「600系」を含む日記 RSS

はてなキーワード: 600系とは

2022-12-16

普段つけてる腕時計電池切れになった

メーカーに送らないと電池交換できないと言われたので、戻ってくるまでの数日ほど職場ではG-SHOCKをつけていた

いわゆる5600系、初代のデザイン踏襲した黒いスクエア型のやつ↓

https://www.casio.com/jp/watches/gshock/product.DW-5600E-1/

で、同僚に「職場G-SHOCKはないだろー」と言われたんだが、そいつApple Watchつけてんの

どっちも同じようなもんじゃんと言ったら向こうは全く納得しなかった

まあそんだけの話

2022-10-16

NovelAIが重すぎるからローカル環境にNAI環境を構築する(2022年10月16日版)(追記あり)

せっかく課金したのにユーザが増えまくっているのか滅茶苦茶重くなっていて最悪。

から流出したモデルを使ってローカルでNAI環境を構築する。

ネットには情報もだいぶ転がってるけど陳腐化した情報があまりに多いため増田にまとめることにした。

しかたらこ記事もすでに陳腐化しているかもしれないが…単純に間違ってたらトラバで教えてほしい。

もちろん自己責任。この記事を見て導入した結果何かあっても増田は何も保証しない。

英語がわかる人はこっちを見た方が早いと思う。今は導入RTAができるくらい導入は楽になっている。

https://rentry.org/nai-speedrun

推奨環境

VRAMが2GB以上あるNVIDIA製のグラフィックボードがあればローカル環境を構築できる。

GPU世代はGTX700シリーズ以降。なので一昔前のミドル級ボードでも動作するらしい。

IntelオンボードGPUでも実行する方法があるらしい(stable_diffusion.openvino)が今回は割愛する。自分で探してね。

その他の推奨環境は以下の通り。

対応OSWindows7以上(と言うがM1Macでも動作する方法があるとかなんとか)

必要な空きストレージ容量:20GB以上

インメモリ:16GB以上(VRAMもたくさん必要だが起動時にメインメモリも大量に食う。WebUI起動時にタスクマネージャを見ているとよくわかる)

スマホしか持ってないような人やこういうのがよくわからない人はNovelAIを使った方が良いと思う。

今は重いけど、きっとそのうちみんな飽きてサーバも軽くなるかもしれないし。

(追記)NovelAIリソースを確保してサーバが軽くなったかリスクを背負ってまで導入しなくても良いか

手順1:PythonGitを導入する

(追記)Pythonは当然3系。最新の奴を入れれば問題無い。

導入方法はいちいち書かないけど、「python --version」や「git -v」で

正常にバージョン情報が出る(パスがきちんと通っている)ことはちゃん確認しよう。

手順2:Stable Diffusion web UI(AUTOMATIC1111)を導入する

Stable Diffusion web UIはStable Diffusionやそれをベースとした画像生成AIを利用するためのフロントエンド

その中でも特に開発が活発でデファクトスタンダードとなっているのがAUTOMATIC1111版だ。

導入したい適当ディレクトリに対してPowerShellなどで

git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git

とやってやれば必要ファイルの導入が行われる。

なお、AUTOMATIC1111版は数時間単位コミットが行われるから

定期的に「git pull origin master」で更新しよう。

手順3:BitTorrent流出モデルダウンロードする

クライアントはqBitTorrentが一番楽だと思う。

ここにはさすがにmagnetリンクは書かないか各自ググって欲しい。

結構誤解されがちなことだが流出データ50GBを全部ダウンロードする必要は無い。

必要ファイルはanimefull-final-prunedディレクトリの中身とanimevae.ptから5GBちょっとくらいなんじゃないかな。

もし余裕があるならmoduleディレクトリの中身もダウンロードすればいいけど、ぶっちゃけ必要無いんじゃないか

手順4:ダウンロードした各ファイルリネーム・移動

まずはanimefull-final-prunedの中身のファイルリネーム

model.ckpt」を「animefinal-full-pruned.ckpt」のようなわかりやす名前にして、

「animevae.pt」を例えば「animefinal-full-pruned.vae.pt」のような拡張子以外は同じファイル名にする。

WebUI起動フォルダ配下の\models\Stable-diffusionリネームしたファイルを移動させれば配置はOK

ちなみにmoduleディレクトリの中身は\models\hypernetworksに移動させて使う。

それらのファイルを設定で適用させると画風が結構変わるがNovelAI再現とは関係無いみたいだ。

(追記)moduleディレクトリの中身の.ptファイルはhypernetworksという技術によって画風などを学習したものらしい。

すでに複数イラストレーターの画風を学習したptファイル作成されており議論を呼んでいる。

手順5:webui-user.batの中身に設定を追加する

自分グラボのVRAMが4GB未満の場合は「set COMMANDLINE_ARGS=」の後に

4GB未満の場合は「--medvram」、2GB未満の場合は「--lowvram」とパラメータを追加しておこう。

自分の持ってるグラボのVRAMがわからないときGPU-Zなどで調べよう。

またGTX1600系固有のバグ(単色の画像が出力される)があるらしいので

その場合は「--no-half-vae」もしくは「--no-half」や「--precision full」とパラメータを追加。

ちなみにパラメータに「--xformers」を追加してxformersを導入・使用すると

消費VRAMが減って画像生成処理時間も短縮されるので是非導入しよう。

画像からdanbooruタグAI調査するdeepdanbooruを利用する場合は「--deepdanbooru」を追加。

これらの設定は同時に複数適用させることもできる。例えば

set COMMANDLINE_ARGS=--medvram --xformers --deepdanbooru

のようになる。

手順6:webui-user.bat起動、設定変更

ターミナルPowerShellなどでwebui-user.batを起動しwebUIの初期導入と起動を行う。

過去には手動でCUDA等を導入する必要があったが、現在はこの初期導入でだいたいの導入が行われる。

ずいぶん楽にはなったがその分初期導入の時間結構長い。10分~20分くらいかかるかもしれない。

途中で導入処理がエラーで止まってしまった場合管理者権限で実行するなどして対応して欲しい。

起動ができたらSettingで以下の設定を変更してNovelAIに近づける。

Stop At last layers of CLIP modelを2に、

Eta noise seed deltaを31337にする。

これで設定は完了

おまけ:アスカテスト

設定を合わせて完全にNovelAIと同じ内容になったのかを確認するテストがある。

出力結果から海外じゃHallo Asuka Testなんて呼ばれている。

これは初期SEEDをはじめとする設定内容が完全に一致していれば同じ出力結果を得られる仕組みを利用している。

プロンプトの内容:masterpiece, best quality, masterpiece, asuka langley sitting cross legged on a chair

ネガティブプロンプトの内容:lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts,signature, watermark, username, blurry, artist name

サンプリングステップ数:28

サンプリング形式:Euler

CFG Scale(プロンプトの強度):12

初期Seed2870305590

この内容で見事下の画像と全く同じ画像が出力されれば合格だ。

https://i.imgur.com/Bfl5qJB.jpg

なお、このテストはAUTOMATIC1111のバージョンやxformersの適用状態によっては微妙に違う画像が出力されることがあるらしい。

xformersを適用させている増田環境だと確かに二つ並べると間違い探しレベルの違いがあった。

正直このテストクリアしなくても十分だと個人的には思う。

おまけ2:その他便利になる設定や拡張機能

「Booru tag autocompletion for A1111」を導入すればNovelAIのように自動danbooruタグを保管してくれる。

注意

画像生成AIモデルはStable DiffusionOSSのため派生結構多い。

自前で追加学習もできるため自前で学習した追加AIモデル4chanのような掲示板などで共有する人もいるらしい。

しかしそのようなモデルの中にウィルスのような悪意のある動作を行うものもあるらしい。

FBIペドフィリア一網打尽にするためにIPアドレスなどの個人情報を抜き出す動作を行うロリ特化AIモデル掲示板で配布していて

しかもそれには本物の児童ポルノ教師データとして使われている…などという都市伝説的な話が今界隈を賑わせている。

それが本当の話かどうかはわからないが、とにかく変なところからモデルダウンロードするのは危険なのでやめよう。

自己矛盾溢れる注意喚起かもしれないが…

 
ログイン ユーザー登録
ようこそ ゲスト さん