「谷山」を含む日記 RSS

はてなキーワード: 谷山とは

2023-09-24

鴨池ダイエーのあの穴は1995年に繋がっている。

その穴を通ってスーパーファミコンが4000円安くなるクーポンを使ってスーパーファミコン本体を入手し、谷山漫画倉庫で売って荒稼ぎする錬金術が後を経たない。

2023-05-29

anond:20230529141524

谷山谷さん「ウィッス」

山谷山さん「どうも」

山山さん「よっす」

谷谷さん「ちわーっす」

知り合いに山谷さんと谷山さんがいる

全然違うグループの知り合いなんだけど年齢も性別も同じなのでいつもごっちゃになる

2021-10-20

anond:20211020130515

桜島標高高くないし周りが錦江湾から被害は少ない。

谷山鴨池の車の屋根が真っ黒になるだけだ

2020-07-21

宇宙宇宙をつなぐ数学 - IUT理論の衝撃」の感想

Amazonレビューなどに書くと過去レビューから身バレする可能性があるのと、わざわざ別アカウントを作ってまで批評するほどのものではないと思ったので、こちらに書きます

初めに断っておきますが、本稿は別に加藤文元先生人格や業績などを否定しているわけではありません。また、IUT理論やその研究者に対する批判でもありません。「IUT理論が間違っている」とか「望月論文査読体制問題がある」などと言う話と本稿は全く無関係です。単純にこの本に対する感想しかありません。

----

加藤文元先生の「宇宙宇宙をつなぐ数学 - IUT理論の衝撃」を読みました。結論から言って、読む価値の無い本でした。その理由は、

ほとんど内容がない」

この一言に尽きます数学書としても、一般書としてもです。

本書の内容と構成

本書は、RIMS(京都大学数理解析研究所)の望月新一教授が発表した数学理論である、IUT理論宇宙タイミューラー理論)の一般向けの解説書です。

1~3章では、数学研究活動一般説明や、著者と望月教授交流の話をし、それを踏まえて、IUT理論画期的であること、またそれ故に多くの数学者には容易には受け入れられないことなどを説明しています

4~7章では、IUT理論の基本理念(だと著者が考えているアイデア)を説明しています技術的な詳細には立ち入らず、アイデア象徴する用語フレーズを多用し、それに対する概念的な説明や喩えを与えています

8章がIUT理論解説です。

まず、数学科の学部3年生以上の予備知識がある人は、8章だけ読めばいいです。1~7章を読んで得られるものはありません。これはつまり「本書の大部分は、IUT理論本質的関係ない」ということです。これについては後述します。

各章の内容

1~3章は、論文受理されるまでの流れなどの一般向けに興味深そうな内容もありましたが、本質的には「言い訳」をしているだけです。

IUT理論が多くの数学者に受け入れられないのは、従来の数学常識を覆す理論から

望月教授が公開された研究集会などを開かないのは、多数の人に概要だけを話しても理解できないから。

などの言い訳が繰り返し述べられているだけであり、前述の論文発表の流れなどもその補足のために書かれているに過ぎません。こういうことは、数学コミュニティの中でIUT理論懐疑的人達説明すればいい話であって、一般人に長々と説明するような内容ではないと思いますもっとも、著者が一般大衆も含めほとんどの人がIUT理論懐疑的である認識して本書を書いたのなら話は別ですが。

4~7章は、「足し算と掛け算の『正則構造』を分離する」とか「複数の『舞台』の間で対称性通信を行う」などの抽象的なフレーズが繰り返し出てくるだけで、それ自体の内容は実質的説明されていません。

正則構造とは、正方形の2辺のように独立に変形できないもの

対称性とは群のことで、回転や鏡映などの操作抽象化したもの

のように、そこに出てくる「用語」にごく初等的な喩えを与えているだけであり、それが理論の中で具体的にどう用いられるのかは全く分かりません(これに関して何が問題なのかは後述します)。そもそも、本書を手に取るような人、特に1~3章の背景に共感できるような人は、ここに書いてあるようなことは既に理解しているのではないでしょうか。特に6~7章などは、多くのページを費やしているわりに、数学書に換算して1~2ページ程度の内容しか無く(誇張ではなく)、極めて退屈でした。

8章はIUT理論解説ですが、前章までに述べたことを形式的につなぎ合わせただけで、実質的な内容はありません。つまり、既に述べたことを並べて再掲して「こういう順番で議論が進みます」と言っているだけであり、ほとんど新しい情報は出て来ません。この章で新しく出てくる、あるいはより詳しく解説される部分にしても、

複数数学舞台対称性通信をすることで、「N logΘ ≦ log(q) + c」という不等式が示されます。Θやqの意味は分からなくてもいいです。

今まで述べたことは局所的な話です。局所的な結果を束ねて大域的な結果にする必要がありますしかし、これ以上は技術的になるので説明できません。

のような調子で話が進みますいくら専門書ではないとはいえ、これが許されるなら何書いてもいいってことにならないでしょうか。力学解説書で「F = maという式が成り立ちます。Fやmなどの意味は分からなくていいです」と言っているようなものだと思います

本書の問題

本書の最大の問題点は、「本書の大部分がIUT理論本質的関係ない」ということです(少なくとも、私にはそうとしか思えません)。もちろん、どちらも「数学である」という程度の意味では関係がありますが、それだけなのです。これがどういうことか、少し説明します。

たとえば、日本には「類体論」の一般向けの解説書がたくさんあります。そして、そのほとんどの本には、たとえば

素数pに対して、√pは三角関数特殊値の和で表される。(たとえば、√5 = cos(2π/5) - cos(4π/5) - cos(6π/5) + cos(8π/5)、√7 = sin(2π/7) + sin(4π/7) - sin(6π/7) + sin(8π/7) - sin(10π/7) - sin(12π/7))

4で割って1あまる素数pは、p = x^2 + y^2の形に表される。(たとえば、5 = 1^2 + 2^2、13 = 2^2 + 3^2)

のような例が載っていると思います。なぜこういう例を載せるかと言えば、それが類体論典型的重要な例だからです。もちろん、これらはごく特殊な例に過ぎず、類体論一般論を説明し尽くしているわけではありません。また、類体論一般的な定理証明に伴う困難は、これらの例とはほとんど関係ありません。そういう意味では、これらの例は類体論理論的な本質を示しているわけではありません。しかし、これらの例を通じて「類体論が論ずる典型的現象」は説明できるわけです。

もう一つ、より初等的な例を出しましょう。理系なら誰でも知っている微分積分です。何回でも微分可能実関数fをとります。そして、fが仮に以下のような無限級数に展開できたとします。

f(x) = a_0 + a_1 x + a_2 x^2 + ... (a_n ∈ ℝ)

このとき、両辺を微分して比較すれば、各係数a_nは決まります。「a_n = (d^n f/dx^n (0))/n!」です。右辺の級数を項別に微分したり積分したりしていい場合、これはかなり豊かな理論を生みます。たとえば、等比級数の和の公式から

1/(1 + x^2) = 1 - x^2 + x^4 - x^6 + ... (|x| < 1)

両辺を積分し、形式的にx = 1を代入すると

arctan(x) = x - x^3/3 + x^5/5 - x^7/7 + ...

π/4 = 1 -1/3 + 1/5 - 1/7 + ...

のような非自明な等式を得ることができます。これは実際に正しい式です。また、たとえば

dy/dx - Ay = B (A, B ∈ ℝ、A≠0)

のような微分方程式も「y(x) = a_0 + a_1 x + a_2 x^2 + ...」のように展開できて項別に微分していいとすれば、

Σ((n+1)a_{n+1} - Aa_n) = B

  • a_1 - Aa_0 = B
  • (n+1)a_{n+1} - Aa_n = 0 (n ≧ 1)

よって、

  • a_{n+1} = Aa_n/(n+1) = A^n (B + A a_0)/(n+1)! (n ≧ 0)

a_0 = -B/A + C (Cは任意の定数)とおけば、

  • a_n = C A^n/n! (n ≧ 1)

「e^x = Σx^n/n!」なので、これを満たすのは「y = -B/A + Ce^(Ax)」と分かります

上の計算正当化する過程で最も困難な箇所は、このような級数収束するかどうか、または項別に微分積分ができるかどうかを論ずるところです。当然、これを数学科向けに説明するならば、そこが最も本質的な箇所になりますしかし、そのような厳密な議論とは独立に「微分積分が論ずる典型的現象」を説明することはできるわけです。

一般向けの数学の本に期待されることは、この「典型的現象」を示すことだと思います。ところが、本書では「IUT理論が論ずる典型的現象」が数学的に意味のある形では全く示されていません。その代わり、「足し算と掛け算を分離する」とか「宇宙間の対称性通信を行う」などの抽象的なフレーズと、それに対するたとえ話が羅列されているだけです。本書にも群論などの解説は出て来ますが、これは単に上のフレーズに出てくる単語注釈しかなく、「実際にIUT理論の中でこういう例を考える」という解説ではありません。これは、上の類体論の例で言えば、二次体も円分体も登場せず、「剰余とは、たとえば13 = 4 * 3 + 1の1のことです」とか「素因数分解ができるとは、たとえば60 = 2^2 * 3 * 5のように書けるということです」のような本質的関係のない解説しかないようなものです。

もちろん、「本書はそういう方針で書く」ということは本文中で繰り返し述べられていますから、そこを批判するのはお門違いなのかも知れません。しかし、それを考慮しても本書はあまりにも内容が薄いです。上に述べたように、誇張でも何でもなく、数学的に意味のある内容は数学書に換算して数ページ程度しか書かれていません。一般向けの数学の本でも、たとえば高木貞治の「近世数学史談」などは平易な言葉で書かれつつも非常に内容が豊富です。そういう内容を期待しているなら、本書を読む意味はありません。

繰り返し述べるように本書には数学的に意味のある内容はほとんどありません。だから、極端なことを言えば「1 + 1 = 2」や「1 + 2 = 3」のような自明な式を「宇宙宇宙をつなぐ」「正則構造を変形する」みたいに言い換えたとしても、本書と形式的に同じものが書けてしまうでしょう。いやもっと言えば、そのような言い換えの裏にあるもの数学的に正しい命題意味のある命題である必要すらありません。本書は少なくとも著者以外にはそういうもの区別が付きません。

本書の続編があるなら望むこと

ここまでネガティブなことを書いておいて、何食わぬ顔でTwitter加藤先生ツイートを拝見したり、東工大京大に出向いたりするのは、人としての信義に反する気がするので、前向きなことも書いておきます

まず、私は加藤先生ファンなので、本書の続編が出たら買って読むと思います。まあ、ご本人はこんな記事は読んでいないでしょうが、私の考えが人づてに伝わることはあるかも知れませんから、「続編が出るならこんなことを書いてほしい」ということを書きます

まず、上にも書いたような「IUT理論が論ずる典型的現象」を数学的に意味のある形で書いていただきたいです。類体論で言う、二次体や円分体における素イデアル分解などに相当するものです。

そして、IUT理論既存数学との繋がりを明確にしていただきたいです。これは論理的な側面と直感的な側面の両方を意味します。

論理的な側面は単純です。つまり、IUT理論に用いられる既存重要定理、およびIUT理論から導かれる重要定理を、正式ステートメント証明抜きで紹介していただきたいです。これはたとえば、Weil予想からRamanujan予想が従うとか、谷山-志村予想からFermatの最終定理が従うとか、そういう類のものです。

直感的な側面は、既存数学からアナロジーの部分をより専門的に解説していただきたいです。たとえば、楕円曲線のTate加群が1次のホモロジー群のl進類似であるとか、Galois理論位相空間における被覆空間理論類似になっているとか、そういう類のものです。

以上です。

加藤文元先生望月新一先生、およびIUT理論研究・普及に努めていらっしゃるすべての方々の益々のご健勝とご活躍を心から祈り申し上げます

2019-09-02

人名を並べた○○=△△型の理論が好き

数学には人名を並べた定理がわりにある。共同研究、同時期に発表されたもの、元からあった予想が補われることで成立したもの、経緯はさまざまだけど何人もの切磋琢磨想像できる『=』の名付けが俺は好きだ。

よく知られているコーシーシュワルツの不等式とか、大学で扱うボルツァノ=ワイエルシュトラス定理フェルマーの最終問題証明に用いられた谷山志村予想(定理)とか。ああ、フェルマーのも今はフェルマーワイルズ定理か。

こういうのって他の学問でもあるのだろうか。

2018-12-23

ああ谷山紀章

歌がうまい雰囲気ごまかすとかそういうの一切なくただただ歌がうまい

谷山紀章見出した賢プロ社長谷山神曲を作った作曲家山口県のお父様お母様、サンキュー……

2017-09-26

anond:20170926223546

谷山豊 - Wikipedia

10月には婚約が決まりプリンストン高等研究所から招聘を受けるが、その矢先の11月17日豊島区池袋の自宅アパートでガス自殺を遂げる。

その後、婚約者鈴木美佐子も、「彼の後を追う」という遺書を残して12月2日にガス自殺

谷山突然の死にショックを受け、遺族に頼み込んで彼の背広を譲り受けている。遺体発見された時、譲り受けた谷山の背広が傍にあったという。

2017-09-19

anond:20170919051244

~104km

駅名よみ距離(km)県1県2
守山もりやま104愛知県滋賀県
なぎさ100長野県岐阜県
大谷おおたに99.5滋賀県和歌山県
せき98.2岐阜県三重県
平岸ひらぎし96.6北海道赤平市北海道札幌市
小野おの96.6京都府兵庫県
船津ふなつ94.9三重県紀北町三重県志摩市
赤坂あかさか91.9東京都山梨県
大久保おおくぼ91.1京都府兵庫県
桜川さくらがわ90.7滋賀県大阪府
立野たての89.9佐賀県熊本県
追分おいわけ83三重県滋賀県
古市ふるいち79.4大阪府兵庫県
五条ごじょう79.1京都府奈良県
木津きづ78.1京都府兵庫県
曽根そね73.8大阪府兵庫県
十日市場とおかいちば73.2神奈川県山梨県
赤池かい72.6岐阜県愛知県
卸町おろしまち72宮城県福島県
霞ヶ丘かすみがおか69.5兵庫県奈良県
橋本はしもと69京都府和歌山県
小川町おがわまち67埼玉県東京都
黒沢くろさわ64.4秋田県横手市秋田県由利本荘市
桜井さくら58.7大阪府奈良県
下島しもじま52長野県伊那市長野県松本市
入谷いりや48.9東京都神奈川県
九条くじょう46京都府大阪府
東山ひがしやま45.2京都府奈良県
長田ながた44.7大阪府兵庫県
霞ヶ関かすみがせき43.5埼玉県東京都
さくら42.2愛知県三重県
栄町さかえちょう40.8千葉県東京都
九条くじょう39.2京都府奈良県
明智あけち38.6岐阜県可児市岐阜県恵那市
平野ひらの32.8大阪府兵庫県
柚木ゆの31.6静岡県富士市静岡県静岡市
九条くじょう31.4大阪府奈良県
住吉すみよし30.5兵庫県大阪府
平和台へいわだい27.1千葉県東京都
足柄あしがら24.6神奈川県静岡県
小野おの24.2滋賀県京都府県境を越えるもので最短
日比野ひびの17愛知県愛西市愛知県名古屋市
小杉こすぎ16.9富山県富山市富山県射水市
高井田たかいだ14.5大阪府柏原市大阪府東大阪市

同一市町村

駅名よみ距離(km)会社名1会社名2
春日井かすがい5.3JR東海名鉄
志井しい2.8JR九州北九州高速鉄道
野々市ののいち2.7JR西日本北陸鉄道
尼崎あまがさき2.5JR西日本阪神
白石しろいし2.2JR北海道札幌市営地下鉄
長田ながた1.8神戸電鉄神戸市営地下鉄
市場いちば1.6JR西日本神戸電鉄
西宮にしのみや1.3JR西日本阪神
御影みかげ1.3阪神阪急
平野ひらの1.3JR西日本大阪市営地下鉄
石川しか1.2JR東日本弘南鉄道
芦屋あしや1.1JR西日本阪神
早稲田わせだ1東京メトロ都電
塚口つかぐち1JR西日本阪急
白島はくしま1広島高速交通広島電鉄
味美あじよし1名鉄東海交通事業
伊丹いたみ0.9JR西日本阪急
宇治うじ0.9JR西日本京阪
城野じょうの0.9JR九州北九州高速鉄道
嵐山あらしやま0.9阪急京福電気鉄道
十条じゅうじょう0.9近鉄京都市営地下鉄
住吉すみよし0.9JR西日本神戸新交通阪神
琴似ことに0.85JR北海道札幌市営地下鉄
郡元こおりもと0.85JR九州鹿児島市電
今里いまざと0.85近鉄大阪市営地下鉄
浅草あさくさ0.8東武地下鉄つくばエクスプレス
吹田すいた0.75JR西日本阪急
野田のだ0.75JR西日本阪神
春日野かすがのみち0.7阪急阪神
谷山たにやま0.7JR九州鹿児島市電
弘明寺ぐみょうじ0.5京急横浜市営地下鉄
中津なかつ0.5阪急大阪市営地下鉄
堀田ほりた0.45名鉄名古屋市営地下鉄
福島ふくしま0.35JR西日本阪神
黄檗おうばく0.3JR西日本京阪
朝倉さくら0.3JR四国とさでん交通
甘木あまぎ0.25西鉄甘木
草薙くさなぎ0.25JR東海静岡鉄道
伊野いの0.23JR四国とさでん交通

2014-04-21

円城塔もっと楽しむためのノンフィクションはこれだ!

SFもっと楽しむための科学ノンフィクションはこれだ! http://d.hatena.ne.jp/huyukiitoichi/20140417/1397744529 を受けて10冊選んでみました。

「『現実とはなにか』という認識が変わっていく」ような本はありません。

言語

ヨーロッパにおける完全言語を求める歴史を扱った『完全言語の探求』と多くのプログラミング言語設計者へのインタビューをまとめた『言語設計者たちが考えること』は、あまり読者が重なっていない気がしますが、円城塔きっかけにして両方読んでみるのもいいのではないでしょうか。

つぎの著者につづく」(『オブ・ザ・ベースボール』収録)の冒頭で語られるエピソードが『完全言語の探求』から引いたものであることは単行本収録時に追加された注で明示されていますし、「道化師の蝶」に出てくる無活用ラテン語についても『探求』で触れられています

一方『言語設計者たちが考えること』については、読書メーターで「小説を書く人も読むと良い」(2010年12月10日)とコメントしていて、『本の雑誌』の連載でも取り上げています(2011年11月言葉を作る人たち」)。また『本の雑誌』の連載では『言語設計者たち』以外にも時々プログラミング言語言語処理についての本が取り上げられています

最近連載のはじまった「プロローグ」(『文學界掲載)も今のところ、より望ましい文字の扱いや処理についての話をしているので、いささか強引な解釈ですが『完全言語の探求』『言語設計者たちが考えること』と繋がっている小説です。

翻訳

ロシア語作家として出発しアメリカ亡命後に英語作家に転身したナボコフは、自分自身の書いた文章を別の言語翻訳する「自己翻訳」を相当数おこなっていますが、それを主題とした評論書です。

円城塔本人も語っていますが、「道化師の蝶」ではナボコフモチーフとして使われています。友幸友幸が「希代の多言語作家であることもナボコフへの参照のひとつでしょう(若島正は『乱視読者の新冒険』のなかでナボコフを「稀代の多言語作家」と形容しています)。その希代の多言語作家の「わたし」とそれを翻訳する「わたし」が重なるようで重ならない「道化師の蝶」の筋立てにも、同じ作品について作者と翻訳者の両方の役割を演じたナボコフの影が見出せます。また「道化師の蝶」の姉妹編といえる「松ノ枝の記」での、相互翻訳相互創作する2人の作家という設定も「自己翻訳」の変奏と見ることができるでしょう。こうした創作翻訳交錯する2編を再読する上でも、この評論書が良い補助線になるのでは。

読書メーターコメントは「素晴らしい」(2011年4月28日)。

数学 全般

最初期に書かれた『Self-Reference ENGINE』や「オブ・ザ・ベースボール」「パリンプセストあるいは重ね書きされた八つの物語」(『虚構機関』収録)などに顕著ですが、円城塔小説には、掌編の積み重ね(積み重ならず?)によって全体の物語が作られるという構造がよく現れます。これは辞典を順番に読んでいく感覚ちょっと似ているかもしれません。『数学入門辞典』を読んでいると、たとえあまり数学に詳しくなくても、円城塔小説に対してしばしば言われる「よく分からないけど面白い」という感覚を味わえると思います。ただし、円城塔小説に出てくる数学用語がこの辞書に出てくるなどと期待してはいけません。

一家に一冊」だそうです。 https://twitter.com/rikoushonotana/status/402707462370758656/photo/1

数学 数学者

円城塔小説には数学者やそれに準ずる人が多く登場しますが、『史談』は数学者を語った本として真っ先に名前のあがる定番の名著です。著者は類体論確立したことあるいは解析概論の著者として知られる高木貞治。かの谷山豊はこの本を読んで数学者を志したそうです。

数学部分については河田敬義『ガウスの楕円関数高木貞治先生著"近世数学史談"より』という講義録があるくらいには難しいので適当飛ばしましょう。

考える人2009年夏号 特集日本科学者100人100冊」で円城塔が選んでいたのが高木貞治とこの本でした。

数学 モンスタームーンシャイン

ムーンシャイン現象は、『超弦領域』収録の「ムーンシャイン」の題材で、他に「ガーベジコレクション」(『後藤さんのこと』収録)にも単語だけですがモンスター群とコンウェイが出てきます(コンウェイは「烏有此譚」の注にも言及あり)。作品内に数学的ホラ話といった雰囲気がしばしばあらわれる円城塔にとって「怪物的戯言(モンスタラスムーンシャイン)」はいかにもな題材かもしれません。

ムーンシャインを扱った一般向けの本というとたぶん最初に『シンメトリーモンスター』が挙がるのですが翻訳が読みにくいし『シンメトリー地図帳』にはあまり説明がなかった気がするので、この『群論』を挙げます

数学の専門書ですが、第4章「有限単純群の分類/Monsterとmoonshine」は読み物風の書き方になっています。ただし詳しい説明なしでどんどん話が進んでいくところも多く、きちんと理解するのは無理です(無理でした)。

第4章を書いている原田耕一郎はモンスター群の誕生にも関わりが深い人で、多くの文章モンスタームーンシャインについて触れているので、雑誌などを探せば難度的にもっと易しい文章が見つかるかもしれません。

数学 確率

円城塔小説には「オブ・ザ・ベースボール」のように確率についての言及もよく見られます。『数学セミナー』『数学のたのしみ』『科学』等で高橋陽一郎が書いた確率論についての諸入門解説記事、は探すのが面倒だと思われるので、もっと入手しやすいこの本を。

確率微分方程式で有名な伊藤清エッセイ集です。「確率」より「数学者」の項に置くのがふさわしい本ですが確率の本として挙げます

読書メーターコメントは「素晴らしい」(2010年10月24日)。

数学 力学系

やはり専門が力学系ということもあり、力学系関連もしばしば登場します。

本のタイトルを見て「力学系力学は違う」と指摘されそうですが、副題は「カオスと安定性をめぐる人物史」。力学系歴史に関する本です。実のところどんな内容だったか覚えていないのですが、「いわゆるこの方程式に関するそれらの性質について」(単行本未収録)で引用文献に挙がっているか大丈夫でしょう。

数学 ロジック

Nova 1』収録の「Beaver Weaver」をはじめ、ロジック(数学基礎論)関連も円城塔小説に頻出する素材です。

とりわけ計算可能性、ランダム性、busy beaver、コルモゴロフ複雑性……とあげてみると、まずはチャイティンの諸作が思い浮かびますが、あれはむやみに勧めていいタイプの本なのかちょっと疑問なので避けます読書メーターでは、最近出た『ダーウィン数学証明する』に対して「 チャイティンチャイティンによるチャイティンのためのいつものチャイティン」(2014年3月20日)とコメントしています

これという本が思い浮かばなかったので、いくらかためらいながらもこの本を挙げました。『メタマジックゲーム』か、あるいはヒネリも何もなく『ゲーデルエッシャーバッハ』でよかったのかもしれません。ただ『ゲーデルエッシャーバッハ』だけを読んでもほぼまちがいなく不完全性定理理解できないということはもっと周知されるべきじゃないかと思います

円城塔はこの本について「すごかった。(但し、かなりハード。)」(2011年3月27日)とコメントし、『本の雑誌』でも取り上げています(2012年10月ゲーデルさんごめんなさい」)。

初心者向きの本ではありませんが、不完全性定理について一席ぶつ前に読んでおくといいでしょう。


天体力学パイオニアたち』が上下巻なので、以上で10冊になります

別にノンフィクションを読まなくてもフィクションを楽しむことはできますが、ノンフィクションを読むことによって得られるフィクションの楽しみというのもまた楽しいんじゃないでしょうか。

追記: 小谷元子編『数学者が読んでいる本ってどんな本』に寄稿している13人のうちのひとりが円城塔なので、そちらも参照してみるとよいと思いますリストに挙げられている約50冊の本のうち半分くらいがノンフィクションです。上に挙げた本とかぶっていたのは『数学入門辞典』『天体力学パイオニアたち』『ゲーデル定理 利用と誤用の不完全ガイド』でした。また、はてブコメント言及のあったイエイツ『記憶術』もリストに入ってました。

2013-02-21

業界人に聞いた今更どうでもいい話。

谷山紀章平野綾はその昔確かに付き合っていたんだそうだ。

その昔谷山氏はTwitter平野意味深リプライしてるし、スキャンダルの時の相手も谷山氏と同系統タイプだったし

まあそうなんだろうなあとは思っていたが。

2012-12-07

http://anond.hatelabo.jp/20121207135854

はい、その通りですね。

自らの罪と向き合って自殺するのがわたしの目標です。

江藤淳森恒夫田宮二郎谷山豊のような人々を尊敬します。

2011-03-28

http://anond.hatelabo.jp/20110328001640

都民

都知事選の顔ぶれをみるとなんかもう終わった感つよいよ。

82歳に未来の心配とかしてもらいたくねえけど、ご時世がら冒険すんのも怖いんだよね。

池上彰さんあたりがでてくれれば可能性はあったんだけどねえ。

http://ja.wikipedia.org/wiki/2011%E5%B9%B4%E6%9D%B1%E4%BA%AC%E9%83%BD%E7%9F%A5%E4%BA%8B%E9%81%B8%E6%8C%99

谷山雄二朗(たにやま・ゆうじろう、38歳) 無所属 インターナショナルデジタルパートタイマー[1]

古川圭吾(ふるかわ・けいご、41歳) 無所属 訪問介護会社役員[2]

渡邉美樹(わたなべ・みき、51歳) 無所属 ワタミ会長

石原慎太郎いしはら・しんたろう、78歳) 無所属 東京都知事

ドクター・中松(なかまつ、82歳) 無所属 発明家

マック赤坂(あかさか、62歳) スマイルセラピスト

東国原英夫(ひがしこくばる・ひでお、53歳) 無所属宮崎県知事

小池晃(こいけ・あきら、50歳) 無所属日本共産党推薦) 前参議院議員

姫治けんじ(ひめじ・けんじ、59歳) 平和党核兵器廃絶平和運動 建物管理

雄上統(おがみ・おさむ、69歳) 東京維新の会 真宗大谷派住職

杉田健(すぎた・たけし、43歳) 新しい日本[3] 社団法人職員

若いの一応調べてみる。情報なさそうだけど。

つか、やっぱりなんの情報もねえ。

http://www.yomiuri.co.jp/election/local/2011/kokuji/yf13.htm

こんなインデックスもない情報でどうやって選べっていうんだよ。

タイトル写真もないAVであたりを探すようなもんだぜこんなの。

なぜメイドインジャパン政治は粗悪品なのか

http://anond.hatelabo.jp/20110309200011

2008-03-01

紙袋ぶら提げて来ないで欲しい

オールナイトニッポンの二部を谷山浩子担当してた頃の話。

谷山コンサートが目前のある日の放送。

コンサートの告知のなかで、彼女は「紙袋ぶら提げて来ないで欲しい」と一部のファンに訴えた。

放送後にオタの人たちから反発があったなんてことも聞かなかったし、その後の彼女の活動が自粛されることもなかった。


倖田來未オールナイトニッポンで失言したとき、「医学的根拠が全く無い」とか問題にしてた。

そういうこと真面目に言ってる奴らをテレビで見て俺は笑ってた。

いくら医学的知識が無くたって「羊水が腐る」なんて、彼女も本気で言ったわけじゃないだろ。

少し前、次のようなホッテントリがあった。

ようするに、通常の会話にはもうほとんど登場しない言い回しなのだろう。少なくとも、その人の周囲ではそんな言い方をする人間がいない。本を読まずに育つと、そうなる。

http://blog.mf-davinci.com/mori_log/archives/2007/11/post_1515.php

反語が通じない-森博嗣


こればかりは、本だけでは補えないと思いますよ、森先生

実生活での経験がないと。

例えば、ガテン系バイトなんかで肘で脇腹小突かれながら「冗談だよ。兄ちゃん(笑)」とか。

そういう経験がないと難しい。

反語的表現は一種の余裕だから、都市生活なんかでは逆に煩わしい。

冗談ひとつ通じねえ」じゃなくて「冗談ひとつ言えねえ」が現実だから。

倖田の失言に反語的表現が含まれていたことを重々承知の上で彼女を批判していた人がどれくらいいたのか。

今となっては、どうでもいいことだけど。

 
ログイン ユーザー登録
ようこそ ゲスト さん