還。全計算のうち96%がGPUによって処理され、HPCハイパフォーマンスコンピューティング)におけるGPU地位は決定的になる。NVIDIAの開発したCPU-GPU間の高速リンク「NVLink」が大規模に活用される。「Summit」は2020年に「富岳」にトップを奪われるまで1位を維持。

・2018~2021年 BERTやXLNet、GPT2など大規模言語モデルの幕開け。まだ研究者が使うレベル

2019年 NVIDIA CEOジェスン・ファン(革ジャンおぢ)が「ムーアの法則は終わった」と見解を表明。半導体シングルスレッド性能の向上は限界に達し、チップレットを始めとした並列化・集積化アーキテクチャ勝負時代に入る。

2022年 NVIDIAがH100発表。Transformerモデル学習・推論機能を大幅に強化したサーバ向けGPUで、もはや単体でもスパコンと呼べる性能を発揮する。H100はコアチップGH100をTSMC N4プロセス製造SK HynixHBMとともにTSMC CoWoSパッケージング技術で集積したパッケージ。※N4プロセスは最新のiPhone向けSoC採用されたN3プロセスの1つ前の世代だが、サーバ/デスクトップ製品向けプロセスモバイル製品向けプロセスクロック電流量が異なり、HPC向けはN4が最新と言ってよい。

2022年 画像生成AIブーム。DALL-E2、Midjourney、Stable Diffusionなどが相次いで発表。

2022年 ChatGPT発表。アクティブユーザ1億人達成に2カ月は史上最速。

2023年 ChatGPT有料版公開。Microsoft Copilot、Google Bard(Gemini)など商用化への動きが相次ぐ。各企業NVIDIA H100の大量調達に動く。

2024年 NVIDIA時価総額世界4位に到達。半導体メーカー売上ランキング世界1位達成(予定)。

こうして見るとNVIDIAにとっての転換点は「ディープラーニング発明」「GPGPU向けプログラミング環境CUDAの発表」「チップセット販売からコンピューティングユニット販売に転換」という3つが同時に起こった2006年であると言えそう。以降、NVIDIAゲーマー向け製品モバイル向け製品販売する裏で、CUDAによってGPGPUの独占を続け、仮装通貨マイニングスパコンでの活躍と言ったホップステップを経て今回の大きな飛躍を成し遂げた、と綺麗にまとめられるだろう。

2024-02-19

タスクマネージャーGPU箇所、CUDAに切り替え出来ること、パソコン詳しい人でも知らない

3Dとか、Copyとかになっている箇所をクリックすると、メニューが出てきてCUDA選択出来る。

2023-08-02

詐欺AI開発者を見破る方法

または「私はWeb3を直接書いてます」というタイプ場合


実行環境について聞く。


さいごに

2023-07-21

anond:20230721192652

CUDAGPGPU流行り始めたころにNVDAを買ったワイを褒めて欲しい

それは普通にすごい。

信じてガチホすることが本当に難しいんだよな。

俺も上に書いた通りで今から量子コンピュータ銘柄10ガチホできるかっていったらかなり難しいもん。(今はちょっと持ってる)

持たない方がいい理屈無限に作れるんだよな。

anond:20230720203225

CUDAGPGPU流行り始めたころにNVDAを買ったワイを褒めて欲しい

2023-07-13

anond:20230710101330

フツーに3でしょ。Cuda かけるやつはPythonなんてすぐできるだろうけど、逆はない。

2023-07-10

機械学習NVIDIA一強になってしまっているのは何故?

仮説1) ハード性能として、演算器とメモリ間のデータのやり取りの隠蔽が上手く、性能が出ている

単体の演算器の性能なんてクロック周波数が速くなっている現代だと数クロックの差なんてわからないだろう。

メモリーは社外の汎用品GDDRを使う以上、帯域やレイテンシは変わらない。

違いが出てくるとすると、どうやってメモリ間を隠蔽しているかというのが想像出来る。

データ待っている期間を出来るだけ少なくする、といった感じだ。


仮説2) ハード性能として、多数の演算器を動かしても問題ないように電源を工夫している

演算器を並列に多数動かすと配線抵抗などで電源がドロップする。

電源配線のノウハウNVIDIAが持っていて一日の長がある


仮説3) ソフトとして、CUDA、PyTorch のチューニングが出来ている。ドライバの出来がいい。

チューニングで性能上がっているのなら何処がボトルネックになりそうな所をあげているのか。

PyTorchだけで見ると、コード量は少ないので、移植しようと思えば出来るように見える。

2023-02-28

VRAM24GBで足りないの、つらい

なんでどれもこれもAIモデルは大きいんや

そして入るくらいのモデルは、やっぱり性能低くて何も出来ん


スワップみたいな仕組みもなく、CUDA error: out of memoryで落ちるし

2022-11-10

日本半導体復権出来るかどうか

圧倒的に足りてない物


半導体設計する為のソフトEDAソフト

Webのようにオープンソース設計ソフトはない。

cadence、synopsysという米国企業がほぼ独占している。

なんで重要かというと、色々理由はあるが、1例を上げると製造した時に問題が起こらないかデザインルールをチェックする。

TSMCが新しい○nmプロセスを出すときは、必ずCacence、Synopsysが対応したとプレスリリースを出している。

デザインルールをチェックしない場合、配線間が短く設計し過ぎていてショートして最悪チップが動かないといった自体になる。

ちなみに中国EDA企業は立ち上げ出来てない(一応中国国内EDAベンダーはあるが)


日本独自に2nmプロセスを立ち上げるとして、当たり前だがCadenceかSynopsysに対応してもらう、ということになるはずだ。

日本ソフトウェアを立ち上げるのは流石に難しいのではないだろうか。


Cadence、Synopsysともライセンス量が馬鹿みたいに高い。

1チップ作るのに○億と量産前に飛んでいく。

CPUサーバー上でシミュレーターを動かす方法もあるが、先端ロジックだとトランジスタ数が多くなりすぎて、エミュレータを使わないとまともに検証が出来ない。

エミュレータFPGAみたいなもので、実チップまでは早くならないがシミュレーターより断然早い。

Cadence、Synopsysともエミュレータも出しているが、こちらも高い。ポンポン買えるものでもない。


チップの次はボード設計する為のソフトや、熱シミュレーターEMCなど必要になる。

ボードはなんとかしようと思えば出来るはず・・・。先端の高密度はCadence、Altium使いたいが。

ちなみにAltiumに関する書籍日本にはないが、中国では何冊も出ている。

ボード設計チップより楽に解析されるので優先度は低い。


設計したチップを使ってくれる市場対応するミドルウェア

先端ロジック設計する会社製造する工場を作ったとして、作った物が売れないと意味がない。

何を作るのか、だ。

しかも今時の先端ロジックは金がかかりすぎて、グローバルで億単位で売らないと半導体にかかる費用がペイしない。

車に沢山半導体が使われるんだということで報道されるが、台数が少ないので、後回しにされて、半導体不足が解消しないってのは昨今の状況だった。

高温まで対応するなど要求スペックが厳しいわりに、数が売れないので半導体企業としては美味しくない。

PS5の台数でも厳しいはずだ。(PS5は売れば売るほど赤字だし)

スマホほど単価が高くて、体積が小さいの輸送費がかからない、そんなものがないといけない。


AI向けはまだまだどれだけ演算能力があっても足りないので、そっち向けはありかもしれない。

ただチップを作っただけでは動かず、ドライバーミドルウェア必要になる。

インテルがやったようにCUDAからコンバートするソフトを用意するなども必要だろう。

それだけやっても、市場がないかもしれない。

相当性能高いチップを作ったとしても、国内市場だけでペイしないだろう。

ソフトウェアエンジニアの方々も、チップが相当性能高くても携わりたくないのではないか

NVIDIAGPUを8個とか、数増やしてどっこいどっこいの性能のチップなら、わざわざ国産チップ用にソフトを作る必要がない。

2022-10-16

anond:20221016120034

5年前だろうと同じことだぞ。

そもそもCUDAPython関係ないのであんま分かってなさそう。

大方pytorchかtensorflowあたり使っててcuda環境との区別がついてないんだろうな。

NovelAIが重すぎるからローカル環境にNAI環境を構築する(2022年10月16日版)(追記あり)

せっかく課金したのにユーザが増えまくっているのか滅茶苦茶重くなっていて最悪。

から流出したモデルを使ってローカルでNAI環境を構築する。

ネットには情報もだいぶ転がってるけど陳腐化した情報があまりに多いため増田にまとめることにした。

しかたらこ記事もすでに陳腐化しているかもしれないが…単純に間違ってたらトラバで教えてほしい。

もちろん自己責任。この記事を見て導入した結果何かあっても増田は何も保証しない。

英語がわかる人はこっちを見た方が早いと思う。今は導入RTAができるくらい導入は楽になっている。

https://rentry.org/nai-speedrun

推奨環境

VRAMが2GB以上あるNVIDIA製のグラフィックボードがあればローカル環境を構築できる。

GPU世代はGTX700シリーズ以降。なので一昔前のミドル級ボードでも動作するらしい。

IntelオンボードGPUでも実行する方法があるらしい(stable_diffusion.openvino)が今回は割愛する。自分で探してね。

その他の推奨環境は以下の通り。

対応OSWindows7以上(と言うがM1Macでも動作する方法があるとかなんとか)

必要な空きストレージ容量:20GB以上

インメモリ:16GB以上(VRAMもたくさん必要だが起動時にメインメモリも大量に食う。WebUI起動時にタスクマネージャを見ているとよくわかる)

スマホしか持ってないような人やこういうのがよくわからない人はNovelAIを使った方が良いと思う。

今は重いけど、きっとそのうちみんな飽きてサーバも軽くなるかもしれないし。

(追記)NovelAIリソースを確保してサーバが軽くなったかリスクを背負ってまで導入しなくても良いか

手順1:PythonGitを導入する

(追記)Pythonは当然3系。最新の奴を入れれば問題無い。

導入方法はいちいち書かないけど、「python --version」や「git -v」で

正常にバージョン情報が出る(パスがきちんと通っている)ことはちゃん確認しよう。

手順2:Stable Diffusion web UI(AUTOMATIC1111)を導入する

Stable Diffusion web UIはStable Diffusionやそれをベースとした画像生成AIを利用するためのフロントエンド

その中でも特に開発が活発でデファクトスタンダードとなっているのがAUTOMATIC1111版だ。

導入したい適当ディレクトリに対してPowerShellなどで

git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git

とやってやれば必要ファイルの導入が行われる。

なお、AUTOMATIC1111版は数時間単位コミットが行われるから

定期的に「git pull origin master」で更新しよう。

手順3:BitTorrent流出モデルダウンロードする

クライアントはqBitTorrentが一番楽だと思う。

ここにはさすがにmagnetリンクは書かないか各自ググって欲しい。

結構誤解されがちなことだが流出データ50GBを全部ダウンロードする必要は無い。

必要ファイルはanimefull-final-prunedディレクトリの中身とanimevae.ptから5GBちょっとくらいなんじゃないかな。

もし余裕があるならmoduleディレクトリの中身もダウンロードすればいいけど、ぶっちゃけ必要無いんじゃないか

手順4:ダウンロードした各ファイルリネーム・移動

まずはanimefull-final-prunedの中身のファイルリネーム

model.ckpt」を「animefinal-full-pruned.ckpt」のようなわかりやす名前にして、

「animevae.pt」を例えば「animefinal-full-pruned.vae.pt」のような拡張子以外は同じファイル名にする。

WebUI起動フォルダ配下の\models\Stable-diffusionリネームしたファイルを移動させれば配置はOK

ちなみにmoduleディレクトリの中身は\models\hypernetworksに移動させて使う。

それらのファイルを設定で適用させると画風が結構変わるがNovelAI再現とは関係無いみたいだ。

(追記)moduleディレクトリの中身の.ptファイルはhypernetworksという技術によって画風などを学習したものらしい。

すでに複数イラストレーターの画風を学習したptファイル作成されており議論を呼んでいる。

手順5:webui-user.batの中身に設定を追加する

自分グラボのVRAMが4GB未満の場合は「set COMMANDLINE_ARGS=」の後に

4GB未満の場合は「--medvram」、2GB未満の場合は「--lowvram」とパラメータを追加しておこう。

自分の持ってるグラボのVRAMがわからないときGPU-Zなどで調べよう。

またGTX1600系固有のバグ(単色の画像が出力される)があるらしいので

その場合は「--no-half-vae」もしくは「--no-half」や「--precision full」とパラメータを追加。

ちなみにパラメータに「--xformers」を追加してxformersを導入・使用すると

消費VRAMが減って画像生成処理時間も短縮されるので是非導入しよう。

画像からdanbooruタグAI調査するdeepdanbooruを利用する場合は「--deepdanbooru」を追加。

これらの設定は同時に複数適用させることもできる。例えば

set COMMANDLINE_ARGS=--medvram --xformers --deepdanbooru

のようになる。

手順6:webui-user.bat起動、設定変更

ターミナルPowerShellなどでwebui-user.batを起動しwebUIの初期導入と起動を行う。

過去には手動でCUDA等を導入する必要があったが、現在はこの初期導入でだいたいの導入が行われる。

ずいぶん楽にはなったがその分初期導入の時間結構長い。10分~20分くらいかかるかもしれない。

途中で導入処理がエラーで止まってしまった場合管理者権限で実行するなどして対応して欲しい。

起動ができたらSettingで以下の設定を変更してNovelAIに近づける。

Stop At last layers of CLIP modelを2に、

Eta noise seed deltaを31337にする。

これで設定は完了

おまけ:アスカテスト

設定を合わせて完全にNovelAIと同じ内容になったのかを確認するテストがある。

出力結果から海外じゃHallo Asuka Testなんて呼ばれている。

これは初期SEEDをはじめとする設定内容が完全に一致していれば同じ出力結果を得られる仕組みを利用している。

プロンプトの内容:masterpiece, best quality, masterpiece, asuka langley sitting cross legged on a chair

ネガティブプロンプトの内容:lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts,signature, watermark, username, blurry, artist name

サンプリングステップ数:28

サンプリング形式:Euler

CFG Scale(プロンプトの強度):12

初期Seed2870305590

この内容で見事下の画像と全く同じ画像が出力されれば合格だ。

https://i.imgur.com/Bfl5qJB.jpg

なお、このテストはAUTOMATIC1111のバージョンやxformersの適用状態によっては微妙に違う画像が出力されることがあるらしい。

xformersを適用させている増田環境だと確かに二つ並べると間違い探しレベルの違いがあった。

正直このテストクリアしなくても十分だと個人的には思う。

おまけ2:その他便利になる設定や拡張機能

「Booru tag autocompletion for A1111」を導入すればNovelAIのように自動danbooruタグを保管してくれる。

注意

画像生成AIモデルはStable DiffusionOSSのため派生結構多い。

自前で追加学習もできるため自前で学習した追加AIモデル4chanのような掲示板などで共有する人もいるらしい。

しかしそのようなモデルの中にウィルスのような悪意のある動作を行うものもあるらしい。

FBIペドフィリア一網打尽にするためにIPアドレスなどの個人情報を抜き出す動作を行うロリ特化AIモデル掲示板で配布していて

しかもそれには本物の児童ポルノ教師データとして使われている…などという都市伝説的な話が今界隈を賑わせている。

それが本当の話かどうかはわからないが、とにかく変なところからモデルダウンロードするのは危険なのでやめよう。

自己矛盾溢れる注意喚起かもしれないが…

2022-09-12

anond:20220910190934

最近cuda触り始めたにわかからピンと来ないんだけどwslでLinux使ってても特に困ってないよ。何が面倒臭いの?

2022-09-10

anond:20220910173047

カーネルエンジニアやデストリでもWindows使ってるのにドヤ顔デスクトップLinux使ってるヤツ

デスクトップ環境周りのコミッターとか自作OSドライバ作ってるとかなら納得だけど

どーせ単なるユーザー利用でしょ?

GPU使おうとすると、cudaドライバとかの相性云々がマジで本当に死ぬほどめんどくさいので大人しくLinux使った方が楽なんだよなあ。

あとwindowsってパッケージマネージャが無いのがめちゃくちゃ困る。今はあるのかな?

2022-08-31

プログラミングとは無縁の職業だが久々に勉強としてゲーミングPC(wsl2)上でstable diffusion回せるような環境を作ろうとしたらこんな時間になってしまった

wsl2上でcuda使えるようにするのにまず躓いて、GPGとかいうのが問題だとわかるのに1時間くらいかかって、

そのあとビデオメモリ不足でプログラムが回らない問題が起きて、まぁこれはメモリ少なくて済むフォークを使えばいいとすぐわかったので問題なかったが、

最後anacondaで一度includeできたモジュールが何故かincludeできなくなる問題が発生してpathかいじったりしたがうまくいかず、最終的にはvscode問題だとわかって一度wsl2を切断して再接続したら治ったけどこの対応に2時間くらいかけてしまった

まぁ結果一日かけずにstable diffusionを動かすことができるようになったから良かったけど

本当はいい感じの絵を出せる文章とかコード変えてエッチな絵を生成できるようにしたり中身を見て勉強しようと思ってたけどそれは明日以降だな

2022-08-24

anond:20220823205005

元増田とは別の書き方を参考までに。

https://note.com/npaka/n/ndd549d2ce556

基本的にこの記事と同じ方法

from diffusers import StableDiffusionPipeline

pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=YOUR_TOKEN)
pipe.to("cuda")

def dummy_checker(images, **kwargs): return images, False
pipe.safety_checker = dummy_checker

下の2行を追加するだけ。これでも動いた。

2022-05-27

anond:20220527070030

Hyper-V の利用でなにか難しいポイントがあるとはとても思えないし

CUDAを叩けてなくて困っとりま

機械学習で使いたい

2022-04-25

MATLABは今後どういう扱いになるのか

MATLABを使っているが、どうも中途半端存在になっている。

端的にいうと、お金を払っただけの価値があるか、だ。


言語的な競合はもちろんPythonになるが、Pythonとの差別化が出来てない。

Python側は純粋Pythonだと遅いが、今はC++ラッパーとして使うのが多くなっており、Pythonの方が速いということが起こる。

最近MATLABJITコンパイラによって昔ほどfor文を気にしなくても良くなっているが、それでも遅さは気になる。

GPU分散コンピューティングMATLAB対応しているが、使いこなすのに苦労する。

GPU使う場合だと、CUDAをそのまま使いたくなるし、GPUメモリーとのやり取りといったオーバーヘッドが加わるので、

単純にGPU使うようにしたら速くなるってことはなく、処理時間を測りながらトライアルを繰り返すことになる。


MATLAB側のエディタ機能が増えているとはいえPython+VSCodeとの対抗となると辛いものがある。


toolboxを追加で課金してCコードを吐き出すことはできるが、劇的に速くなるわけではない。



②toolboxは沢山あるが、使い始めると色々足りておらず、Pythonエコシステムが欲しくなる

toolboxは追加課金で開放されるDLCだ。

toolboxが多くなりすぎていることと、手を広げすぎているのかtoolboxを買って使ってみると色々足りないことがある。

買う前に調べるわけだが、色んな事ができそうだと思って購入し、実際使っていくと、嘘は言ってないが事あるごとに使いにくい所が出てくる。

GUI周りに関しては不満が多い。



GUIが重い、使いにくい

事あるごとにGUIが重たいのが気になって仕方ない。

また使いにくいのが多い。デザインが良いというのはコンシューマ用ではないので気にしないが、重たさと使いにくさで嫌になってくる。


④plotや可視化周りが重い

エクセル普通になっている今、エクセルで出来ないことが出来て欲しいが、そうなっていない。



色々書いたが、MATLAB中途半端なのだ

そりゃ便利な場合もある。あるが、かなり限定的だったりする。

ログイン ユーザー登録
ようこそ ゲスト さん