まず、システム全体を含む複合系を考える。観測対象系、環境系、および観測者(意識)を含むヒルベルト空間 ℋ を次のように定義する。
ℋ = ℋ_S ⊗ ℋ_E ⊗ ℋ_O
系の状態は密度演算子 ρ により記述され、全体の状態空間 ℋ 上の密度行列として表される。
エントロピーはフォン・ノイマンエントロピーを用いて定義する。
S(ρ) = -Tr(ρ log ρ)
観測操作を完全に正定な(completely positive)トレース保存(trace-preserving)マップ ℳ として定義する。観測後の状態 ρ' = ℳ(ρ) において、エントロピーが減少することを条件1として反映する。
S(ρ') < S(ρ)
デコヒーレンス操作を完全に正定なトレース保存マップ 𝒟 として定義する。デコヒーレンス後の状態 ρ'' = 𝒟(ρ) において、エントロピーが増大することを条件2として反映する。
S(ρ'') > S(ρ)
ヒルベルト空間 ℋ を無限に分岐するブランチに分割する。各ブランチは観測結果に対応し、以下のように直交する部分空間に分解される。
ℋ_O = ⊕_(i ∈ I) ℋ_(O,i)
ここで、I は無限集合を表す。全体の状態は各ブランチに対応する部分空間に分解され、次の形で表される。
ρ = ∑_(i ∈ I) p_i ρ_(S,i) ⊗ ρ_(E,i) ⊗ ρ_(O,i)
観測者の知識 K はヒルベルト空間 ℋ_O 上の状態として表され、重ね合わせの状態にある。
|Ψ_O⟩ = ∑_(i ∈ I) c_i |i⟩
ここで、|i⟩ は各ブランチに対応する基底状態、c_i は複素係数である。
観測操作 ℳ により、観測者の知識が特定のブランチ j へ移行することを条件3および条件4として反映する。これを数学的に表現するために、観測操作 ℳ は次のような射影を含む。
ℳ(ρ) = ∑_(j ∈ I) P_j ρ P_j
ここで、P_j はブランチ j に対応する射影演算子である。この操作により、観測者は特定のブランチ j を「選択」し、そのブランチに対応する知識状態 |j⟩ を持つことになる。
ブランチの集合 I が無限であることにより、分岐の方向が無数に存在することを条件5として反映する。
観測者の知識 |Ψ_O⟩ が全てのブランチに対して重ね合わせの状態にあることを条件6として反映する。つまり、観測者は観測前に全てのブランチの可能性を持っており、観測後に特定のブランチに「意識が移行」する。
観測操作 ℳ とデコヒーレンス操作 𝒟 を統合し、全体のダイナミクスを次のように定式化する。
ρ → 𝒟 → ρ'' → ℳ → ρ'
ここで、
以上を総合すると、観測問題の数学的定式化は以下のようになる。
1. 系の状態: 密度演算子 ρ がヒルベルト空間 ℋ = ℋ_S ⊗ ℋ_E ⊗ ℋ_O 上に存在する。
2. エントロピー: フォン・ノイマンエントロピー S(ρ) = -Tr(ρ log ρ) を用いる。
3. デコヒーレンス操作: 完全に正定なトレース保存マップ 𝒟 により、エントロピーが増大 S(𝒟(ρ)) > S(ρ)。
4. 観測操作: 完全に正定なトレース保存マップ ℳ により、エントロピーが減少 S(ℳ(ρ)) < S(ρ)。
5. ブランチ構造: 観測者のヒルベルト空間 ℋ_O を無限個の直交部分空間に分割 ℋ_O = ⊕_(i ∈ I) ℋ_(O,i)。
6. 観測者の知識: 観測者の知識状態 |Ψ_O⟩ = ∑_(i ∈ I) c_i |i⟩ が重ね合わせにある。
7. 意識の移行: 観測操作 ℳ により、観測者の意識が特定のブランチ j に移行し、そのブランチに対応する知識状態 |j⟩ を持つ。