はてなキーワード: LEVELとは
Digital cameras are made in a wide range of sizes, prices and capabilities. The majority are camera phones, operated as a mobile application through the cellphone menu. Professional photographers and many amateurs use larger, more expensive digital single-lens reflex cameras (DSLR) for their greater versatility. Between these extremes lie digital compact cameras and bridge digital cameras that "bridge" the gap between amateur and professional cameras. Specialized cameras including multispectral imaging equipment and astrographs continue to serve the scientific, military, medical and other special purposes for which digital photography was invented.
Subcompact with lens assembly retracted
Compact cameras are designed to be tiny and portable and are particularly suitable for casual and "snapshot" uses. Hence, they are also called point-and-shoot cameras. The smallest, generally less than 20 mm thick, are described as subcompacts or "ultra-compacts" and some are nearly credit card size.[2]
Most, apart from ruggedized or water-resistant models, incorporate a retractable lens assembly allowing a thin camera to have a moderately long focal length and thus fully exploit an image sensor larger than that on a camera phone, and a mechanized lens cap to cover the lens when retracted. The retracted and capped lens is protected from keys, coins and other hard objects, thus making it a thin, pocketable package. Subcompacts commonly have one lug and a short wrist strap which aids extraction from a pocket, while thicker compacts may have two lugs for attaching a neck strap.
Compact cameras are usually designed to be easy to use, sacrificing advanced features and picture quality for compactness and simplicity; images can usually only be stored using lossy compression (JPEG). Most have a built-in flash usually of low power, sufficient for nearby subjects. Live preview is almost always used to frame the photo. Most have limited motion picture capability. Compacts often have macro capability and zoom lenses but the zoom range is usually less than for bridge and DSLR cameras. Generally a contrast-detect autofocus system, using the image data from the live preview feed of the main imager, focuses the lens.
Typically, these cameras incorporate a nearly silent leaf shutter into their lenses.
For lower cost and smaller size, these cameras typically use image sensors with a diagonal of approximately 6 mm, corresponding to a crop factor around 6. This gives them weaker low-light performance, greater depth of field, generally closer focusing ability, and smaller components than cameras using larger sensors.
Starting in 2011, some compact digital cameras can take 3D still photos. These 3D compact stereo cameras can capture 3D panoramic photos for play back on a 3D TV.[3] Some of these are rugged and waterproof, and some have GPS, compass, barometer and altimeter. [4]
Main article: Bridge camera
Bridge are higher-end digital cameras that physically and ergonomically resemble DSLRs and share with them some advanced features, but share with compacts the use of a fixed lens and a small sensor. Like compacts, most use live preview to frame the image. Their autofocus uses the same contrast-detect mechanism, but many bridge cameras have a manual focus mode, in some cases using a separate focus ring, for greater control. They originally "bridged" the gap between affordable point-and-shoot cameras and the then unaffordable earlier digital SLRs.
Due to the combination of big physical size but a small sensor, many of these cameras have very highly specified lenses with large zoom range and fast aperture, partially compensating for the inability to change lenses. On some, the lens qualifies as superzoom. To compensate for the lesser sensitivity of their small sensors, these cameras almost always include an image stabilization system to enable longer handheld exposures.
These cameras are sometimes marketed as and confused with digital SLR cameras since the appearance is similar. Bridge cameras lack the reflex viewing system of DSLRs, are usually fitted with fixed (non-interchangeable) lenses (although some have a lens thread to attach accessory wide-angle or telephoto converters), and can usually take movies with sound. The scene is composed by viewing either the liquid crystal display or the electronic viewfinder (EVF). Most have a longer shutter lag than a true dSLR, but they are capable of good image quality (with sufficient light) while being more compact and lighter than DSLRs. High-end models of this type have comparable resolutions to low and mid-range DSLRs. Many of these cameras can store images in a Raw image format, or processed and JPEG compressed, or both. The majority have a built-in flash similar to those found in DSLRs.
In bright sun, the quality difference between a good compact camera and a digital SLR is minimal but bridgecams are more portable, cost less and have a similar zoom ability to dSLR. Thus a Bridge camera may better suit outdoor daytime activities, except when seeking professional-quality photos.[5]
In low light conditions and/or at ISO equivalents above 800, most bridge cameras (or megazooms) lack in image quality when compared to even entry level DSLRs. However, they do have one major advantage: their much larger depth of field due to the small sensor as compared to a DSLR, allowing larger apertures with shorter exposure times.
A 3D Photo Mode was introduced in 2011, whereby the camera automatically takes a second image from a slightly different perspective and provides a standard .MPO file for stereo display. [6]
[edit]Mirrorless interchangeable-lens camera
Main article: Mirrorless interchangeable-lens camera
In late 2008, a new type of camera emerged, combining the larger sensors and interchangeable lenses of DSLRs with the live-preview viewing system of compact cameras, either through an electronic viewfinder or on the rear LCD. These are simpler and more compact than DSLRs due to the removal of the mirror box, and typically emulate the handling and ergonomics of either DSLRs or compacts. The system is used by Micro Four Thirds, borrowing components from the Four Thirds DSLR system.
[edit]Digital single lens reflex cameras
Cutaway of an Olympus E-30 DSLR
Main article: Digital single-lens reflex camera
Digital single-lens reflex cameras (DSLRs) are digital cameras based on film single-lens reflex cameras (SLRs). They take their name from their unique viewing system, in which a mirror reflects light from the lens through a separate optical viewfinder. At the moment of exposure the mirror flips out of the way, making a distinctive "clack" sound and allowing light to fall on the imager.
Since no light reaches the imager during framing, autofocus is accomplished using specialized sensors in the mirror box itself. Most 21st century DSLRs also have a "live view" mode that emulates the live preview system of compact cameras, when selected.
These cameras have much larger sensors than the other types, typically 18 mm to 36 mm on the diagonal (crop factor 2, 1.6, or 1). This gives them superior low-light performance, less depth of field at a given aperture, and a larger size.
They make use of interchangeable lenses; each major DSLR manufacturer also sells a line of lenses specifically intended to be used on their cameras. This allows the user to select a lens designed for the application at hand: wide-angle, telephoto, low-light, etc. So each lens does not require its own shutter, DSLRs use a focal-plane shutter in front of the imager, behind the mirror.
Main article: Rangefinder camera#Digital rangefinder
A rangefinder is a user-operated optical mechanism to measure subject distance once widely used on film cameras. Most digital cameras measure subject distance automatically using electro-optical techniques, but it is not customary to say that they have a rangefinder.
[edit]Line-scan camera systems
A line-scan camera is a camera device containing a line-scan image sensor chip, and a focusing mechanism. These cameras are almost solely used in industrial settings to capture an image of a constant stream of moving material. Unlike video cameras, line-scan cameras use a single row of pixel sensors, instead of a matrix of them. Data coming from the line-scan camera has a frequency, where the camera scans a line, waits, and repeats. The data coming from the line-scan camera is commonly processed by a computer, to collect the one-dimensional line data and to create a two-dimensional image. The collected two-dimensional image data is then processed by image-processing methods for industrial purposes.
Further information: Rotating line camera
Many devices include digital cameras built into or integrated into them. For example, mobile phones often include digital cameras; those that do are known as camera phones. Other small electronic devices (especially those used for communication) such as PDAs, laptops and BlackBerry devices often contain an integral digital camera, and most 21st century camcorders can also make still pictures.
Due to the limited storage capacity and general emphasis on convenience rather than image quality, almost all these integrated or converged devices store images in the lossy but compact JPEG file format.
Mobile phones incorporating digital cameras were introduced in Japan in 2001 by J-Phone. In 2003 camera phones outsold stand-alone digital cameras, and in 2006 they outsold all film-based cameras and digital cameras combined. These camera phones reached a billion devices sold in only five years, and by 2007 more than half of the installed base of all mobile phones were camera phones. Sales of separate cameras peaked in 2008. [7]
Integrated cameras tend to be at the very lowest end of the scale of digital cameras in technical specifications, such as resolution, optical quality, and ability to use accessories. With rapid development, however, the gap between mainstream compact digital cameras and camera phones is closing, and high-end camera phones are competitive with low-end stand-alone digital cameras of the same generation.
A Canon WP-1 waterproof 35 mm film camera
Waterproof digital cameras are digital cameras that can make pictures underwater. Waterproof housings have long been made but they cost almost as the cameras. Many waterproof digital cameras are shockproof and resistant to low temperatures; one of them is Canon PowerShot D10, one of the first underwater digital cameras.
These cameras become very popular during the holiday season, because many people want to save the best moments from their holidays at the seaside. Waterproof watches and mobile phones were produced earlier. Most makers of digital cameras also produce waterproof ones and every year they launch at least one new model, for example Sony, Olympus, Canon, Fuji.
Healthways Mako Shark, an early waterproof camera,[8] was launched in 1958 and cost around 25 dollars. It was a huge camera and pictures were black and white.
___________________________
http://www.gobatteryonline.com/canon-nb-9l-digital-camera-battery-gose.html
http://www.gobatteryonline.com/canon-lp-e5-digital-camera-battery-gose.html
http://www.gobatteryonline.com/canon-powershot-sd500-battery-charger-gose.html
February With the world going mobile and billions of new devices requiring electrical storage, battery technology is almost certainly due for a renaissance in the near future and recent developments suggest MIT will play a role in the next significant battery technology. Less than a week ago, we reported on work being done by MIT's Laboratory for Electromagnetic and Electronic Systems (LEES) that could become the first technologically significant and economically viable alternative to conventional batteries in 200 years. Now a second new and highly promising battery technology is emerging from MIT - a new type of lithium battery that could become a cheaper alternative to the batteries that now power hybrid electric cars.
Until now, lithium batteries have not had the rapid charging capability or safety level needed for use in cars. Hybrid cars now run on nickel metal hydride batteries, which power an electric motor and can rapidly recharge while the car is decelerating or standing still.
But lithium nickel manganese oxide, described in a paper to be published in Science on Feb. 17, could revolutionize the hybrid car industry -- a sector that has "enormous growth potential," says Gerbrand Ceder, MIT professor of materials science and engineering, who led the project.
"The writing is on the wall. It's clearly happening," said Ceder, who said that a couple of companies are already interested in licensing the new lithium battery technology.
The new material is more stable (and thus safer) than lithium cobalt oxide batteries, which are used to power small electronic devices like cell phones, laptop computers, rechargeable personal digital assistants (PDAs) and such medical devices as pacemakers.
The small safety risk posed by lithium cobalt oxide is manageable in small devices but makes the material not viable for the larger batteries needed to run hybrid cars, Ceder said. Cobalt is also fairly expensive, he said.
The MIT team's new lithium battery contains manganese and nickel, which are cheaper than cobalt.
Scientists already knew that lithium nickel manganese oxide could store a lot of energy, but the material took too long to charge to be commercially useful. The MIT researchers set out to modify the material's structure to make it capable of charging and discharging more quickly.
Lithium nickel manganese oxide consists of layers of metal (nickel and manganese) separated from lithium layers by oxygen. The major problem with the compound was that the crystalline structure was too "disordered," meaning that the nickel and lithium were drawn to each other, interfering with the flow of lithium ions and slowing down the charging rate.
Lithium ions carry the battery's charge, so to maximize the speed at which the battery can charge and discharge, the researchers designed and synthesized a material with a very ordered crystalline structure, allowing lithium ions to freely flow between the metal layers.
A battery made from the new material can charge or discharge in about 10 minutes -- about 10 times faster than the unmodified lithium nickel manganese oxide. That brings it much closer to the timeframe needed for hybrid car batteries, Ceder said.
Before the material can be used commercially, the manufacturing process needs to be made less expensive, and a few other modifications will likely be necessary, Ceder said.
Other potential applications for the new lithium battery include power tools, electric bikes, and power backup for renewable energy sources.
The lead author on the research paper is Kisuk Kang, a graduate student in Ceder's lab. Ying Shirley Meng, a postdoctoral associate in materials science and engineering at MIT, and Julien Breger and Clare P. Grey of the State University of New York at Stony Brook are also authors on the paper.
The research was funded by the National Science Foundation and the U.S. Department of Energy.
http://www.chargerbatteryshop.co.uk/panasonic-cga-s008e-digital-camera-battery-cbbs.html
http://www.chargerbatteryshop.co.uk/panasonic-cga-s101-digital-camera-battery-cbbs.html
http://www.chargerbatteryshop.co.uk/panasonic-cga-s101e-cc1-1b-digital-camera-battery-cbbs.html
Due to the nature of a digital camera, they need a lot of voltage and also need to keep good battery long periods of inactivity digital camera rechargeable batteries to a big hit, many current digital camera has a flash, may also make a short film, the two characteristics is very good, but can drain battery two times normal speed, photo shooting.
Most people are familiar with basic rechargeable battery, but the key to finding a good a doctor to give your digital camera is to look at the battery material, how will charge, and how long will the cost in use and sitting on the shelf or in the digital camera.
A little I look in my purchase any digital camera I buy is to ensure that there is a common battery size. The reason is, no matter how you plan a photo shoot, things happen, you may have to resort to the old alkaline batteries solve your problems, then. Panasonic battery my first choice is a rechargeable battery, but you never know, this is a very good thing can find a new set of batteries.
There are several important factors to consider, rechargeable batteries is the best. The first is the amount of voltage, followed by long time, then the battery of the time; Four is charge (how long shelf life will be held responsible for the storage battery).
Here are a series of typical rechargeable batteries and their voltage output:
Ni-Cad rechargeable battery, 12 volts
Nickel metal hydride rechargeable batteries-1.2 to 1.5
Ni-ZN rechargeable batteries-160 volts
Standard alkalines is 1.5 volts
Also have a level a reference number of energy storage, from the ability to represent called milli ampere hour. These level general fleeing to 2100 from 750 from is high, the more the number of the battery capacity (higher digital better).
The Ni-Cad and nimh most common, almost every major brand battery multiple versions. The latest technology is Ni-ZN are excellent storage capacity and long shelf life. Many types of rechargeable batteries can be charging many times, but they didn't mention that drop down power amount of recharges x.
And this is the real factors to consider. Let us say that if you find new battery you can use about 100 photos before they go to the south. Recharges Numbers increase, reduce many pictures. Some can only continue to before they start, recharges loose the ability to completely costs. Clever cost is still good savings from an ordinary AA alkaline battery cost $1.15 and the comparable charge is $2.50, according to the figures from $5.00.
Recent Ni-ZN cost about $5 each request and take over 500 recharges in any losses before the injury charge ability. But they also play more voltage so for example your flash recycling half the time to complete the normal alkaline batteries. If you have 100 threw a set of alkaline, you should get at least 175 vote of Ni-ZN are the same size. Plus storage life N-ZN than any other choice.
Rapid turnover a flash can be a big problem, because it is a very painful, but when photographs in the interior, need to wait for two minutes of the flash is full of power. Or, if you are shooting a series of short a minute video and ran out of the juice in the middle is not a good thing.
So, based on the pricing and ability, if you can recharge the battery is more than 500 times more the highest price, they use more cheap long-term development. If they hold up close to claim 500 cost, well, you can do the math. This is a no brainer, Ni-ZN provide more voltage, better life, and more fees each battery.
__________________
http://www.gobatteryonline.com/canon-powershot-sd600-battery-charger-gose.html
http://www.chargerbatteryshop.co.uk/panasonic-dmw-bmb9-digital-camera-battery-cbbs.html
1, about the trickle charge, rapid charging and stable battery charging algorithm
According to the energy requirements of the final application, a battery may contain up to 4 lithium ion or lithium polymer battery core, its configuration will have a variety of change, at the same time with a mainstream power adapter: direct adapter, USB interface or car charger. Remove the core quantity, core configuration or power adapter type difference, the battery has the same charge characteristics. So they charge algorithm. Lithium ion and li-ion polymer battery best charging algorithm can divided into three phases: trickle charge, rapid charging and stable charge.
Advanced battery charger with additional security function normally. For example, if the core temperature exceeds the given window, usually 0 ℃-45 ℃, charge will be suspended.
Remove some very low-end equipment, now on the market/li-ion polymer lithium ion battery solutions are integrated with the outer components or, in accordance with the characteristics of the charging to charge, this is not just to get better effect charge, but also for safety.
LTC4097 can be used to exchange adapter or USB power supply for single quarter/polymer lithium ion battery. Figure 1 for double input 1.2 A lithium battery charger LTC4097 schemes. It USES constant current/constant voltage algorithm charging, from exchange adapter power charge, programmable filling up to 1.2 electric current A, and with USB power can be as high as 1 A, at the same time, automatic detection in each input voltage whether there. This device also provide USB the current limit. Applications include PDA, MP3 players, digital camera, light portable medical and test equipment and big color cellular phone. The performance characteristics: no external micro controller charging termination; The input power automatic detection and choice; Through the resistance from the exchange of charging adapter input can be as high as 1.2 A programming charge current; The resistance of programmable USB charging current is up to 1 A; 100% or 20% USB charging current set; The input power output and existing bias NTC (VNTC) pin as a 120 mA drive ability; NTC thermistors input (NTC) pin for temperature qualified charged; Pre-settings battery voltage with floating plus or minus 0.6% accuracy; Thermal regulation maximize charge rate and free hot air LTC4097 can be used to exchange adapter or USB power supply for single quarter/polymer lithium ion battery. The use of constant current/constant voltage algorithm charging, from exchange adapter power charge, programmable filling up to 1.2 electric current A, and with USB power can be as high as 1 A, at the same time, automatic detection in each input voltage whether there. This device also provide USB the current limit. Applications include PDA, MP3 players, digital camera, light portable medical and test equipment and big color cellular phone.
2, lithium ion/polymer battery scheme
Lithium ion/polymer battery charge scheme for different number of core, core configuration, and power types are different. At present mainly have three main charging scheme: linear, Buck (step-down) switch and SEPIC (booster and step-down) switch.
When the input voltage in big with the charger with sufficient clearance of core after opening voltage, it is linear scheme, especially 1.0 C fast charging current than 1 A big too much. For example, MP3 players usually only one core, capacity from 700 to 1500 mAh differ, full charge voltage is open 4.2 V. MP3 player power is usually the AC/DC adapter or USB interface, the output is the rule of 5 V; At this time, the linear scheme is the most simple, most charger of the efficiency of the scheme. Figure 2 shows for lithium ion/polymer battery solution linear scheme, basic structure and linear voltage neat device.
MAX8677A is double input USB/AC adapter linear charger, built-in Smart Power Selector, used for rechargeable single quarter by Li + batteries portable devices. The charger integration of the battery and the external power source and load switch charging all the power switch, so that no external MOSFET. MAX8677A ideal used in portable devices, such as smart phones, PDA, portable media players, GPS navigation equipment, digital camera, and digital cameras.
MAX8677A can work in independent USB and the power input AC adapter or two input either one of the input. When connecting external power supply, intelligent power source selector allows the system not connect battery or can and depth discharge battery connection. Intelligent power source selector will automatically switch to the battery system load, use the system did not use the input power supply parts for battery, make full use of limited USB and adapter power supply input. All the needed electric current detection circuit, including the integration of the power switch, all integration in the piece. DC input current highest limit can be adjusted to 2 A and DC and USB input all can support 100 mA, 500 mA, and USB hung mode. Charge current can be adjusted to as high as 1.5 A, thus support wide range of battery capacitive. Other features include MAX8677A thermal regulation, over-voltage protection, charging status and fault output, power supply good surveillance, battery thermistors surveillance, and charging timer. MAX8677A using save a space, hot enhanced, 4 mm x 4 mm, 24 of the pins TQFN encapsulation, regulations, work in exceptional temperature range (40 ~ + 85 ℃).
2.2 Buck (step-down) switch scheme
When A 1.0 C of the charging current more than 1 A, or the input voltage of the core than with high voltage open many, Buck or step-down plan is A better choice. For example, based on the hard drive in the PMP, often use single core lithium ion battery, the full of open is 4.2 V voltage, capacity from 1200 to 2400 mAh range. And now PMP is usually use the car kit to charge, its output voltage in a 9 V to 16 between V. In the input voltage and battery voltage is the voltage difference between high (minimum 4.8 V) will make linear scheme lowers efficiency. This kind of low efficiency, plus more than 1.2 A 1 C fast charging electric current, have serious heat dissipation problems. To avoid this kind of situation, will the Buck scheme. Figure 3 for lithium ion/polymer battery charger scheme Buck diagram, basic structure with Buck (step-down) switching voltage regulators completely the same.
2.3 SEPIC (booster and step-down) switch scheme
In some use of three or four lithium ion/polymer core series equipments, charger of the input voltage is not always greater than the battery voltage. For example, laptop computers use 3 core lithium ion battery, full charge voltage is open 12.6 V (4.2 V x3), capacity is 1800 mAh to 3600 mAh from. Power supply input or output voltage is 1 6 V AC/DC adapter, or is car kit, the output voltage in a 9 V to 16 between V. Apparently, the linear and Buck solutions are not for this group of batteries. This is about to use SEPIC scheme, it can in the output voltage is higher than when the battery voltage, can be in the output voltage less than when the battery.
3, and power detection algorithm is proposed
Many portable products use voltage measurements to estimate the remaining battery power, but the battery voltage and surplus power relationship but will with the discharge rate, temperature and battery aging degree of change, make this kind of method can top 50% margin of error. The market for longer to use product demand unceasingly strengthens, so the system design personnel need more accurate solution. Use capacity check plan come to measure battery or consumption of electricity, will be in a wide range of application power to provide more accurate estimate of the battery power.
3.1 power detection algorithm is one of the examples of application, function complete list, double the battery portable battery application design
The battery circuit description. Figure 4 (a) can be used for identification of IC functions with typical application circuit batteries. According to the use of IC testing program is different, the battery needs to have at least three to four outside the terminal.
VCC and BAT pins will even to the battery voltage, so that for, C power and the battery voltage measurement. The battery is connected a grounding resistance smaller detection resistors, let capacity check meter high impedance SRP and SRN input can monitor sensor resistance on both ends of the voltage. Through testing the current flows through a resistor can be used to judge the battery or release the amount of electricity. Designers choose detection resistance value must be considered when resistance on both ends of the voltage can't more than 100 mV, low resistance may be more hours in current errors. Circuit board layout must ensure that SRP and SRN to testing from as close as possible to the connection of the resistor sensor resistance end; In other words, they should be the Kelvin attachment.
HDQ pin need external and resistors, this resistance should be located the host or the main application, such capacity check plan to the battery and portable devices when sleep function enable connection broken. Advice and resistance choose 10 k Ω.
Once the battery through the appraisal, bq26150 will issue commands to ensure that the host and quantity test plan of material lines between normal communication. When the battery connection interruption or to connect, the whole the identification process will be repeated again.
Host to be able to read capacity check plan of variable voltage measurement battery, to make sure the end of discharging threshold and charging terminate threshold. As for the remaining state power (RemainingStateofCapacity), do not need to read can use directly.
The above bq2650x and bq27x00 etc capacity check plan provides the battery manufacturer a simple to use options, this scheme L [just measuring battery voltage to be precise, so these capacity check plan can be applied to various battery framework, and can support the battery identification and double the battery application '
3.2 power detection algorithm is an example of applications another, can apply to all kinds of general voltmeter new IC.
Today's many manufacturers can provide a variety of voltmeter IC,, the user can choose the suitable function device, to optimize the product price. Use voltmeter measurement of storage battery parameters, the separate architecture allows users in the host custom power measurement algorithm within. Eliminating embedded processor battery cost. On this to Dallase semicconductor company called cases of DS2762 chip for typical analysis. A new separate voltmeter IC, its structure see chart 5 (a) below.
DS2762 is a single quarter of lithium battery voltmeter and protection circuit, integrated into a tiny 2.46 mm x 2.74 mm inversion of packaging. Due to internal integration for power detection of high precise resistance, this device is very save a space. It is the small size and incomparable high level of integration, for mobile phone battery and other similar handheld products, such as PDA, etc, are all very ideal. Integrated protection circuit continuously monitoring the battery voltage, over voltage and flow fault (charging or discharge period). Different from the independent protection IC, DS2762 allow main processor surveillance/control protection FET conduction state, such, can DS2762 through the protection of the power system and the control circuit implementation. DS2762 can also charge a battery consumption has depth, when the battery voltage within three V, provide a limit of the charging current recovery path.
DS2762 accurate monitoring battery current, voltage and temperature, the dynamic range and resolution of common satisfy any mobile communication product testing standards. The measurement of current for internally generated when the integral, realize the power measurement. Through the real-time, continuous automatic disorders correct, the precision of power measurement can be increased. The built-in measuring resistance due to eliminate manufacturing process and temperature and cause resistance change, further improve the precision of the voltmeter. Important data stored in 32 bytes, can add the lock EEPROM; 16 bytes of SRAM are used to keep dynamic data. And DS2762 all communication all through the 1-Wire, more communication interface node, minimize the battery and the connection to the host. Its main features for; Single quarter of lithium battery protector; High precision current (power measurement), voltage and temperature measurement; Optional integrated 25 m Ω measuring resistance, each DS2762 after fine-tuning alone; 0 V battery restore charge; 32 bytes can lock EEPROM, 16 bytes SRAM, 64 a ROM;
1-Wire, node, digital communication interface; Support more battery power management, and through the protection system control FET power; Dormancy mode power supply current only 2 µ A (most); Work mode power supply current for 90 µ A (most); 2.46 mm x 2.74 mm inversion of packaging or 16 feet SSOP package led, and both are can choose with or without detection resistance; After has with e
Undesirable cameras benefits us many 100 % satisfaction, leading to numerous spectacular images, as well as the hot months is operating relating to dependable summertime. This specific classmate through break free will be able to figure out any tons in addition to waterways, downtown along with far-away beautiful gardening, and yet may these pure attractiveness to become a memento playing hit decrease, apart from skin color boil due to the high-end digicam purpose, a great deal more simple could be to evaluation whatever taking pictures competency as well as having photos. The amount, smaller try to make your work latest many of the summer season harvesting powerful see to it, typically the classmate need to next image have a go through, you become this confidently unexpected wonder.
Digital cameras would bring us lots of enjoyment, leaving a myriad of unique images, and summertime is journeying in wonderful summer season. The classmate throughout the getaway can recognize that reams together with estuaries and rivers, metropolitan and also countryside attractive panoramas, yet take place all these charm being a memento opportunity straight down, together with steam as a result of a camcorder operation, a lot more crucial is usually to examine ones own taking functionality and also taking photographs. That period, the little generate your choice have quite a few summer months firing effective be mindful, the particular classmate may as well within the next snapshot have a shot at, you will get the particular total surprising stun.
Household landscapes
By out of doors firing indoors panoramas, basic will need throughout the Windows 7, out-of-doors mild typically currently have more substantial indoors light-weight, now a couple of challenges ought to be sorted out, is the particular coverage time frame, a couple of it truly is in order to avoid a display reflective, when pics of any camera through hands-on management operate, might take number of years coverage setting up, when photographic camera goes so that you can twit style, can easily will likely be ISO level of sensitivity Surroundings bump up, this ISO 2 hundred or perhaps ISO six hundred aiming.
Inside panorama 's best golf shot employing a tripod, in any other case, wants a spot to guide, one example is in opposition to any divider and entry, and even the true reason for executing it is because very long coverage is quite effortless construct any digital camera protein shake, producing photographs regarding fluffy envision. It's best to utilize the shutter launch, or perhaps utilize to get center-weighted avoiding relocate a video camera. Notice: except if absolutely necessary, tend not to available the particular pen, stay clear of a lot more reflective.
Bring that landscape designs from the probability with the photo may well schedule some individuals or even factors, and this also may help the room inside the operation of your view photos. Get a large surfaces area photos, as an example the veranda as well as the roof top, hillside, for example. Typically inside the mid-day is without a doubt the most suitable time frame filming this landscapes. Filming, having a polarizer to adjust a illumination with the stars, produce the particular heavens develop into dreary quite a few, well known from the glowing blue stars the white kind of fog up, as a way to boost the space or room repeatedly.
Several virtually no guidebook vulnerability management of any camera together with location form, as well as the landscape designs way is completely features on the list of manner, you are able to use landscape designs way to adopt shots. Together with handbook vulnerability restrain photographic camera might opt for aperture goal option that will movie, aperture to help acquired far better pick out F8 to help you photograph or maybe F11, this photo will be extra management concentrations senses.
houses
The particular modify on the urban center is without a doubt switching, specifically together with a lot of approach large establishing intended for symbolize, and also this are at recent many portrait digital photography buffs including firing template.
Yet typical photographic camera through simply how much suitable container distortion, hence as a way to make an effort to reduce the photograph of your deformation belonging to the accumulating " up ", thus you ought to pick around substantial thoughts and opinions filming. One example is inside the steps, or perhaps some other might help the beliefs with area. If you fail to find the correct destination for a reside, you can from the again, clear of the particular lead entity to cut back a distortion. Maybe you've employed the greatest wide-angle standard zoom lens. Vivid stars will be able to replace with a developing with the darkish. Having a polarizer to cut back or perhaps wipe out construction with reflective a glass. In addition to, certainly, consume an excellent know with the can make one of a kind imaginative results.
mineral water
Firing apply or maybe a aerosol in waters, incorporate the use of part mild and also backlight try to make waters intended for introducing see through pattern. Several novices all of coveted by a really "splash with photos, in truth, I am able to effortlessly applied for, so the hurrying h2o glance alot more downy, have got a form of passionate blur. Shutter possibly inside 1/10 so that you can 1/6 erinarians regulate might get move cosmetic perception for splash pics.
Local plumber to be able to sunset taking scenario regarding is usually 15-30 moments, next the stars always possess some colouring failed to ends. As a way to raise the graphic with the amount with subject, can easily on the ending with the passage and also uncover several regarding an individual's special world. It is as well the location where the tripod on has to be, commonly programmed coverage is definitely o . k ., yet you should attempt to utilize hands-on visibility, and also the employment of the particular shutter put out restrain taking, respectively for 2, 5, 8, 12 and also of sixteen secs shutter tempo so that you can capture some photo contrast.
Needless to say now and again continue to are able to use ISO200 to help you photograph, yet so that you can be aware of an electronic camcorder with disturbance handle is normally adequate, when pixels will be overweight, or maybe together with ISO100 contrasting by using base style to help motion picture.
In truth firing night time scenarios, at times to be able to as well do not require that filming with step-by-step developing oh, this streets these kinds of, a small amount convert tips plus aiming design and style, might get the result of experiencing a specialized pattern.
_____________________________________________
http://www.gobatteryonline.com/canon-powershot-sd850-is-battery-charger-gose.html
http://www.chargerbatteryshop.co.uk/panasonic-lumix-dmc-tz7-battery-charger-cbbs.html
twitterをバカ発見器とかはてブで言ってる奴らがいるけど、
twitterよりも遥かにアクティブユーザー数が少ないはてブが
それを勢いづけたはてブ。
はてなブックマーク - Nuclear engineers urging IAEA to create “Level 8″ on INES scale for Fukushima ? Energy News
twitter拡散の元になるのがはてブってのが多いわけだよ。
はてブ→twitter拡散となる。twitter拡散デマとか言ってるが、
それって、デマの元になっているのは、はてブだろってのも多い。
まぁ、はてブの高知性様は「知性は我にあり!」とか本気で思っているから、
「マスゴミ報道よりもはてブのほうが信頼できるのは間違いない!」
飛ばしているという記事をどんどん書けよ。
ネット言論で最もヤバイ奴ら。
2chやミクシィやtwitterを高知性のはてな様がよく批判しているわけだが、
まぁ、冷静に考えれば、はてブなんかが信頼できるメディア(笑)なることを
思う奴のほうが頭がイカれている。
When the diesel generators were gone, the reactor operators switched to emergency battery power. The batteries were designed as one of the backups to the backups, to provide power for cooling the core for 8 hours. And they did.
Within the 8 hours, another power source had to be found and connected to the power plant. The power grid was down due to the earthquake. The diesel generators were destroyed by the tsunami. So mobile diesel generators were trucked in.
This is where things started to go seriously wrong. The external power generators could not be connected to the power plant (the plugs did not fit). So after the batteries ran out, the residual heat could not be carried away any more.
At this point the plant operators begin to follow emergency procedures that are in place for a “loss of cooling event”. It is again a step along the “Depth of Defense” lines. The power to the cooling systems should never have failed completely, but it did, so they “retreat” to the next line of defense. All of this, however shocking it seems to us, is part of the day-to-day training you go through as an operator, right through to managing a core meltdown.
It was at this stage that people started to talk about core meltdown. Because at the end of the day, if cooling cannot be restored, the core will eventually melt (after hours or days), and the last line of defense, the core catcher and third containment, would come into play.
But the goal at this stage was to manage the core while it was heating up, and ensure that the first containment (the Zircaloy tubes that contains the nuclear fuel), as well as the second containment (our pressure cooker) remain intact and operational for as long as possible, to give the engineers time to fix the cooling systems.
Because cooling the core is such a big deal, the reactor has a number of cooling systems, each in multiple versions (the reactor water cleanup system, the decay heat removal, the reactor core isolating cooling, the standby liquid cooling system, and the emergency core cooling system). Which one failed when or did not fail is not clear at this point in time.
So imagine our pressure cooker on the stove, heat on low, but on. The operators use whatever cooling system capacity they have to get rid of as much heat as possible, but the pressure starts building up. The priority now is to maintain integrity of the first containment (keep temperature of the fuel rods below 2200°C), as well as the second containment, the pressure cooker. In order to maintain integrity of the pressure cooker (the second containment), the pressure has to be released from time to time. Because the ability to do that in an emergency is so important, the reactor has 11 pressure release valves. The operators now started venting steam from time to time to control the pressure. The temperature at this stage was about 550°C.
This is when the reports about “radiation leakage” starting coming in. I believe I explained above why venting the steam is theoretically the same as releasing radiation into the environment, but why it was and is not dangerous. The radioactive nitrogen as well as the noble gases do not pose a threat to human health.
At some stage during this venting, the explosion occurred. The explosion took place outside of the third containment (our “last line of defense”), and the reactor building. Remember that the reactor building has no function in keeping the radioactivity contained. It is not entirely clear yet what has happened, but this is the likely scenario: The operators decided to vent the steam from the pressure vessel not directly into the environment, but into the space between the third containment and the reactor building (to give the radioactivity in the steam more time to subside). The problem is that at the high temperatures that the core had reached at this stage, water molecules can “disassociate” into oxygen and hydrogen – an explosive mixture. And it did explode, outside the third containment, damaging the reactor building around. It was that sort of explosion, but inside the pressure vessel (because it was badly designed and not managed properly by the operators) that lead to the explosion of Chernobyl. This was never a risk at Fukushima. The problem of hydrogen-oxygen formation is one of the biggies when you design a power plant (if you are not Soviet, that is), so the reactor is build and operated in a way it cannot happen inside the containment. It happened outside, which was not intended but a possible scenario and OK, because it did not pose a risk for the containment.
So the pressure was under control, as steam was vented. Now, if you keep boiling your pot, the problem is that the water level will keep falling and falling. The core is covered by several meters of water in order to allow for some time to pass (hours, days) before it gets exposed. Once the rods start to be exposed at the top, the exposed parts will reach the critical temperature of 2200 °C after about 45 minutes. This is when the first containment, the Zircaloy tube, would fail.
And this started to happen. The cooling could not be restored before there was some (very limited, but still) damage to the casing of some of the fuel. The nuclear material itself was still intact, but the surrounding Zircaloy shell had started melting. What happened now is that some of the byproducts of the uranium decay – radioactive Cesium and Iodine – started to mix with the steam. The big problem, uranium, was still under control, because the uranium oxide rods were good until 3000 °C. It is confirmed that a very small amount of Cesium and Iodine was measured in the steam that was released into the atmosphere.
It seems this was the “go signal” for a major plan B. The small amounts of Cesium that were measured told the operators that the first containment on one of the rods somewhere was about to give. The Plan A had been to restore one of the regular cooling systems to the core. Why that failed is unclear. One plausible explanation is that the tsunami also took away / polluted all the clean water needed for the regular cooling systems.
The water used in the cooling system is very clean, demineralized (like distilled) water. The reason to use pure water is the above mentioned activation by the neutrons from the Uranium: Pure water does not get activated much, so stays practically radioactive-free. Dirt or salt in the water will absorb the neutrons quicker, becoming more radioactive. This has no effect whatsoever on the core – it does not care what it is cooled by. But it makes life more difficult for the operators and mechanics when they have to deal with activated (i.e. slightly radioactive) water.
But Plan A had failed – cooling systems down or additional clean water unavailable – so Plan B came into effect. This is what it looks like happened:
In order to prevent a core meltdown, the operators started to use sea water to cool the core. I am not quite sure if they flooded our pressure cooker with it (the second containment), or if they flooded the third containment, immersing the pressure cooker. But that is not relevant for us.
The point is that the nuclear fuel has now been cooled down. Because the chain reaction has been stopped a long time ago, there is only very little residual heat being produced now. The large amount of cooling water that has been used is sufficient to take up that heat. Because it is a lot of water, the core does not produce sufficient heat any more to produce any significant pressure. Also, boric acid has been added to the seawater. Boric acid is “liquid control rod”. Whatever decay is still going on, the Boron will capture the neutrons and further speed up the cooling down of the core.
The plant came close to a core meltdown. Here is the worst-case scenario that was avoided: If the seawater could not have been used for treatment, the operators would have continued to vent the water steam to avoid pressure buildup. The third containment would then have been completely sealed to allow the core meltdown to happen without releasing radioactive material. After the meltdown, there would have been a waiting period for the intermediate radioactive materials to decay inside the reactor, and all radioactive particles to settle on a surface inside the containment. The cooling system would have been restored eventually, and the molten core cooled to a manageable temperature. The containment would have been cleaned up on the inside. Then a messy job of removing the molten core from the containment would have begun, packing the (now solid again) fuel bit by bit into transportation containers to be shipped to processing plants. Depending on the damage, the block of the plant would then either be repaired or dismantled.
Now, where does that leave us?
・The plant is safe now and will stay safe.
・Japan is looking at an INES Level 4 Accident: Nuclear accident with local consequences. That is bad for the company that owns the plant, but not for anyone else.
・Some radiation was released when the pressure vessel was vented. All radioactive isotopes from the activated steam have gone (decayed). A very small amount of Cesium was released, as well as Iodine. If you were sitting on top of the plants’ chimney when they were venting, you should probably give up smoking to return to your former life expectancy. The Cesium and Iodine isotopes were carried out to the sea and will never be seen again.
・There was some limited damage to the first containment. That means that some amounts of radioactive Cesium and Iodine will also be released into the cooling water, but no Uranium or other nasty stuff (the Uranium oxide does not “dissolve” in the water). There are facilities for treating the cooling water inside the third containment. The radioactive Cesium and Iodine will be removed there and eventually stored as radioactive waste in terminal storage.
・The seawater used as cooling water will be activated to some degree. Because the control rods are fully inserted, the Uranium chain reaction is not happening. That means the “main” nuclear reaction is not happening, thus not contributing to the activation. The intermediate radioactive materials (Cesium and Iodine) are also almost gone at this stage, because the Uranium decay was stopped a long time ago. This further reduces the activation. The bottom line is that there will be some low level of activation of the seawater, which will also be removed by the treatment facilities.
・The seawater will then be replaced over time with the “normal” cooling water
・The reactor core will then be dismantled and transported to a processing facility, just like during a regular fuel change.
・Fuel rods and the entire plant will be checked for potential damage. This will take about 4-5 years.
・The safety systems on all Japanese plants will be upgraded to withstand a 9.0 earthquake and tsunami (or worse)
・I believe the most significant problem will be a prolonged power shortage. About half of Japan’s nuclear reactors will probably have to be inspected, reducing the nation’s power generating capacity by 15%. This will probably be covered by running gas power plants that are usually only used for peak loads to cover some of the base load as well. That will increase your electricity bill, as well as lead to potential power shortages during peak demand, in Japan.
If you want to stay informed, please forget the usual media outlets and consult the following websites:
http://www.world-nuclear-news.org/RS_Battle_to_stabilise_earthquake_reactors_1203111.html
http://bravenewclimate.com/2011/03/12/japan-nuclear-earthquake/
http://ansnuclearcafe.org/2011/03/11/media-updates-on-nuclear-power-stations-in-japan/
結論:大丈夫。
MvK2010
I'm going to copy paste a full blog post of a research scientist at MIT here, who explains the situation at Fukushima much better than anyone else has, his message: no worries.
This post is by Dr Josef Oehmen, a research scientist at MIT, in Boston.
He is a PhD Scientist, whose father has extensive experience in Germany’s nuclear industry. I asked him to write this information to my family in Australia, who were being made sick with worry by the media reports coming from Japan. I am republishing it with his permission.
It is a few hours old, so if any information is out of date, blame me for the delay in getting it published.
This is his text in full and unedited. It is very long, so get comfy.
I am writing this text (Mar 12) to give you some peace of mind regarding some of the troubles in Japan, that is the safety of Japan’s nuclear reactors. Up front, the situation is serious, but under control. And this text is long! But you will know more about nuclear power plants after reading it than all journalists on this planet put together.
There was and will *not* be any significant release of radioactivity.
By “significant” I mean a level of radiation of more than what you would receive on – say – a long distance flight, or drinking a glass of beer that comes from certain areas with high levels of natural background radiation.
I have been reading every news release on the incident since the earthquake. There has not been one single (!) report that was accurate and free of errors (and part of that problem is also a weakness in the Japanese crisis communication). By “not free of errors” I do not refer to tendentious anti-nuclear journalism – that is quite normal these days. By “not free of errors” I mean blatant errors regarding physics and natural law, as well as gross misinterpretation of facts, due to an obvious lack of fundamental and basic understanding of the way nuclear reactors are build and operated. I have read a 3 page report on CNN where every single paragraph contained an error.
We will have to cover some fundamentals, before we get into what is going on.
Construction of the Fukushima nuclear power plants
The plants at Fukushima are so called Boiling Water Reactors, or BWR for short. Boiling Water Reactors are similar to a pressure cooker. The nuclear fuel heats water, the water boils and creates steam, the steam then drives turbines that create the electricity, and the steam is then cooled and condensed back to water, and the water send back to be heated by the nuclear fuel. The pressure cooker operates at about 250 °C.
The nuclear fuel is uranium oxide. Uranium oxide is a ceramic with a very high melting point of about 3000 °C. The fuel is manufactured in pellets (think little cylinders the size of Lego bricks). Those pieces are then put into a long tube made of Zircaloy with a melting point of 2200 °C, and sealed tight. The assembly is called a fuel rod. These fuel rods are then put together to form larger packages, and a number of these packages are then put into the reactor. All these packages together are referred to as “the core”.
The Zircaloy casing is the first containment. It separates the radioactive fuel from the rest of the world.
The core is then placed in the “pressure vessels”. That is the pressure cooker we talked about before. The pressure vessels is the second containment. This is one sturdy piece of a pot, designed to safely contain the core for temperatures several hundred °C. That covers the scenarios where cooling can be restored at some point.
The entire “hardware” of the nuclear reactor – the pressure vessel and all pipes, pumps, coolant (water) reserves, are then encased in the third containment. The third containment is a hermetically (air tight) sealed, very thick bubble of the strongest steel. The third containment is designed, built and tested for one single purpose: To contain, indefinitely, a complete core meltdown. For that purpose, a large and thick concrete basin is cast under the pressure vessel (the second containment), which is filled with graphite, all inside the third containment. This is the so-called “core catcher”. If the core melts and the pressure vessel bursts (and eventually melts), it will catch the molten fuel and everything else. It is built in such a way that the nuclear fuel will be spread out, so it can cool down.
This third containment is then surrounded by the reactor building. The reactor building is an outer shell that is supposed to keep the weather out, but nothing in. (this is the part that was damaged in the explosion, but more to that later).
Fundamentals of nuclear reactions
The uranium fuel generates heat by nuclear fission. Big uranium atoms are split into smaller atoms. That generates heat plus neutrons (one of the particles that forms an atom). When the neutron hits another uranium atom, that splits, generating more neutrons and so on. That is called the nuclear chain reaction.
Now, just packing a lot of fuel rods next to each other would quickly lead to overheating and after about 45 minutes to a melting of the fuel rods. It is worth mentioning at this point that the nuclear fuel in a reactor can *never* cause a nuclear explosion the type of a nuclear bomb. Building a nuclear bomb is actually quite difficult (ask Iran). In Chernobyl, the explosion was caused by excessive pressure buildup, hydrogen explosion and rupture of all containments, propelling molten core material into the environment (a “dirty bomb”). Why that did not and will not happen in Japan, further below.
In order to control the nuclear chain reaction, the reactor operators use so-called “moderator rods”. The moderator rods absorb the neutrons and kill the chain reaction instantaneously. A nuclear reactor is built in such a way, that when operating normally, you take out all the moderator rods. The coolant water then takes away the heat (and converts it into steam and electricity) at the same rate as the core produces it. And you have a lot of leeway around the standard operating point of 250°C.
The challenge is that after inserting the rods and stopping the chain reaction, the core still keeps producing heat. The uranium “stopped” the chain reaction. But a number of intermediate radioactive elements are created by the uranium during its fission process, most notably Cesium and Iodine isotopes, i.e. radioactive versions of these elements that will eventually split up into smaller atoms and not be radioactive anymore. Those elements keep decaying and producing heat. Because they are not regenerated any longer from the uranium (the uranium stopped decaying after the moderator rods were put in), they get less and less, and so the core cools down over a matter of days, until those intermediate radioactive elements are used up.
This residual heat is causing the headaches right now.
So the first “type” of radioactive material is the uranium in the fuel rods, plus the intermediate radioactive elements that the uranium splits into, also inside the fuel rod (Cesium and Iodine).
There is a second type of radioactive material created, outside the fuel rods. The big main difference up front: Those radioactive materials have a very short half-life, that means that they decay very fast and split into non-radioactive materials. By fast I mean seconds. So if these radioactive materials are released into the environment, yes, radioactivity was released, but no, it is not dangerous, at all. Why? By the time you spelled “R-A-D-I-O-N-U-C-L-I-D-E”, they will be harmless, because they will have split up into non radioactive elements. Those radioactive elements are N-16, the radioactive isotope (or version) of nitrogen (air). The others are noble gases such as Xenon. But where do they come from? When the uranium splits, it generates a neutron (see above). Most of these neutrons will hit other uranium atoms and keep the nuclear chain reaction going. But some will leave the fuel rod and hit the water molecules, or the air that is in the water. Then, a non-radioactive element can “capture” the neutron. It becomes radioactive. As described above, it will quickly (seconds) get rid again of the neutron to return to its former beautiful self.
This second “type” of radiation is very important when we talk about the radioactivity being released into the environment later on.
I will try to summarize the main facts. The earthquake that hit Japan was 7 times more powerful than the worst earthquake the nuclear power plant was built for (the Richter scale works logarithmically; the difference between the 8.2 that the plants were built for and the 8.9 that happened is 7 times, not 0.7). So the first hooray for Japanese engineering, everything held up.
When the earthquake hit with 8.9, the nuclear reactors all went into automatic shutdown. Within seconds after the earthquake started, the moderator rods had been inserted into the core and nuclear chain reaction of the uranium stopped. Now, the cooling system has to carry away the residual heat. The residual heat load is about 3% of the heat load under normal operating conditions.
The earthquake destroyed the external power supply of the nuclear reactor. That is one of the most serious accidents for a nuclear power plant, and accordingly, a “plant black out” receives a lot of attention when designing backup systems. The power is needed to keep the coolant pumps working. Since the power plant had been shut down, it cannot produce any electricity by itself any more.
Things were going well for an hour. One set of multiple sets of emergency Diesel power generators kicked in and provided the electricity that was needed. Then the Tsunami came, much bigger than people had expected when building the power plant (see above, factor 7). The tsunami took out all multiple sets of backup Diesel generators.
When designing a nuclear power plant, engineers follow a philosophy called “Defense of Depth”. That means that you first build everything to withstand the worst catastrophe you can imagine, and then design the plant in such a way that it can still handle one system failure (that you thought could never happen) after the other. A tsunami taking out all backup power in one swift strike is such a scenario. The last line of defense is putting everything into the third containment (see above), that will keep everything, whatever the mess, moderator rods in our out, core molten or not, inside the reactor.
http://anond.hatelabo.jp/20110314030613
へ続く
JRuby上で動くRubyとJavaのログを同じファイルに保存したいときなど
JRuby界隈で何かいい方法ないかな~と探していたけど見つからないので
RubyのLoggerのインターフェースをcommons-loggingを使用して実装してみた
使用バージョンは以下
require 'logger' class CommonsLoggingLogger def initialize(name="ruby") @progname = nil @logger = org.apache.commons.logging.LogFactory.getLog(name) end def add(severity, message=nil, progname=@progname, &block) if message.nil? and block_given? message = yield end case severity when Logger::DEBUG debug(progname){message} when Logger::INFO info(progname){message} when Logger::WARN warn(progname){message} when Logger::ERROR error(progname){message} else fatal(progname){message} end end def debug(arg0=nil, &block) @logger.debug make_log(arg0, &block) end def info(arg0=nil, &block) @logger.info make_log(arg0, &block) end def warn(arg0=nil, &block) @logger.warn make_log(arg0, &block) end def error(arg0=nil, &block) @logger.error make_log(arg0, &block) end def fatal(arg0=nil, &block) @logger.fatal make_log(arg0, &block) end def debug? @logger.isDebugEnabled end def info? @logger.isInfoEnabled end def warn? @logger.isWarnEnabled end def error? @logger.isErrorEnabled end def fatal? @logger.isFatalEnabled end def level if debug? Logger::DEBUG elsif info? Logger::INFO elsif warn? Logger::WARN elsif error? Logger::ERROR else Logger::FATAL end end def level=(lv) #do nothing end def sev_threshold level end def sev_threshold=(lv) #do nothing end def datetime_format nil end def datetime_format=(fm) #do nothing end attr_accessor :progname private def make_log(message_or_progname, &block) if block_given? progname = message_or_progname || @progname message = yield else progname = @progname message = message_or_progname end progname_message(progname, message) end def progname_message(progname, message) progname.nil? ? message : "#{progname}: #{message}" end end
結構苦労したので健忘録として。。
環境は以下のとおり
yum install mysql-server
/etc/init.d/mysqld start
mysql_secure_installation
jruby -S gem install rails jruby -S gem install warbler jruby -S gem install activerecord-jdbc-adapter jruby -S gem install activerecord-jdbcmysql-adapter jruby -S gem install jdbc-mysql
mysql -u root -p mysql> create database redmine character set utf8; mysql> grant all privileges on redmine.* to 'redmine'@'localhost' identified by 'redmine'; mysql> exit
(任意の場所にRedmineを解凍して、解凍先のディレクトリに移動した後)
cp config/database.yml.example config/database.yml vi config/database.yml
database.yml
production: adapter: jdbcmysql database: redmine host: localhost username: redmine password: redmine encoding: utf8 #development: # # #test: # #
後のwarbleでのエラーを防ぐため、developmentとtestをコメントアウト
jruby -S rake generate_session_store jruby -S rake db:migrate RAILS_ENV=production jruby -S rake load_default_data RAILS_ENV=production
script/serverで起動し、http://localhost:3000 にアクセスして正常に動作するか確認する
jruby script/server -e production
vi config/environments/production.rb config.logger = Logger.new(config.log_path) config.logger.level = Logger::INFO
warble.rbを生成
jruby -S warble config
warble.rbを修正
vi config/warble.rb config.dirs = %w(app config lib log vendor tmp extra files lang) config.gems = ["jdbc-mysql", "activerecord-jdbcmysql-adapter", "activerecord-jdbc-adapter"] config.gems["rails"] = "2.3.5" config.gems["rack"] = "1.0.1" config.webxml.rails.env = "production"
jruby -S warble
できたwarファイルをTomcatに配置して、Tomcatを起動する
mv redmine-0.9.3.war /usr/local/tomcat/webapps/redmine.war /usr/local/tomcat/bin/startup.sh
warblerのバグ(?)でwarに入らないファイルをコピーして入れる
cp vendor/gems/rubytree-0.5.2/.specification /usr/local/tomcat/webapps/redmine/WEB-INF/vendor/gems/rubytree-0.5.2
http://www.nikkeibp.co.jp/article/sj/20100125/206958/?P=5
http://blog.goo.ne.jp/jyoshige/e/6d0713908f0e40daa4b0497d3d250eba
http://benli.cocolog-nifty.com/la_causette/2010/01/post-abc5.html
戦いの発端は森永<.strong>氏。氏曰く「実は日本は雇用の厳格性はそれほど高くねーよ。根拠?OECDの統計だよ!」
OECD(経済協力開発機構)では、労働者保護に関する「雇用保護の厳格性」という数字を公表している。それによると、正社員のみと正社員+非正社員のそれぞれについて、主な先進国は次のような数字になっている。数字が大きければ大きいほど雇用保護が手厚いことを示している。
OECD(経済協力開発機構)による各国の「雇用保護の厳格性」
国 正社員のみ 正社員+非正社員 米国 0.17 0.21 イギリス 1.12 0.75 デンマーク 1.63 1.50 日本 1.87 1.43 フランス 2.47 3.05 オランダ 2.72 1.95 ドイツ 3.00 2.12 引用元のサイトを見るとわかるが、米国がもっとも解雇が容易で、欧州は一般的に解雇が難しく、日本はその中間という感じである。フランス、オランダ、ドイツは、日本よりもずっと雇用が保護されているが、それでも経済がまわっていて、GDPもそこそこ稼いでいるわけだ。
これに城氏が噛み付く。氏曰く「『雇用保護の厳格性』っつうのは文字通りに解釈できねーよ!」
この「雇用保護の厳格性」(Strictness of employment protection)を文字通りに
受け取ってはならない。
以前も述べたとおり、この数値は以下の3つの指標を総合したものだ。
1. 手続きの不便さ
3. 解雇の難しさ
http://blog.goo.ne.jp/jyoshige/e/6d0713908f0e40daa4b0497d3d250eba
この発言に小倉氏が噛み付く。氏曰く「お前の定義と違ってるよ。嘘つくなよ、ぼけなす!」
OECDによれば、この指標は、
(1)Individual dismissal of workers with regular contracts
(2)Additional costs for collective dismissals
(3)Regulation of temporary contracts
の3つのサブ指標を総合したものとされています。あれ、既に城さんの解説は、OECDのものと異なっているようです。
http://benli.cocolog-nifty.com/la_causette/2010/01/post-abc5.html
ぱっと見ると城氏が間違っているように見える。しかし個人的に気になったのは http://stats.oecd.org/Index.aspx?DataSetCode=EPL_R の「time series」のところで「Version 1」と「Version 3」が選択できること。それで調べてみたんだが、間違っているのは、森永氏と小倉氏のようだ。二人は指標を明らかに理解していない。城氏も悪い点があるが、それは過失といったところだろう。
データの解説が次のPDFファイルにある(http://www.oecd.org/dataoecd/24/40/42740190.pdf)。これのP.5に図があるのでこれがわかりやすい。これによるといくつかのレベルに分かれているようだ。トップレベルの指標は「overall summary indicator」で、「包括的な指標」ということだろう。これはレベル2の指標の「Regular contracts」「Temporary contracts」「collective dismissals」に分かれる。いってみればそれぞれ「正社員にかんする指標」「非正規社員に関する指標」「大規模なリストラに関する指標」ということだろう。「Resular contracts」のデータが http://stats.oecd.org/Index.aspx?DataSetCode=EPL_R で、「Temporaray contracts」のデータが http://stats.oecd.org/Index.aspx?DataSetCode=EPL_T 、「collective dismissals」のデータが http://stats.oecd.org/Index.aspx?DataSetCode=EPL_CD だ。
ここまでの説明で、森永氏は間違っているといえる。森永氏は「雇用保護の厳格性」は「正社員」と「正社員+非正社員」で指標が出されているとしている。しかし「Strictness of employment protection」は正社員等の種別に出されている訳ではない。「Regular contracts」「Temporary contracts」は「Strictness of employment protection」の構成要素なのである。また「正社員+非正社員」という指標があるとするのも間違いだ。そんな指標はない。「Strictness of employment protection」は「collective dismissals」の指標も含んでいるからだ。
森永氏の間違いを説明したので、指標の説明を再開する。レベル2の指標である「Resgular contracts」についてはさらにレベル3の指標「Procedural inconveniencdes」「Notice and severance pya for no-fault individual dismissals」「Difficulty of dismissal」で構成される。これが城氏がいう
だろう。また「Temporary contracts」はレベル3の指標「Fixed term contracts」「Temporaray work agency employment」で構成される。「Collective dismissals」についてはレベル3の指標がない。そしてレベル3の各指標は一番レベルの低いレベル4の21の指標から算出される。指標に関する説明は以上だ。
次に実際の指標を見ていこう。レベル1とレベル2の指標についてはHTMLで公開されているので省略し、問題となる「Difficulty of dismissal」をExcelファイルから探そう。「Difficulty of dismissal」はレベル3なので、「Level 3 Sub-components」というシートを開こう。すると「REGULAR1」などの指標がある。「Read Me」というシートに
Variable | Description | Data availability |
REGULAR1 | Procedural inconveniences of individual dismissal of employees on regular contracts - calculated as unweighted average of items REG1 and REG2 | 1985-2008 |
REGULAR2 | Notice and severance pay for no-fault individual dismissal - weighted sum of items REG3A, REG3B, REG3C, REG4A, REG4B, REG4C | 1985-2008 |
REGULAR3_v1 | Difficulty of dismissal - calculated as unweighted average of items REG5, REG6, REG7, REG8 | 1985-2008 |
REGULAR3_v3 | Difficulty of dismissal - calculated as unweighted average of items REG5, REG6, REG7, REG8, REG9 | 2008 |
TEMPORARY1 | Fixed-term contracts - calculated as weighted sum of items FTC1, FTC2, FTC3 | 1985-2008 |
|TEMPORARY2_v1|Temporary work agency employment - calculated as weighted sum of items TWA1, TWA2, TWA3 1985-2008
TEMPORARY2_v3 | Temporary work agency employment - calculated as weighted sum of items TWA1, TWA2, TWA3, TWA4, TWA5 | 2008 |
という指標があるので、「Difficulty of dismissal」は「REGULAR3_v1」か「REGULAR3_v3」ということになる。これは算出方法のVersionの違いなのだが、そろそろ説明が面倒になってきたのでソースをそのままのせる。
Version 1 is an unweighted average of the sub-indicators for regular and temporary contracts. The indicator for regular contracts does not include item 9 (maximum to make a claim of unfair dismissal) and the indicator for temporary contracts does not include items 16 (authorisation and reporting requirements for TWAs) and 17 (equal treatment for TWA workers). Annual time series data are available for version 1 of the indicator from 1985-2008 from www.oecd.org/employment/protection.
Version 2 is the weighted sum of the sub-indicators for regular and temporary contracts and collective dismissals. The indicators for regular and temporary contracts are the same as for version 1. Annual time series data are available for version 2 of the indicator from 1998-2008 from www.oecd.org/employment/protection.
Version 3 of the overall summary indicator incorporates three new data items collected for the first time in 2008 (items 9, 16 and 17) and is the main indicator of employment protection used in the paper. Data for version 3 are available for 2008 from www.oecd.org/employment/protection. However, it is impracticable to accurately collect information about the new items prior to 2008.
(P.4)
この説明で「REGULAR3_v3」を見るのがよいことがわかる。簡単にいえばVersion 1では入っていない要素(「Difficulty of dismissal」だと「Maximum time for claim」)があるからだ。これによれば日本はOECDでは一番解雇が難しいことがわかる。日本は3.80であり、これより高いのは中国、インド、インドネシアだけだからだ。
ここまでの説明で、小倉氏が間違っていることが明らかになった。「解雇の難しさ」に関する指標はちゃんとあり、日本はOECDでは一番高い数値が出ている。それなりにソースを読んでいるようなので、高い確率で小倉氏は「Strictness of employment protection」という指標を理解していないと考えられる。レベルの階層や算出方法のVersionがあることも理解していないように見受けられる。
以上で森永氏と小倉氏の間違いを指摘したが、城氏にも悪い点がないとはいえない。説明を省き過ぎだろう。レベル1, 2だけでなく、レベル3の指標のランキングを押さえていることから見て、城氏は正確に指標を理解していると考えられる。しかし説明を省きすぎ、その結果記述が誤っているかのように見えている。その結果小倉氏の勘違いにつながったのだと考えられる。
結論:指標を見るときは指標の説明をちゃんと読もうね。おじさんとの約束だよ。
正直言うと、あなたのコミュニケーション能力に問題を感じます。
話しかけるとかそういうLEVELではなく、自分の意見を押し付けて隷属させたいだけにしか思えませんし、
そんな人間と一緒にいるのも凄く嫌です。
心配にかこつけて、全部自分の思い通りにしようという魂胆が見え見えなのです。
散々何もせずに今まできたのですから、これからもそうして下さい。
僕はあなたが嫌いですし、あなたも僕が嫌いなのに、何故一緒にいる理由があります?
結局前と一緒じゃないですか?世間体でしょ?それとも自己防衛の為のアリバイ?
或いはプライドだと思います。
巻き込まれるのは辛いのです。
こうなってしまったものはもう戻りません。
今の現状はあなたのせいでは少なくともない。
全部僕の自業自得だし、今更救いは求めていません。
あなたに出来ることはもう僕の前に現れないで下さい。
最初からいなかったものとして、残りの自分の人生を謳歌して下さい。
僕もそうします。
他にも言いたい事を書いていくとキリがないので、この辺にしますが、
心底、あなたのことが嫌いです。
【目的】
「日本語読んでたはずなのに、いつの間にか英語読んでた!」というのが理想。
TEDから文章だけでも内容が伝わるダニエル・ピンクのプレゼンを引っ張って来たのですが、実験的にやるにしては少し内容が堅く、マテリアル選択を誤った気がしなくもありませんw
http://www.ted.com/talks/lang/jpn/dan_pink_on_motivation.html
めちゃ長いですが、LanguageがTransformする過程を味わって頂ければと思います。
--------------------------------------------------
最初に告白させてください。20年ほど前にしたあることを私は後悔しています。あまり自慢できないようなことをしてしまいました。誰にも知られたくないと思うようなことです。それでも明かさなければならないと感じています(ざわざわ)。1980年代の後半に私は若気の至りからロースクールlaw schoolに行ったのです(笑)。
In America, 法律は専門職学位です。まずuniversityを出て、それからlaw schoolへ行きます。law schoolで私はあまり成績が芳しくありませんでした。控えめに言ってもあまり良くなく、上位90パーセント以内という成績で卒業graduateしました(笑)。どうもlaw関係の仕事はしたことがありません。やらせてallowed toもらえなかったというべきかも (笑)。
But today, betterではないことだとは思いつつ、wifeの忠告にも反しながら、このlegal skillsを再び引っ張り出すことにしました。今日はstoryはtellしません。主張caseを立証します。合理的で証拠evidenceに基づいた法廷におけるような論証で、how we run our businessesを再考してみたいと思います。
陪審員juryの皆さん, take a look at this。This is called 「ロウソクの問題」。ご存じの方もいるかもしれません。1945年にKarl Dunckerという心理学者psychologistがこの実験experimentを考案し、様々な行動scienceのexperimentで用いました。ご説明しましょう。私が実験者だとします。私はあなた方を部屋に入れてcandleと画鋲thumbtackとマッチmatchesを渡します。そしてこう言います。「テーブルtableに蝋waxがたれないようにcandleを壁wallに取り付けattachしてください。」Now what would you do?
Many peopleはthumbtackでcandleをwallに留めようとします。でもうまくいきません。あそこで手真似をしている人がいましたが、matchの火でcandleを溶かしてwallにくっつけるというideaを思いつく人もいます。いいideaですがうまくいきません。After five or 10 minutes, most peopleは解決法を見つけます。このようにすればいいのです。Keyになるのは「機能的固着functional fixedness」を乗り越えるovercomeするということです。最初、あのboxを見て、単なる画鋲の入れ物だと思うでしょうが、それは別な使い方をすることもできます。candleの台platformになるのです。これがcandle problemです。
次にSam Glucksbergというscientistが、このcandle problemを使って行ったexperimentをご紹介します。彼は現在Princeton Universityにいます。この実験でthe power of incentivesがわかります。彼は参加者participantsを集めてこう言いました。「this problemをどれくらい早く解けるsolveできるか時計で計ります。」そしてone groupにはthis sort of problemを解くのに一般にどれくらい時間がかかるのかaverage時間を知りたいのだと言います。もう1つのgroupには報酬rewardsを提示します。「上位25percentの人には5dollarsお渡しします。fastestになった人は20dollarsです。」Now this is several years ago。物価上昇inflationを考慮に入れればa few minutes of workでもらえるmoneyとしては悪くありません。十分なmotivatorになります。
このグループはどれくらい早く問題を解けたのでしょう?答えはon average, 3分半余計に時間がかかりました。Three and a half minutes longer。そんなのおかしいですよね?I'm an American。I believe in 自由市場。そんな風になるわけがありません(笑)。If you want people to perform better, 報酬を出せばいい。Bonuses, commissions, あるいは何であれ、incentiveを与えるのです。That's how business works。しかしここでは結果が違いました。Thinkingが鋭くなり、creativityが加速されるようにと、incentiveを用意したのに、結果はoppositeになりました。思考は鈍く、creativityは阻害されたのです。
この実験experimentがinterestingなのは、それが例外aberrationではないということです。この結果は何度も何度もfor nearly 40 years 再現replicateされてきたのです。この成功報酬的な動機付けmotivators―If Then式に「これをしたらこれが貰える」というやり方は、in some circumstancesでは機能します。しかし多くのtasksではうまくいかず、時には害harmにすらなります。これはsocial scienceにおける最も確固robustとした発見findingsの1つです。そして最も無視ignoreされている発見でもあります。
私はthe last couple of years, human motivationの科学に注目してきました。特に外的動機付けextrinsic motivatorsと内的動機付けintrinsic motivatorsのdynamicsについてです。大きな違いがあります。If you look at これ、scienceが解明したこととbusinessで行われていることにmismatchがあるのがわかります。business operating system、つまりビジネスの背後にある前提assumptionsや手順においては、how we motivate people、どう人を割り当てるかという問題は、もっぱらextrinsic motivators(アメとムチ)にたよっています。That's actually fine for many kinds of 20th century tasks。But for 21st century tasks, 機械的mechanisticなご褒美と罰reward-and-punishmentというapproachは機能せず、うまくいかないか、害harmになるのです。Let me show you what I mean。
Glucksbergはこれと似たanother experimentもしました。このように若干違ったslightly differentな形で問題を提示したのです。Tableにwaxがたれないようにcandleを壁にattachしてください。条件は同じ。あなたたちは平均時間を計ります。あなたたちにはincentiveを与えます。What happened this time?今回はincentivizedグループの方が断然勝ちました。Why?箱に画鋲が入っていなかったから。it's pretty easy isn't it?(「サルでもわかる」ロウソクの問題) (笑)
If-then rewards work really well for those sorts of tasks。Simpleなルールとclearな答えがある場合です。Rewardsというのはfocusを狭めmindを集中させるものです。That's why報酬が機能する場合が多い。だからこのような狭い視野で目の前にあるゴールをまっすぐ見ていればよい場合にはthey work really well。But for the real candle problem, そのような見方をしているわけにはいきません。The solutionが目の前に転がってはいないからです。周りを見回す必要があります。Rewardはfocusを狭め、私たちの可能性possibilityを限定restrictしてしまうのです。
Let me tell you why this is so important。In western Europe, in many parts of Asia, in North America, in Australia, white collarの仕事にはthis kind of workは少なく、このような種類の仕事が増えています。That routine, rule-based, left brain work, certain kinds of accounting, certain kinds of financial analysis, certain kinds of computer programingは 簡単にアウトソースできます。簡単にautomateできます。Softwareのほうが早くできます。世界中にLow-cost providersがいます。だから重要になるのはthe more right-brained creative, conceptual kinds of abilitiesです。
Your own workを考えてみてください。Youが直面faceしている問題は、あるいはweがここで議論しているようなproblemsは、こちらのkindでしょうか?A clear set of rules, and a single solutionがあるような?そうではないでしょう。ルールはあいまいで、答えはそもそも存在するとしての話ですが、驚くようなsurprisingものであり、けっして自明obviousではありません。Everybody in this room is dealing with their own version of the candle problem。And for candle problems of any kind, in any field, if-then rewardsは機能しないのです。企業の多くはそうしていますが。
Now, これにはcrazyになりそうです。どういうことかというと、これはfeelingではありません。私は法律家lawyerです。Feelingsなんて信じません。This is not a 哲学philosophy。I'm an American。Philosophyなんて信じません(笑)。This is a fact。私が住んでいるWashington D.C.でよく使われる言い方をするとtrue factです(笑)。(拍手)Let me give you an example of what I mean。Evidenceの品を提示します。Iはstoryをtellしているのではありません。I'm making a 立証。
Ladies and gentlemen of the 陪審員, 証拠を提示します: Dan Ariely, one of the great economists of our time, Heは3人の仲間とともにsome MIT studentsを対象に実験studyを行いました。These MIT studentsにたくさんのgamesを与えます。Creativity, and 運動能力motor skills, and concentrationが要求されるようなゲームです。そして成績に対するthree levels of rewardsを用意しました。Small reward, medium reward, large reward。Okay?非常にいい成績なら全額、いい成績なら半分の報酬がもらえます。What happened?「As long as the task involved only mechanical skill、bonusesは期待通りに機能し、報酬が大きいほどパフォーマンスが良くなった。 しかし、cognitive skillが多少とも要求されるタスクになると、larger rewardはより低い成績をもたらした。」
Then they said,「cultural biasがあるのかもしれない。Indiaのマドゥライで試してみよう。」In Madurai, Standard of livingが低いので、North Americaではたいしたことのないrewardが 大きな意味を持ちます。実験の条件はSameです。A bunch of games, three levels of rewards. What happens? medium level of rewardsを提示された人たちは small rewardsの人たちと成績が変わりませんでした。But this time, people offered the highest rewards, they did the worst of all。「In eight of the nine tasks we examined across 3回の実験, よりhigherインセンティブがworse成績という結果となった。」
これはおなじみの感覚的なsocialistの陰謀conspiracyなのでしょうか?No. Theyはeconomists from MIT, from Carnegie Mellon, from the University of Chicagoです。And do you know who sponsored this research? FRBです。これはまさにAmerican experienceなのです。
Let's go across the pond to the London School of Economics。11人のNobel 受賞者 in economicsを輩出しています。Greatな経済の頭脳がここで学んでいます。George Soros, and Friedrich Hayek, and Mick Jagger(笑)。Last month, just last month, economists at LSE looked at 51 studies of 成果主義 plans, inside of companies。彼らの結論は「We find that 金銭的なインセンティブ can result in a negative impact on 全体的なパフォーマンス.」ということでした。
There is a 食い違い between what 科学 knows and what ビジネス does. And what worries me, as この潰れた経済の瓦礫の中に立って, is that あまりに多くの組織 are making their decisions, their policies about 人や才能, based on assumptions that are 時代遅れ, 検証されていない, and rooted more in 神話 than in 科学. this 経済の窮地からget out ofと思うなら 21st century的な答えのないtasksで high performanceを出そうと思うのなら、wrong thingsを これ以上続けるのはやめるべきです. To 誘惑 people with a sweeter carrot, or 脅す them with a 鋭いムチ. まったく新しいアプローチが必要なのです.
And the いいニュース about all of this is that scientistsが新しいapproachを示してくれているということです. It's an approach built much more around 内的な motivation. Around the desire to do things because they matter, because we 好き it, because they're 面白い, because they are 何か重要なことの一部. And to my mind, that new operating system for our businesses revolves around three elements: 自主性、成長、目的. 自主性, the 欲求 to 方向 our own lives. 成長, the desire to get better and better at 何か大切なこと. 目的, the 切望 to do what we do in the service of 大きな何か than ourselves. これらがour businessesのentirely new operating systemの要素なのです.
I want to talk today only about 自主性. In the 20th 世紀, we came up with this idea of マネジメント. Management did not 自然に生じた. Management is like -- it's not a 木. It's a テレビ. Okay? Somebody 発明した it. And it doesn't mean it's going to work 永久に. Management is great. 服従を望むなら, Traditional notions of management are ふさわしい. しかし参加を望むなら, 自主性 works better.
Let me give you some 例 of some kind of 過激なnotions of 自主性. What this means -- あまり多くはありませんが 、非常に面白いことが起きています. Because what it means is paying people 適切に and 公正に, 間違いなく. Getting お金の問題 off the table. And then giving people 大きな自主性. Let me give you 具体的な例.
How many of you ご存じ of the 会社 Atlassian? 半分もいない感じですね(笑). Atlassian is an オーストラリアのソフトウェア会社. And they do すごくクールなこと. A few times a year they tell their エンジニア, "これから24時間何をやってもいい, as long as it's not part of your regular job. Work on 好きなことを何でも" So that エンジニア use this time to come up with a cool 継ぎ接ぎ for code, come up with an エレガントなハック. Then they 何を作ったのか見せる to their teammates, to the rest of the company, in 雑然とした全員参加の会合 at the end of the day. And then, オーストラリアですから, everybody has a ビール.
They call them 「FedExの日」. Why? Because you 何かを一晩で送り届けなければならない. It's 素敵. It's not bad. It's a huge 商標権 侵害. But it's pretty clever. (Laughter) That one day of 集中的な自主活動 has produced 多数の software 修正 that might never have existed.
And it's worked so well that Atlassian has taken it to 次のレベル with 20 Percent Time. Googleがやっていることで有名ですね.Where エンジニア can work, spend 20 percent of their time working on anything they want. They have 自主性 over their time, their task, their team, their 技術. Okay? Radical amounts of 自主性, And at Google, as many of you know, 新製品の半分近く in a typical year are 生まれています during that 20 Percent Time. Things like Gmail, Orkut, Google News.
Let me give you an even more 過激な example of it. Something called 「完全結果志向の職場環境」. The ROWE(Results Only Work Environment). Created by two American コンサルタント, in place at about a dozen companies around 北アメリカ. In a ROWE people don't have スケジュール. They show up 好きなときに. They don't have to be in the office 特定の時間に, or any time. They just have to 仕事を成し遂げる. How they do it, when they do it, where they do it, is totally up to them. ミーティング in these kinds of environments are オプショナル.
What happens? ほとんどの場合, productivity goes up, 雇用期間 goes up, 社員満足度 goes up, 離職率 goes down. 自主性Autonomy, 成長mastery and 目的purpose, These are the 構成要素 of a new way of doing things. Now some of you might look at this and say, "Hmm, 結構だけど、it's 夢物語." And I say, "Nope. I have 証拠."
The mid 1990s, Microsoft started an 百科事典encyclopedia called Encarta. They had deployed all the right インセンティブ. All the right incentives. They paid プロ to write and edit 何千という記事. たっぷり報酬をもらっている managers oversaw the whole thing to make sure it came in on budget and on time. 何年か後に another encyclopedia got started. 別なモデル, right? Do it for 楽しみ. No one gets paid a cent, or a Euro or a Yen. Do it because you 好き to do it.
ほんの10年前に, if you had gone to an 経済学者, anywhere, And said, "Hey, I've got 百科事典を作る2つのモデル. 対決したら, who would win?" 10 years ago you could not have found a single まともな経済学者 anywhere on planet Earth, who would have predicted the Wikipediaのモデル.
This is the 大きな battle between these two approaches. This is モチベーションにおけるアリ vs フレージャー戦. Right? This is 伝説のマニラ決戦. Alright? 内的な motivators versus 外的な motivators. Autonomy, mastery and purpose, versus アメとムチcarrot and sticks. And who wins? Intrinsic motivation, autonomy, mastery and purposeが ノックアウト勝利します.まとめましょう.
There is a 食い違い between what science knows and what business does. And here is what science knows. One: Those 20th century rewards, those motivators we think are a 当然 part of business, do work, but only in a surprisingly narrow band of circumstances. Two: Those if-then rewards often 損なう creativity. Three: The 秘訣 to high performance isn't rewards and punishments, but that 見えない intrinsic drive. The drive to do things 自分自身のため. The drive to do things それが重要なことだから.
And here's the best part. Here's the best part. We already know this. The science confirms what we know in our hearts. So, if we repair this mismatch between what science knows and what business does, If we bring our motivation, notions of motivation into the 21st century, if we get past this lazy, dangerous, ideology of carrots and sticks, we can strengthen our businesses, we can solve a lot of those candle problems, and maybe, maybe, maybe we can change the world. I rest my 立証。
最近マークアップエンジニア志望の若者と話す機会が多いのだけれど、そこで気づかされるのは、彼らの中に過去のHTML(特に90年代以前の仕様)を読んだことのあるという人が、驚くほど少ないことだ。
例えば「マーク・アンドリーセンをどう思う?」と聞くと、「アンドリーセンって誰ですか?」という答えが返ってくる。「ヨスケの独自要素で何が一番好き?」と聞くと、「見たことがありません」と言われてしまう。「ではきみは、昔のHTMLを見たことがあるの?」と聞くと、たいていが「とほほでやっていたものくらいなら……」という答えしか返ってこない。
今の若い人の間では、HTMLを体系的にとらえようという人は少ないようだ。見るのは専ら近年の話題仕様ばかりで、歴史を辿ってみたり、系譜をひもといて標準化団体ごと理解しようとする人はほとんどいない。
これは、ちょっと由々しき問題だと思わされた。HTMLは、もう長いこと(90年代の早い時期から)インターネットの王者としてあらゆるWeb関連技術の上に君臨してきた。だから、Webを作ることを仕事にしたいなら、何をするにせよ避けて通ることはできない。
HTMLは、表・画像・フォーム・音楽・デザイン・フレーム・動画など、さまざまな分野においてその時代々々に達成された最新の成果を持ち寄るようにして作られてきたところがある。だから、HTMLを読まずして現代のインターネットは語れないと言ってもいいくらいだ。
もし何かクリエイティブなことをしたいのなら、HTMLを読むことは欠かせない。また、単に読むだけではなく、それを包括的・体系的にとらえることも必要だ。なぜなら、HTMLを包括的・体系的にとらえることによって、現代のインターネットそのものを、包括的・体系的にとらえられるようになるからだ。そしてそうなれば、Webを作ることの道理や筋道が理解でき、何かクリエイティブなことをする上で、大きな助けとなるからである。
そこでここでは、昔のHTMLをほとんど見たことがないという人や、あるいはHTMLそのものもあまり見ないという人のために、これを見ればHTMLを体系的に理解でき、現代インターネットの成り立ちや実相までをも包括的にとらえることができるようになる、7本の仕様を紹介する。
ここで紹介するHTMLは、いずれも後のWeb業界に決定的な影響を与えたものばかりだ。これらが、HTMLという標準のありようや方向性を決定づけた。この7本を見れば、HTMLというのはどのようなきっかけで生まれ、どのような変遷を辿って、どのような足跡を残してきたかというのが、体系的に理解できるようになる。そしてそれが、世界のインターネット利用シーンにどのような影響を及ぼしてきたかということも、知ることができるようになるのだ。
まず最初は、ちょっと強引かも知れないけれど、第一次ブラウザ戦争前のHTMLをひとまとめにするところから始める。
80年代末にティム・バナーズ=リーの発明したHTMLというメディアは、その後『HTML 1.0』(1993年)『HTML+』(1994年)『HTML 2.0』(1995年)などの仕様で次第にそのスタイルを確立していき、マーク・アンドリーセンが一大産業として発展させた後、『HTML 3.0』に行き着く。そして幸運なことに、ここに集大成されるのだ。
ブラウザ戦争前のHTMLは、これ1本だけ読めば良い。このHTMLに、戦前のHTMLの全ての要素(属性)が詰まっている。このHTMLを見れば、HTMLのインターネットの王者としての風格、スターという存在の大きさ、作者以上にブラウザが重視される「産業」としての側面、お尻Pから終了タグ省略可へ・文字情報から画像付きへと移り変わった技術革新の変遷など、戦前のHTML史やWeb業界のありようが全て分かるのだ。
このHTMLの魅力は、説明し始めるといくら紙幅があっても足りないので、ここではその一端を紹介するにとどめておく……といっても、気の利いたことを言えるわけではない。『HTML 3.0』の魅力を知るには、まずは読んでもらうこと――これに尽きるからだ。そして、もし一度でも読めば、その魅力はたちどころに理解できるだろう。
『HTML 3.0』を見て驚かされるのは、現在のHTMLと比べても全く遜色ないところである。破棄されてから14年の時が経過しているが、現代人の読解にも当たり前のように堪えうるのだ。それは、逆にいえばHTMLというものは、今から14年前、つまりこの『HTML 3.0』が作られた時点で、様式として一つの完成を見たということでもある。
『HTML 3.0』は、HTMLという標準が到達しようとした一つの極みである。それゆえ、HTML史というものは、『HTML 3.0』以前と以降とで分けられるようになった。これ以降に作られたHTMLで、『HTML 3.0』の影響を免れたものはないからである。
iモードが世界のHTML史に与えた影響というのは、一般に理解されているよりもはるかに小さなものである。日本人というのは、「日本の技術が世界に影響を与えた」というと、なぜか鼻高々と聞いてしまうところがある。「日本はガラパゴス」という言葉は聞いたことがあっても、「それって日本人が過小評価しているだけじゃないの?」と、眉に唾をしてとらえるところがある。
しかしiモードは、真に日本のHTML史を塗り替えたサービスの一つである。特に、このサービスの後世に与えた影響には、本当に計り知れない大きさがある。
iモードは、ドコモのメインストリームだったポケットベルが、それまでの栄華の反動で深刻な低迷期に陥っていたPHS流行後すぐの時期、そんなポケットベルに取って代わって、日本で最も輝いていた携帯サービスであった。それゆえ、広末に見蕩れた世界のHTMLファンたちは、iモードのWebサイトを見ることによって、失われかけていたWeb制作の魅力を再発見することにもなったのである。
iモードは、没落したHDMLに変わってモバイルWebの命脈をつなぎ止めた、言うならば救世主のような存在であった。海外のモバイル陣営が営々と築きあげてきたそれまでの栄光を切り捨て、日本の後代へと引き継いだ重要なリレー第一走者としての役割を、HTML史において担ったのである。
そして、そのバトンを受け取った日本の若きWebデザイナーたちが、2000年代に入って雨後の竹の子のように現れたことで、モバイルWebは鮮やかな発展を遂げる。だから、もしiモードが存在しなければ、HTMLの様相は今とは違ったものになっていたかもしれないのだ。
そんなiモードHTMLのバージョンはいくつもあるのだが、中でも特に多くのHTMLファンを――取り分け日本の若きWebデザイナーたちを魅了したのが、この『Compact HTML』である。この仕様の一番の魅力は、なんといってもその大胆に構築されたW3C Noteであろう。HTML史において、これほど拡張多く適当なディテールで構成されたNoteは他にない。そのためこのNoteは、これ以降無数に手本とされ、真似され、拡張されることとなるのである。
正字正仮名の影響を受けた日本の若き日記書きたち――言うなれば「CSSコミュニティ」――が頭角を現す直前のW3Cで、HTML史に乾坤一擲の巨大な爪痕を残した1本の仕様が誕生する。
この時期、情報技術の進歩によって、HTMLにもさまざまな新しいテクノロジーがもらたされていたのだが、それらを十全に取り入れたばかりではなく、縦横に駆使することによって、これまでとは全く違った国際化、全く違ったアクセシビリティ体験を生み出すことに成功したのが、この仕様『HTML 4.0』を勧告したWorld Wide Web Consortiumである。
『HTML 4.0』は、HTML史において最も革新的な仕様の一つとなった。この仕様に初めて触れた当時のWebデザイナーたちは、そのあまりの目新しさに度肝を抜かれた。そこでは、これまで全く見たことのないマークアップがくり広げられていた。そのため、これまで想像さえしたことのなかった全く新しいHTML体験を、そこで味わうことになったからである。
W3Cの果たした一番の功績は、テクノロジーとHTMLを見事な調和をもって融合させたことだろう。例えばそこでは、「スタイルシート」という新しい技術のデザインと、それでレイアウトされたページが閲覧者に与える独特の感覚というものを、双方ともに熟知していた。だから、それらを効果的に融合させることによって、全く新しいHTML体験を生み出すことができたのである。
この仕様『HTML 4.0』には、そうしたテクノロジーとHTMLとの融合が、至るところに散見できる。その数の多さとクオリティの高さによって、HTMLはここに、新しい時代の幕開けを迎えるに至ったのである。
先に述べた「CSSコミュニティ」がWeb日記業界に論争をもたらすのは、2000年代に入ってからのことである。そして、そのきっかけとなったできごとの一つが、1947年生まれの非政府組織で、IECとも協力した生粋の工業標準化団体であった国際標準化機構が、この仕様『ISO/IEC 15445:2000 (ISO-HTML)』によって成功を収めたことである。
このHTMLは、単にJIS的に標準化しただけではなく、文化的な意味においても、フラットでリニアな構造の力を広く世界に知らしめることとなった。この仕様の成功によって、世界の人々は、レベル付けされた見出しの魅力の大きさを知る。そしてそれが、やがて見出しのレベル分けが世界のスタンダードとなり、誰もが当たり前のように使う状況を育んでいくのである。
またこの仕様は、CSSコミュニティそのものにも大きな影響を与えた。この仕様の成功に刺激を受けた才能ある若きコミュニティ住人たちが、その後立て続けに台頭し、いくつもの名サイトを生み出していくからである。
それらが相まって、やがてCSSコミュニティは空前の黄金時代を迎えることになる。その端緒となり、道筋を切り開いたのが、他ならぬこの『ISO-HTML』なのだ。
『HTML 4.0』で繁栄の足がかりを築いたW3Cは、この仕様『XHTML 1.0』によって、ついにその栄華の頂点に達する。そして、それを成し遂げたメタ言語も、W3C勧告のの一つであり、また『HTML 4.0』を作ったSGMLの改良でもあった、Extensible Markup Languageであった。
この勧告は、史上最も商業的に成功した仕様となる。そのためこれ以降、この勧告にならって商業的バズワードを盛り込んだ仕様が数多く作られるようになり、しかもそれらが、実際に大きな商業的話題を集めていくのだ。すると、そこで生み出された多くの意見は、やがて再びW3Cに還元され、さらなる発展をもたらすことにもつながった。
そんなふうに、この仕様がきっかけとなってW3Cにもたらされた意見は、HTMLという言語を変革させていくことになるのだが、それに伴って、HTMLそのものにも大きな革新をもたらすことになる。
その変革も、他ならぬW3Cの手によってなされた。ここで『XHTML 1.0』の成功によって手にしたメンバーをもとに創設した文書マークアップの開発集団「HTML Working Group」が、より魅力的な拡張性を追求していく中で、やがてM12n(モジュール化)という技術の開発に至るのである。するとそれが、これまでのHTMLを一変させたのだ。
M12nは、HTMLに魅力的かつ効果的な特殊語彙を、DTDでしかも複雑怪奇にもたらすことに成功した。おかげでそれは、あっという間に世界から見捨てられていった。そのため今では、M12nの使われているHTMLを探す方が難しくなったくらいだ。それくらい、この『XHTML 1.0』がWeb業界にもたらした変革には、大きなものがあったのである。
2000年代以降、繁栄を謳歌したW3Cは、しかしその栄華の大きさゆえ、00年代中盤に入るとそれを存続させることに力をそがれてしまい、革新的な仕様はなかなか生まれてこなくなった。
しかし、そんな時代が5年は続いた00年代の後半になって、今度はその栄華のただ中で育った新しい世代のHTML WGメンバーたちが台頭してくることにより、再び変革の時を迎えることとなる。
その新しい世代のHTML WGメンバーとは、マイクロソフトやモジラ・ファンデーション、オペラらに代表される「ブラウザベンダ」と、無関係な編集者たちであった。
彼らに共通するのは、文書構造に不必要なものなら全て――とるに足らないガジェット的なものまで含めて――残らず切り離そうとする「オタク的な性質」を持っていたことだ。
彼らは、それまで見過ごされがちだったHTMLの些末な要素にスポットを当て、それを別仕様に押し出すことで、従前とは一風変わった、新たな魅力を持った草案を生み出していった。そして、その真打ち的な存在として00年代の後半に登場したのが、XHTML2 Working Groupだ。
XHTML2 WGは、特に99年に最後の草案が作られたこの仕様『XHTML 2.0』によって、オタク的なHTMLの楽しみ方が、一部のマニアだけにとどまり、それ以外の多くの人たちには受け入れられないことを証明してみせた。この失敗が、デ・ファクト的な新生HTML WGにさらなる脚光を浴びせることになったのはもちろん、それに影響を受けたWeb WorkersやDOM Level 3 Eventsといった、次世代のWeb標準たちの誕生にもつながっていったのである。
最後は、第二次ブラウザ戦争の集大成ともいえるこの仕様である。
『HTML5』は、HTML史においては『HTML 3.0』と同じような意味を持つ。つまり、それまでのHTMLの要素が全て詰まっているのだ。この仕様を見れば、それ以前のHTMLの歴史というものが全部分かる。
『HTML5』には、HTMLのあらゆる要素が詰まっている。ここには、『HTML 3.0』のような歴史的な仕様としての「総合性」があり、『Compact HTML』のような「実装の実在さ」がある。『HTML 4.0』のような「マルチメディアとアクセシビリティの融合」があり、『ISO-HTML』のように「セクション構造の魅力を全世界に知らしめ」た。また、『XHTML 1.0』のように「バズワード的に成功」したのはもちろん、『XHTML 2.0』が別仕様に押し出した「オタク的ガジェット」にも満ちている。
全て詰まっているのだ。なんでもあるのである。つまりこのHTMLは、『HTML 3.0』と全く同じ意味合いを持っているのだ。HTML史というものは、『HTML5』以前と以降とで分けられる。これ以降に作られるHTMLで、『HTML5』の影響を免れるものはないであろうからである。
以上、これさえ読めばHTMLを包括的・体系的にとらえることができる7本の仕様を、制作された年代順に紹介した。
こうして見ると面白いのは、歴史的に重要な仕様は、必ずしも定期的に現れるのではなく、あるところでは連続しているし、あるところでは長らくなかったりすることだ。それはまるで「素数の分布」のようだ。一見規則性はないように見えるものの、何かしらの法則が隠されているようでもあり、興味深い。
それから、ここに挙げた仕様は、いずれも「読むことによって他の仕様にも興味が移行する」ということを念頭に選んだ。
例えば、『HTML 3.0』を読んだならば、ブラウザ戦争前夜の独自HTML拡張に自然と興味がいくだろうし、『Compact HTML』を読んだなら、iモードのそれ以外のバージョンのHTMLも見たくなるだろう。CSSコミュニティについてもそれは言えるし、『ISO-HTML』を読んだなら、このHTMLを流行らす土壌ともなった「フラットでリニアな構造」というムーブメントにも自然と興味がわくはずだ。さらには、『XHTML 1.0』はXMLオタクになるきっかけになるだろうし、『XHTML 2.0』はその他の「オタク的なXML EventsやXForms」の仕様も見たくなるという効果を持っている。
ただし、最後に選んだ『HTML5』だけは、こうした例とは別に考えなければならないかも知れない。なぜならこのHTMLは、完成度があまりにも高いために、これを見た後に他のHTMLを読むと、どうしても物足りなく感じてしまうからだ。
しかしいずれにしろ、これらの仕様を読むことによって、HTMLをさらに愛さずにいられなくなるのは疑いない。そしてまた、これらの仕様を読むことによって、HTMLを包括的・体系的に見る目を養ってもらえれば、その後のクリエィティブな活動にも、大きな助けとなるはずだ。
上に挙げた仕様への理解は、以下に紹介する著作を読むことによって、さらに深まる。これらを読むことによって、ぼくは「HTMLを体系的に見るとはどういうことか」を学んできた。
高校時代に読んだこのサイトによって、「リソースとは何か」ということを、ぼくはを知った。
「HTMLはSGMLの応用だ」ということが、このサイトを読むことでよく分かる。何気なく見ていた省略記法でも、その裏には、実にさまざまな技術や、それを開発してきた歴史というものが隠されていた。
世界がCSSコミュニティの何に驚かされたかといえば、それはやっぱり精緻に書き込まれた正字正仮名にだ。ノジタンの日記には、HTMLの本質が詰まっている。だからこそ、あれだけ多くの日記で多くのコミュニティ住人に、言及されたり模倣されたりしたのだ。
ここでは取りあげられなかったのだが、とほほ氏がHTMLというジャンルに及ぼした影響にも、本当に大きなものがある。そして、ぼくが上に挙げた感想のいくつかは、このサイトに書かれていたばけらさんとの「スタイルシート論争」を参考にしたものなのだ。
これらのサイトを読めば、どんなHTMLが素晴らしく、どんなHTMLがそうではないというのが、よく分かる。その判定基準を知ることができ、審美眼を養うことができるのだ。なにしろ、あのCSSコミュニティ住人の言うことなのだ。これにまさる教科書は、他にはない。
【元ネタ】
私が言ってるのは、http://wiki.livedoor.jp/reflation/ にリンクしてるバナーです。リフレ派というのは、バカにする用語なんですか?いちご等で自称していたのでそうは思いませんでした。申し訳ない。
それでは本題。
Q1. デフレはよくないのではないか?
まず最初からおかしい。マイルドなインフレが一番望ましいというのは世界の経済学者のほとんどが賛成する。たしか、そういう統計がどこかにあった。
デフレもインフレもよくない、これは、共通認識です。ただし、どちらかといえば低いインフレのほうがいいと考えている学者が多い。君の指摘は、揚げ足をとってるだけ。「Q1.1緩やかなインフレは悪いことですか? A1.ゼロインフレが好ましいので金融政策でゼロに近づけるべき」 という記述があって、「池田は主流の学者と意見が違う」と言える。それでも、1+1=3のような間違えではなく、主流の学者と違う意見を持っているというだけだ。
また、その場合にも、「たしか、そういう統計がどこかにあった。」いうような指摘は、学者を非難するのにはよろしくない。たとえば、「JEFFREY ROGERS HUMMEL (2007) Econ Journal Watch, 4, 46-59 にMost macroeconomists now favor a low but still positive rate of inflation. という表記がある。だから、池田の意見は主要なマクロ経済学者の意見とは異なる」というように、ちゃんと文献をあげるべきだ。
加えて次のECBのHPを見てほしい(これは、Q2にも関係する)。普通の中央銀行がかなりゼロインフレに近いインフレ値が好ましいと考えているのがわかる。
Reasons for aiming at below, but close to, 2%
Inflation rates of below, but close to, 2% are low enough for the economy to fully reap the benefits of price stability.
It also underlines the ECB’s commitment to
中略
# take into account the possibility of HICP inflation slightly overstating true inflation as a result of a small but positive bias in the measurement of price level changes using the HICP
http://www.ecb.europa.eu/mopo/strategy/pricestab/html/index.en.html
以上のように、ヨーロッパ中央銀行は、HICP(Harmonised Index of Consumer Prices )で2%以下かつ2%に近いHICPを誘導目標としている。しかもHICPは、少量のポジティブバイアス(実際のインフレ値より少し多めにでる)性質がある。だから、ECBが目標としているマイルドインフレは、かなりゼロインフレに近い。
Q2. 日銀はいくらでも紙幣を印刷できるのだから、インフレにできるのでは?
A2. ゼロ金利状態では貨幣需要が飽和しているので、中央銀行がマネタリーベースを増やしても銀行の貸し出しが増えず、市中に流通するマネーストックは増えない。
まず、バーナンキの背理法は、日本のネット社会に広がったスラングである。普通の「(経済)学部生が習うような」教科書に載ってるようなものではないし、(世界)標準の経済学者が使う用語ではない。バーナンキは、彼の師匠であるフリードマンに敬愛をこめて、お金を刷ってヘリコプターで撒けばインフレになると言っただけである。それを日本人が変な名前を付けた。これは、無限にお金を刷って(金融政策)撒けば(財政政策)、いつか・どこかで・なんらかの規模の物価上昇が高確率でおきるであろうとしか言えない。ヘリコプターマネーをすれば、適正な物価が保てるというものではない。
provide an adequate margin to avoid the risks of deflation. Having such a safety margin against deflation is important because nominal interest rates cannot fall below zero. In a deflationary environment monetary policy may thus not be able to sufficiently stimulate aggregate demand by using its interest rate instrument. This makes it more difficult for monetary policy to fight deflation than to fight inflation.
ヨーロッパ中央銀行ですら、「デフレ時には、金融政策で総需要の刺激ができなくなり、デフレに立ち向かえなくなる」と言っている。デフレ時に、金融政策(マネタリーベースを増や)しても、デフレ克服は難しいというのは、池田や日銀だけじゃなく少なくてもヨーロッパ中央銀行の意見でもある。
また、「ゼロ金利状態では貨幣需要が飽和しているので、中央銀行がマネタリーベースを増やしても銀行の貸し出しが増えず、市中に流通するマネーストックは増えない。」というのは、おそらく池田が嫌いなケインズ学派の流動性の罠という考え方であり、教科書に載っている。
グールド自身による(自己の言説の歪曲された利用への)反論(訳は大意)
[T]ransitions are often found in the fossil record. Preserved transitions are not common -- and should not be, according to our understanding of evolution (see next section) but they are not entirely wanting, as creationists often claim. [He then discusses two examples: therapsid intermediaries between reptiles and mammals, and the half-dozen human species - found as of 1981 - that appear in an unbroken temporal sequence of progressively more modern features.]
移行形態の化石記録はしばしば発見されています。保存された移行形態は一般的ではありませんが、そしてそれは私たちの断続平行説が正しいのであればそうあるべきですが、まったく欠如している、そう創造論者は主張していますが、そういうわけではありません。
Faced with these facts of evolution and the philosophical bankruptcy of their own position, creationists rely upon distortion and innuendo to buttress their rhetorical claim. If I sound sharp or bitter, indeed I am -- for I have become a major target of these practices.
こういった進化の事実と彼ら自身の哲学的立場の破綻に直面して、創造論者は彼らの修辞的な主張を強化するために、歪曲と暗示に頼っています。もし私が辛辣に見えるのならば、実際その通りなのですが、それは私が彼らの実践の主要なターゲットとなっているからです。
I count myself among the evolutionists who argue for a jerky, or episodic, rather than a smoothly gradual, pace of change. In 1972 my colleague Niles Eldredge and I developed the theory of punctuated equilibrium. We argued that two outstanding facts of the fossil record -- geologically "sudden" origin of new species and failure to change thereafter (stasis) -- reflect the predictions of evolutionary theory, not the imperfections of the fossil record. In most theories, small isolated populations are the source of new species, and the process of speciation takes thousands or tens of thousands of years. This amount of time, so long when measured against our lives, is a geological microsecond . . .
私は自分を徐々に漸進的に変化が起きるというよりも、気まぐれで断続的に起きると考える進化論者のひとりであると考えています。
Since we proposed punctuated equilibria to explain trends, it is infuriating to be quoted again and again by creationists -- whether through design or stupidity, I do not know -- as admitting that the fossil record includes no transitional forms. Transitional forms are generally lacking at the species level, but they are abundant between larger groups.
(変化に)波があることを説明するために私たちが断続的平衡を主張して以来、何度も何度も創造論者によってデザインやなにやらを通じて、私が化石記録は移行形態を含まないと認めていると引用されたのは、はらわたの煮えくりかえる思いです。移行形態は一般的に種の水準では欠如していますが、それより大きいグループの間では豊富に存在するのです。
外国語を学習する理由、動機を高める学習法という考え方でまとめてみる
(語学学習サイト個人的リンクメモ / Lists of Language Learning Links)
(For Beginners)
(For Windows)
(For Mac)
(In case you are using shared computer)
(Information)