「超伝導」を含む日記 RSS

はてなキーワード: 超伝導とは

2022-08-10

anond:20220810044303

超低温に冷やしたら超伝導体になって宙に浮くというマイスナー効果

それには、そこそこ強力な磁場必要から、ばーちゃん簡単に「スーっと動く」わけにはいかないねw

ちなみに、めっちゃ強力な磁場(22〜23テスラとか)があれば、超伝導体でなくてもチクワとかカッパ巻きとかのそこそこ水分が多い物体普通の人体もそんなもんだ)なら宙に浮く。

NHKチコちゃんに叱られる」で見たw)

2022-01-18

anond:20220114152102

コエンザイムQ10ってあったよね(anond:20220114163442)

BenQでもなんでもいいけど

増田くんはしつこくしたのに、今回も結局、理解できない&読まないじゃないですか😡

文章読めない&読まない増田くん向けに短くステップ区切ったのにこの有様

猛省して欲しいです

 

 

〜ここまでのまとめ〜

Q1:原子電子素粒子などが世界構成している認識増田にはありますか?

"YES " or "NO"

 - まさかの "NO" との回答

 - ワイ『増田くんが世界の中心にいて増田くんが認知すると世界は現れるみたいな感じか?』

 - プロタゴラス「せやで」

 

→ 草 常識的理解あるじゃんということでQ2へ

 

 

Q2:ウルトラ雑に言うとコペンハーゲン解釈は「だってしょうがないじゃん。そうなってるし」と言うものに過ぎませんが

   2022年現在原子電子素粒子も「実在しない」は証明されましたか

"YES " or "NO"  

 - まさかの "YES"との回答

 

→ もちろん"NO" です。2022年の現時点では実証されてません

 

実在性の破れを実証した実験とかニュースになってはいるけれど

超伝導磁束量子ビットを用いた巨視的実在問題実験検証成功

https://www.brl.ntt.co.jp/J/2016/11/latest_topics_201611042223.html

原子電子素粒子も「実在しない」を実証するものじゃないです

 

 

猛省して欲しい

anond:20220113203308 anond:20220113164904 anond:20220113192512 anond:20220113193007 anond:20220113193326 anond:20220113203701 anond:20220118011230

2022-01-14

anond:20220114001310

イデア論は正しいのでYES (anond:20220114003546)

答え書くぞ、"NO" な。2022年の現時点では実証されてません

 

実在性の破れを実証した実験とかニュースになってはいるけれど

超伝導磁束量子ビットを用いた巨視的実在問題実験検証成功

https://www.brl.ntt.co.jp/J/2016/11/latest_topics_201611042223.html

原子電子素粒子も「実在しない」を実証するものじゃないです

 

存在とは何か?(anond:20220114001522)

YES or NO ってしてるでしょ😡

実験観測実証されたものが『実在』だ

2021-12-27

anond:20211227084908

「やっとモーターのコイルが温まってきたところだぜ」

CPUと同じで、温まったら効率が落ちるだろ

なぜ冷却しない…

(あ、常温超伝導なら問題ないのかな…

2021-09-25

結局核融合ってどの段階まで行ってんの?2030年代にどこまで行けんの

https://anond.hatelabo.jp/20210924183546

の続き。核融合についてこんなに見てくれる人が出るとは思わなかったのでびっくり。おじさん続き(というか、前回の記事でまるっとスルーした部分についての補足)を書いちゃうよ。もうバレてると思うけど、増田核融合ベンチャーに頑張ってほしいと思ってる(利害関係はない)タイプ業界人だよ。業界の中にも否定的な人は普通にいるよ。

核融合必要な性能って?

核融合で発電するには、「十分高い温度密度の高純度なプラズマ」が必要。それが十分な性能になったら、あとは発電設備を付ければ発電できるようになる(それも簡単ではないけど)。

プラズマの性能は温度密度・閉じ込めの3つを同時に達成しないといけないので、本当は核融合三重積という指標を使う。そうじゃないと「温度は高いけどスカスカ核融合反応をほとんどしないプラズマ」とかがすごいっぽく見えてしまう。でもここでは長くなるので割愛。というのも、幸いにしてすでに核融合反応を起こした装置は2つあって「実際核融合で何Wを何秒出した」と言えるのでそこで判断してもらって大きな問題はないから。

現状の核融合記録

TFTR: 1994年 米国 (1000 kWの核融合反応)

TFTRは装置名。世界初の大型装置での核融合燃料を使った本格的な核融合反応。(ここまでは取り扱いの面倒な三重水素は使われてなかった。)核融合出力1000 kWをプラズマ的には十分長い0.2秒くらい維持した。

JET: 1997年 EU (1600 kWの核融合反応)

現在までの最高出力記録。このとき、2400kWくらいのエネルギーを投入して1600kW出したので、投入エネルギーの0.6倍は出せた計算。ただし、投入エネルギー=投入電力ではないので注意。電力ベースでは(記録はないけど)おそらく0.1を割るだろうと思われる。

JT-60U: 1998年 日本 (参考記録

ギネス認定の人工での世界最高温度記録である5.2億度を達成した。また、1億度のプラズマを9秒フラットに維持したりもしている。日本放射線管理のあれこれで核融合燃料を使えなかったため、核融合出力はない。しかし、この5.2億度のプラズマでの温度密度から核融合燃料を使っていれば投入エネルギーを超える核融合出力が得られたと推定されている。(JETの0.6を超えて1.2くらい達成したはずという意味

この3つを見てわかるとおり、核融合の記録は90年代ばかり、2000年代以降は更新されていない。iphone13の時代windows meすらない時代の記録が最高記録扱いなのである研究者ベンチャーなんてやりたくなるほどのフラストレーションを感じている理由ちょっとはわかってもらえるだろう。

どこまで行けば良いの?

そこらへんの火力や原子力発電所では、電気出力が数十万 kWから百万 kWくらいなので、発電効率を考えて核融合出力で100万kWくらい出せれば核融合発電所第一号としては十分だとすると、JETの記録を600倍は増やさないといけない。600倍とかヤバくね?と思うかもたけど、iterは50万kWの核融合出力を400秒続けられるように設計されている(それは見通せてる)ので、iterの二倍で良いわけである。本当なら今頃はiterの成果を見ながら「iterの2倍程度の出力をもっと長く継続する」「発電設備をつける」にトピックが移ってたはずなんだけど、遅れてるのが現状。元々90年代の成果と知見を元に次の装置設計して建設するため、10年程度の空白期間が出来てしまうことはしょうがないのだけど、2010頃には動いていたはずのiterが遅れたために空白期間かここまで伸びてしまっている。iter複数企業どころか複数国(EU+六カ国)が機器を持ち寄るというみずほ銀行勘定システム以上のゲキヤバ案件でなければ今頃...iterが大失敗して、核融合業界全体が死んでた可能性もあるんだけどね。

なんでベンチャーiterよりすごいものが作れるって言ってるの?

iterの基本設計が古くて保守的から。97年にベース設計が決まって、2007に更新されたのがiter。炉形式も実績はあるが思想の古い保守的なトカマク(上述の3つはこれ)。しかも「失敗は許されない!」と90年代に確実だった(枯れた)技術ばかりが使われている。典型的には超伝導線材(コイル)で、iter日本のLHDで採用された実績のあるニオブチタン合金超電導線材すら「日本しか供給できないので供給力が不安」という理由不採用にして、性能が低いニオブとスズの合金の線材を採用しているくらいに保守的なのである

そういうiterなので、研究者が「リスクを犯してでも最先端技術や炉形式を使えば、もっと安く、もっと良いものができる!」と考えるのは当然の帰結。そんなわけなので、2000年代にようやく工業レベル供給ができるようになってきた高温超伝導導体はベンチャー提案ではスタンダードである

本当に2030年に実現するの?

ここからはより私見が強くなるけど、「2030年代に既存原発や火発なみに発電する核融合発電所ができるか?」なら答えはNo。そもそも建設10年程度かかるものなので、2030年代までに動くのは次の世代の炉だけ。でも、ガチ発電所の前に一世代「お試し発電はするけど、ガチ発電所ほどじゃない」やつが要る。二世代作るのはどう頑張っても間に合わないし、次のやつのデータを見ながら規制法律の整備とかもするからそういう意味でも間に合わない。多分、用地設定とかも含めると、すでに提案済みの新型原発核分裂炉)でも20年たらずで発電開始は無理じゃないかな?

でも、「2030年代にちょっとでも良いか核融合で消費電力を超える発電をする」なら10 %くらいいける確率はあると思う。首相青森の六ケ所(iter候補立候補してた)あたりを特区指定して、原子力規制庁が規制法を爆速で整備して、現存設計案(ベンチャーの案でも、量研機構が準備してる次世代核融合設計案でも良い)の最小限版を速攻で建設開始するシナリオ。当然その時はみずほ勘定システム方式ではなく、日立なり東芝なりの一社に全体を統括してもらう。そこまでお膳立てされれば遅れない。多分遅れないと思う。遅れないんじゃないかな。ま ちょっと覚悟はしておけ。

おまけ、ロッキード・マーチンの案について

記事書いてたとき存在を忘れてた。ロッキード・マーチンのチームはアカデミアとつながっていないので、他の核融合ベンチャー論文などを出してる一方で情報一般向けのニュースくらいしかない。でもまぁ、振動磁場で粒子を閉じ込めるというアイデアちょっと無理がある(そんな早い振動磁場を高強度で作れない)と思うし、車に乗るとかどう考えても無理があることも書いてたのでなぁ(加熱装置も発電装置も電源も車に載るほど軽くない)。核融合ベンチャーは大なり小なり希望的なことを言うものだけど、それと比較しても無理っぽいんじゃないですかね。すでに内部で解散してても驚かないです。

2021-09-24

核融合2030年代に実現とか何言ってんの?って人への解説(補足あり)

自民党総裁候補高市早苗さんが2030年代に実現する(最初2020年代)と言って話題になった核融合高市さんのキャラもあってか「そんなもんできるわけねーだろ」的に扱われることもあるが、実は世界核融合ベンチャー企業では「2030年代に核融合実現」を掲げて100億以上投資を受けている企業複数あるので、業界としてはさして驚きはないのである。というわけなので、いくつかの核融合ベンチャーと、官製核融合実験であるiterについて簡単にまとめてみる。

iter (炉型: 保守的トカマク 日・米・露・中・韓・印・EU)

冷戦終結の一つのシンボルとして米露が共同で建設を決めていたiterに、単独実験炉を作るのを予算的に躊躇していた各国が相乗りしたのが現iter体制である

建設地決定の遅れや、上記の各国が機器を持ち寄って組み立てるという、みずほ銀行勘定システムばりにカオス体制のために建設は当初予定から20年近く遅れ、2025年初稼働(テストみたいなもん)、本格稼働は2035年という状況になっている。実はこの遅れが核融合ベンチャーが乱立する現在を作ったと言っても過言ではない部分があって、というのも、核融合ベンチャーにはiter予算が取られて食い詰めた研究者が立ち上げた組織が多いのである

形式保守的ドーナツ型のトカマク。国際協調なのであまり斬新なアイデアは盛り込まれず、磁石昔ながらの低温超伝導導体を使う。

投入エネルギー10倍程度の核融合エネルギーを出すことを目指すが、投入"電力"ではないため、正味マイナス。発電設備も持たない。ここで得た知見を元に発電を行う"原型炉"を設計する、というのが各国政府公式計画(ただし予算は決まってない)である

Tokamak Energy (炉型: 球状トカマク 英国)

iterなどの保守的トカマクが、よくあるドーナツ的な形のプラズマを作るのに対して、球状トカマクは球の真ん中に細い貫通穴を通したような形状をしているのが特徴。球状トカマクは磁場を使ってプラズマを閉じ込める(押し込める)のに有利ではあることがわかっているものの、まだ高温・高密度での実績は弱い。

トカマクエジーは高温超伝導導体で球状トカマクの磁石を作ることを目指している。球状トカマクは保守的トカマクに次いで実績があるので(日本には九州大学にQUESTという中型装置がある)核融合ベンチャーとしては「目新しさ」は弱いものの、逆に堅さがあるともいえるだろう。米国プリンストン大学(NSTXという装置燃えて止まっている)とも連携しているらしく、そういう意味でもチームが強い。

すでに100億以上の資金調達しており、堅実に装置を作って稼働させている。すでに1500万度程度のプラズマを実現している(年内にはこの装置で1億度を目指す)ため、単純な段階としては核融合ベンチャートップランナーと言って良い。(世界最高温度1000億単位かかった日本JT-60Uの5.2億度)

2030年までに電力を電力網に送り出すことを目標としている。

装置が卵っぽくてかわいい

Commonwealth Fusion Systems: CFS(炉型: トカマク 米国 MIT

MITのチームがベースになって設立した核融合ベンチャー。もともとMITはAlcator C-modというトカマクを持っていたが、CFSはこれをベースにしたARCという核融合炉を提案している。現在はその前段階装置であるSPARC建設である

Alcator C-modは小ぶりながら、世界最強の高磁場(最大8T)を作れるトカマクとして、他では真似できない成果を出していてプラズマ業界では存在感があったものの、2016年に完全にシャットダウンした。それと前後して元々力のあったMITの高温超伝導研究者とAlcator c-modプラズマ研究者がタッグを組んで提案したのが、ARCである

2030年代にはSPARC(商用炉でないものの投入電力より大きな出力を出すことを目指している)を稼働させることを目指しているので、ほぼtokamak energyと同じ目標を少し遅めの日程で掲げていると言ってよいだろう。

ARCという名前は、どう見てもアイアンマンアークアクターに引っ掛けているのだけど、残念ながらロバートダウニーJrは再エネ関連に投資しているようでアイアンマンとのシナジーはないようだ。

General Fusion(炉型: MTF カナダ)

MTF(磁化標的核融合方式)と呼ばれる方式核融合炉を目指すカナダベンチャー。この企業CEOの人のカリスマ的なやつで早期にお金を集めたという印象がある。CFSやtokamak energyがトカマクによる磁場閉じ込めでの長い歴史と実績(90年代米国MIT装置ではないが1000 kWを超える核融合出力を実現している)とチームの長い研究歴を背景に、ある種の堅実さをアピールしている一方で、MTFテーブルトップでの成果も出ていない状態からスタートアップを初めている。液体金属をぐるぐる渦巻かせて中心に空間を作り、そこに吹き込んだプラズマを液体金属で爆縮して断熱圧縮で高温にするというシステムである。野心的であるということはゲームチェンジャーになりえるということであるが、一方で論文などの試算はかなり大雑把なものなので(プラズマや液体金属がうねったりせずにすごくきれいに断熱圧縮される計算)、「そんなきれいに押しつぶされてくれるもんかねぇ?」という印象を持っている人は多いだろうと思われる。

装置ピストンがでかいので見栄えがする。

TAE Technologies (炉型: FRC 米国

メジャー核融合ベンチャーの中では多分最古参企業で、おそらく最大の資金投資を受けている企業。FRCという、トカマクなどとは異なる磁場閉じ込め形式を目指す。FRCはプラズマを閉じ込める磁場を、コイルではなくプラズマの動きで作る。5000万度を達成済で、2030年までに発電実証目標としている点はCFSやtokamak energyと同じ。FRCは高温は作れてもプラズマを安定して維持する能力は低いので、5000万度を作ったからかといって他より先に進んでいるかというとそんなことはないが、装置を作りまくって成果を出しているのは確かである。元々は陽子とボロンの核融合反応を使った発電を目指しており、その反応で出る3つのアルファ粒子に由来して"Tri Alpha Energy"という名前だったのだが、今は他の形式と同じ重水素三重水素を使った発電を直近の目標とした(陽子ーボロンも捨ててないらしい)ためTAE名前が変わったらしい。

かいところはよく知らないが、核融合一辺倒ではなく、応用技術特許化などで収益をだしているらしく、そこはすごい。

装置名が「ノーマン(現行)」「コペルニクス」とかっこよいのも特徴。

京都フュージョニアリング(炉型: なし 日本 京都大学)

京都大学小西教授が率いる日本初の核融合ベンチャー小西教授核融合ブランケット(後述)を専門にしている人で、一般向けエネルギー関連書籍を出してたりしている。

ただし、この会社核融合炉全体を設計するのではなく、ブランケット核融合で出た中性子を受け止めて熱に変換するところ)の設計を売る会社である海外などのプラズマ屋さん主導の核融合ベンチャーは、ブランケット設計はあまり注力していないところが多いので、そういうベンチャーに「あんたの炉はこんなブランケットおすすめですよ」と設計を売るのが仕事。まぁベンチャー目的なんて投資額と投資家の意思でどうにでもなるといえばそうなので、お金が予想外に集まれプラズマ屋さんも集めて核融合炉全体の設計製作だってやるのかもしれないが、さしあたり核融合自体を作る予定はなさそうである。ほかもそうだが、日本ベンチャーはこの2年でようやく2つ立ち上がっただけなので、今は正直海外と比べると桁違いに規模が小さいし弱い。ここも表に出ている研究者は一人だけである

Webサイト小西先生ちょっと疲れているように見えるのが気になる。

EX-fusion (炉型: レーザー 日本 光産業創成大)

2019年創業。"日本初のフルスタック核融合ベンチャー"をうたう企業。光産業創成大(浜松ホトニクスという企業が作った大学院大学)の研究者設立したらしいが、新しいため詳細は不明。"フルスタック"という言葉はよくわからないが、京都フュージョニアリングブランケットのみの開発を売っていることと対比して、核融合炉全体を見て実現を目指すという意味だろうと思われる。レーザー核融合米国NIFの2010年代の大コケにより世界的に元気がないので、生き残りをかけているのだろう。日本レーザー核融合といえば大阪大学レーザー研があるが、こことどの程度の連携をするかなども詳細不明である

ちなみに、"EX-Fusion"で検索すると、ドラゴンボール関連ゲームでの同名の設定のほうが上位に表示される。

Helical-Fusion(炉型: ヘリカル? 日本 核融合科学研究所)

Webサイトのみ公開されている未設立企業。まだ設立すらしていないので何もかも謎だが、噂では日本核融合科学研究所のチームが作るようだ。核融合科学研究所は1億度を超えるプラズマの実績のあるヘリカル型(トカマクとは違うよじれたコイルが特徴)の装置保有しているのだが、近々シャットダウンを予定している。その後は新規の大型装置予算が確保できないために小型設備での基礎研究に舵を切るとされているため、内部の核融合発電所を本気で作りたい一派が起業するらしい。日本で"ヘリカル型"といえばここか京都大学なので、名前からしてどっちかであるのは確かだろう。

この記事に続く補足を書いたよ(9/25)

https://anond.hatelabo.jp/20210925153855

2021-04-20

コナン映画を観たのでネタバレします!

!!!!!!!!!!!

これは観た映画をどのくらい詳細に思い出せるかチャレンジ適当に書く。たぶんところどころ間違ってる。

最初のシーンはホテルの大きなロビーらしき場所で行われてる立食パーティー、WSG(world sports games、コナン世界におけるオリンピック)の協賛スポンサーが集まる壮行会。

園子のお父さんがスポンサーなのでコネでお呼ばれした蘭、コナン、灰原、少年探偵団御一行。

前方ステージスクリーンには、このほど完成した真空超伝導リニアモーターカー解説動画流れる。壇上で司会を行うお姉さん。

WSGの意味が分からない少年探偵団に説明してやるコナン

抽選当選するとリニアの初走行に乗車できるらしい。

自分たちが乗れることが決定してるかのようにテンションが上がる探偵団。呆れるコナン抽選説明をする蘭。テンションが下がる探偵団。

蘭たちに話しかけるホテルマン「ここにお食事をお持ちしてもよろしいですか?」。場所を空ける蘭たち。飯にリニアのことを忘れてテンションが上がる探偵団。

切り替えの早さに呆れるコナンと「若いからよ」と微笑む灰原。オレンジジュース乾杯

すると突然場内の照明が落ちる。辺りは真っ暗。腕時計ライトを頼りに、電源の様子を見に行こうとするも蘭に腕を掴まれコナンライト復旧。「30秒ぐらいだったわよね」と灰原。園子のお父さんが見当たらない。

園子、近くにいたジョンさん(お父さんの知り合い?協賛スポンサーの一人)にお父さんを見てないか尋ねる。

思ったより詳細に覚えててぜんぜん進まねえ……

2019-11-06

anond:20191105193614

ガチ本職からツッコミ

酸素が重いから回転が遅い、というのは違うからね。酸素より重いランタンのほうが酸素より速いからね。回るのは原子核じゃなくて核スピンからホントはね。わかりにくいか原子核って書いたんだと思うけど一応ね。核スピンは、そうねぇ、小さな磁石だと思ってくれてもそんなに間違った理解ではないよ。

で、NMR原理のところだけど、現代ラジオ波の吸収を使って調べることはほとんどないんじゃないかな。連続波(continuous wave; CW)法で検出にQメータ使っている人なんてほとんどいないでしょ。いまは(といってもだいぶ昔からだけど)パルス法が主流で、これは強く短いラジオパルス照射することで広帯域の核スピンを励起して一度に信号を取るとても効率の良い方法だよ。

え、それって吸収を調べているんじゃね?って思うかもしれないけど、ちょっと違うのね。本質は、核スピンが集合してできた巨大な磁石(巨視的磁化とよんでます)なのね。この巨視的磁化はコイルの中に置かれています

この巨視的磁化は超伝導磁石の作る強磁場の方向に通常は向いているんだけど、コイルによりラジオパルス照射されるとパタンと倒れるのね。これが励起状態です。

で、励起されたらまた強磁場の方向に向こうとするんだけど、このとき元増田が書いてくれたように、置かれた環境や結合に依って違う回転スピードでぐるぐる回りながら戻っていくのね。

この回っている巨視的磁化の周りにはコイルがあって、コイルの中で磁石が動くとどうなるかというと、ファラデーの電磁誘導法則ってのを覚えている人がいると思うんだけど、電圧が発生して電流流れるのね。で、この誘導された電流は巨視的磁化の周波数交流で、こいつを検出器で検出しているというわけ。

この巨視的磁化ってのが本質だと書いたけど、ホントホントスピンが揃っていること……コヒーレンスなのね。コヒーレンスって可干渉性とか訳されたりするけど、この時間的にも空間的にも揃っていて、しかもその持続時間が非常に長いことがNMRを他の測定法とは一線を画す面白い測定法にしているよ。

たとえば、炭素の巨視的磁化と水素の巨視的磁化が干渉して結合状態が分かったりするよ。あと、人間が作るラジオパルスもかなり干渉性の高い電波で、このラジオパルスの打つタイミングや長さや強度や打つ方向を工夫すると、巨視的磁化を操ることができて、欲しい情報だけを引き出すことができたりするよ。こういう一連のパルスパルスシーケンスパルスプログラム)と呼んでいるんだけど、このパルスシーケンスを開発している人達もいるよ。ほんとにプログラムするようにできたりするよ。そのためには量子力学特に密度行列時間発展を計算できる必要があるよ。

あとは量子コンピューターにも使われようとしたこともあるよ。こともある、とか書くと怒られるかもだけど。IBMが核スピンを使って初めて量子コンピューター実証したよ。でも今の主流ではないよ。

超伝導磁石に関しては、強い磁場を生み出すことも重要だけど、空間的・時間的に均一であることも重要だよ。NMRって特に溶液NMRだと10^-9の精度での磁場の均一性が求められるよ。時間で変動しても、場所で違っても信号がなまってしまって困るのね。

うそう、超伝導理学系が多くて、超電導工学系が多く表記に使っているよ。どうでもいい豆知識だね。

で、いま世界最強の溶液NMRにも使える超伝導磁石(と電磁石ハイブリッド)はアメリカフロリダ州タラハシーにある45 Tマグネットだよ(https://nationalmaglab.org/magnet-development/magnet-science-technology)。水素共鳴周波数でいうと、ええと、1.9 GHzで、もはやラジオ波じゃなくてマイクロ波だね。

NMRの弱点は、感度がめちゃくちゃ悪いことだよ。質量分析とかタンパク質ちょびっとでいいけど、NMRだと必要量が桁で変わるよ。タンパク質とか作るのめっちゃ大変だから、そのへんはNMRの泣き所だよ。感度向上は古くて新しいNMR研究テーマだよ。今はいろいろな方法があってね……(以下略)。

2019-11-05

亻工一一一一一亻!!!皆、NMR用途原理、知ってるか~~~~~?!!?

イエーーーーーーーーーーイ!!!NMR用途原理知ってるか~~~~~???!!!??

NMR化学分析に使う分析装置だ!化学特に有機化学生化学研究したことがある人はよく知っていると思う!そういう人は野暮なツッコミを入れ始める前に好きな有機溶媒を書いてブラウザバックだ!DMSOか?THFか?DMFか?DHMOか?書け!

NMRって知ってるだろうか!知ってるヤツは皆ブラウザバックしたはずだから君はNMRを知らないはずだ!それでも名前くらいは聞いたことがあるかもしれない!無いかもしれない!でも日本で生きていたら必ず恩恵に預かっているぞ!

みんな大好き、排水管の赤錆を防止するNMRなんちゃら・・・まあ詳しくは触れないが、あれもNMR原理を応用したと主張している装置だ!!効果があるかどうかは今はいいだろう!

ヘリウム不足が深刻で研究者が困っているというニュースを聞いたことがあるかもしれない!何?今日聞いた?オラもだ!ヘリウムはいろいろな実験産業に使われているけど、中でもNMR装置に多く使われている!NMRの中には超電導磁石が入っているから、磁石を極低温に冷やさないといけない!そのためにヘリウム必要なんだ!

君がいい年こいてるなら、病院MRIで体の輪切り写真を撮られたことがあるかもしれない!あれだってNMR原理を応用したものだ!

NMR装置原理用途を知っていれば生活の役に立つ・・・ことは無いが、ニュースを読み解く上で知ってるとすこしは役に立つだろう!それに化学物質分析がどうやって行われているか知ることはとても意義のあることだ!電子顕微鏡でパシャっと撮影すれば分子分析ができると思っている人もいるかもしれないが、大きな間違いだ!有機化合物基本的にはそういう分析方法はできない!

たとえばバファリンを作ってる会社がいろいろな薬品を混ぜてバファリンを合成したとしよう!でも合成した物質バファリンかどうかを確かめるためにはどうしたらいいだろうか?実は手順を間違えて毒ができているかも知れないから舐めて確かめるわけにはいかない!そこで登場するのがNMR装置だ!でも、そんなのはNMR用途の一つに過ぎない!NMRはなんでもできる!NMR科学進歩に欠かせない装置だ!そういう凄い装置があることだけでも覚えてほしい!

○○

NMR原理説明しよう!

有機化学研究をやっている研究室や製薬の研究所では、NMRを使って分子の形を調べるということをよくやっている!分子の形を調べるというのが主な用途なんだけど、それ以外にもいろいろなことに使える!じゃあNMRというのはどういう原理分子の形やその他諸々を調べることができるんだろうか?!

NMRとは、本質的には原子核の回転スピードを測定する装置だ!意味がわからないだろうか?原子にはコアの部分があって、それを原子核と呼ぶ!そして原子核の周りを電子という粒子がグルグル回っているんだ!地球の周りを月がまわってるような感じだな!何?「電子別にグルグル回ってるわけじゃない?」君!なんでまだ読んでいるんだ!まあ今回は許そう!

とにかく、原子というのはコアの部分である原子核と、その周りを回っている電子構成されている!そこで原子核に磁力を与えると、原子核グルグル回り始めるんだ!!!それもただの回転じゃあないッ!歳差運動と呼ばれる回転をしている!歳差運動とは、回転しているコマが力尽きる寸前にフラフラと揺れるようなあの回転運動のことだ!すり鉢胡麻をするときに棒の真ん中あたりを左手で持って、右手で棒の先端をくるくる回すだろう!あの運動にも似ている!とにかく少し特殊な回転をしているんだ!その回転の速度を測定するのがNMR装置だ!

回転の速度は①原子の種類 ②装置の磁力の強さ ③原子の結合や周辺の状況 で変わってくる!②と③が同じでも水素酸素なら回転の速さが違う!酸素のほうが原子核が重いから遅いんだ!①と③が同じでも②でまた変わってくる!磁力が強ければ強いほど原子は早く回転するぞ!原子が早く回転すると、③の影響がはっきりわかるから便利なんだ!一般的NMR装置は磁力が強ければ強いほど高性能だし値段も高くなる!③は重要だ!一般的にはNMR装置は③を知るための装置だ!結合の方式や周囲の状況で回転スピードが変わってくるから、逆に回転スピードから結合や周囲の状況がわかる!だから分子の形がわかるんだ!!

原子核の回転スピードを測定するといっても直接見るわけにはいかない!だからラジオ波と呼ばれる周波数電磁波を使って回転スピードを調べる!ラジオ波はラジオ放送に使われる電磁波だ!

そもそもNMRとは何の略だろうか?言ってみろ!言えないかNMRとはNuclear Magnetic Resonanceの略だ!Nuclearは核つまり原子核Magnetic磁気、Resonanceは共鳴だ!日本語だと核磁気共鳴なんて呼ばれるな!核磁気共鳴現象を調べる装置、それがNMR装置だ!では核磁気共鳴とはなんだろうか?核磁気共鳴とは、回転している原子核が、その回転スピードと同じ周波数ラジオ波を吸収したり放出したりする現象のことだ!よくわからないだろうか?

ラジオ波にはいろいろな周波数のものがある!電波(電磁波)が波だということは知っているだろう!電波周波数というのは、波が1秒間に何回押し寄せるか、という数字だ!たとえば600MHzのラジオ波は、1秒間に6億回も波が押し寄せていることになる!ちなみにBluetooth電子レンジが出す電波は1秒で24億回、青い光は1秒で500兆回くらいの波が押し寄せている!まあそれはどうでもいい!1秒間に6億回転している原子核に、1秒間で6億回波が押し寄せる電磁波をあてると、原子核はその周波数電磁波を吸収したり放出したりするんだ!

イメージできるだろうか?君はそれでも人の親か?人の親なら想像してほしい!人の親じゃなくても想像してくれ!君はブランコの横に立っている!そして子供が乗っているブランコが5秒に1回、前に向かって自分の横を通り過ぎるとする!ブランコが真横に来た瞬間に、つまり5秒に1回だけ絶妙タイミング子供背中を押してやれば、ブランコは手の力を吸収して勢いを増すだろう!でも5秒に1回だけじゃなく、3秒に1回とか変なタイミングで押してしまうとブランコの勢いは増さない!それと同じで、1秒で6億回回転する原子核は、1秒で6億回押し寄せるラジオ波のみを吸収する!1秒で6億1回押し寄せるラジオ波、6億2回押し寄せるラジオ波、6億3回押し寄せるラジオ・・・といろいろな周波数ラジオ波を当ててやって、どれが吸収されたか見てやれば、測定したサンプルの原子核がどのくらいのスピードで回転しているかがわかる!これがNMR原理だ!

○○

NMR原子核の回転スピードを調べる装置であることはよくわかったはずだ!わかったよな?!じゃあ回転スピードから何がわかるだろうか?回転スピードからは本当にいろいろな情報がわかる!!わかりすぎて逆によくわからいくらいだ!とりあえず一つだけ紹介しておこう!NMRでわかるのは、原子核の周りをどのくらいの数の電子が回っているか?ということだ!

NMRで得られるのは一つのグラフだ!「NMR スペクトル」で画像検索すればNMRで得られるグラフが出てくるぞ!縦軸と横軸があって、グラフの中に線がたくさん描かれているグラフが出てきただろうか?!横軸は回転スピードを表している!横軸の数字が高いほど原子核の回転が速いことを表している!グラフのあるところに線があったら、そのスピードで回転している原子核があるということだ!そして線がグラフ左側にあることは、その線に対応する原子核の回転が速いことを表している!左の方に出てくる線の原子核は回転が速くて、右の方に出てくる原子核は回転が遅いことを示している!縦軸は難しいんだけど、超めちゃくちゃざっくりと言えば原子の個数を表している!

原子核の回転が速いということは何を表しているだろうか?実は原子核の回転スピードは、原子核の周りを飛んでいる電子の数で決まる!原子核の周りを飛んでいる電子が少なければ少ないほど、その原子核は回転が速くなる!つまりグラフの左のほうに線が出現する!

さら原子核の周り飛んでいる電子の数は、その原子が結合している原子の種類で大体決まる!例えば酸素に結合している原子は、酸素電子を奪われている!だから電子が少ない!だから回転が速い!だからグラフ左側に出てくる!このことから、もし謎の物質発見したとして、そいつNMR測定にかけた結果グラフ左側に線が出てきたら、その物質には酸素が含まれている可能性が高いということになる!

以上がNMR原理だ!①NMRラジオ波を使って原子核の回転スピードを測定する装置だ!②NMR測定を行うとグラフが出てくる!グラフ左側に線があれば回転スピードが速い!③回転スピードが速いということは電子が少ないということを表す!④電子が少ないということは酸素みたいな電子を奪う性質原子が含まれている物質である可能性が高い!

ということだ!もちろんNMRでわかるのはこれだけじゃない!もっといろいろな情報がわかる!だから新しい物質を作ったり発見したりしたとき、多くの化学者はとりあえず物質NMR装置分析してみて、どんな物質なのかを調べる!

○○

NMRは本当にいろいろな分析ができる!原理はさっき言った通りだけど、そこから本当にいろいろな現象のことがわかる!すべての現象説明するのはかなり困難だから、ここではNMRで何を知ることができるのかだけを列挙していく!

物質の濃度を調べることができる!

・・・グラフから物質の濃度がわかる!たとえば酒をNMR装置分析すれば、アルコールが何%、糖分が何%含まれているのか大体わかる!

物質のカタチを調べることができる!

・・・新しい物質発見したら、それがどんなカタチなのかを調べる必要がある!正確な構造論文に乗せないといけないし、カタチがわからないと性質もわからいからな!だからNMR装置でカタチを調べるんだ!

物質の、特にタンパク質の立体構造を調べることができる!

・・・次元NMRと呼ばれる手法を使えば、タンパク質の立体的なカタチを調べることができる!タンパク質のカタチがわかれば、病気の原因になっているタンパク質に効く薬を設計したいときなんかに役に立つ!NMRは製薬や生物学の分野で大いに役に立っているぞ!

物質の動き方がわかる!

物質化学反応がどういう仕組で起こっているのか、液体の中で物質がどう動くのか、といった物質の動き方がわかるぞ!

   

ざっくりこんな感じだ!オラが知らなかったり、あえて書いていなかったりするだけで本当はもっとあるぞ!

○○

病院MRIというのがあるだろう!あれだってNMRの親戚だ!NMRはNuclear Magnetic Resonance(核磁気共鳴法)だけど、MRIMagnetic Resonance Imagingだ!日本語だと磁気共鳴画像法と言うな!Nuclear(核)というのは核爆弾とか放射線イメージが強くて患者を怖がらせてしまうから医療世界だとNuclear(核)という言葉は使わないみたいだ!でも仕組みとしてはNMRMRIほとんど一緒だ!もちろんNMRMRI放射線は出ない!

MRIは、NMR測定を体のいろいろな部分で行って、その結果を二次元的な画像にする手法だ!オラはMRIのことはそんなに知らないけど、お医者さんはその画像から体のどこに腫瘍があるとか、そんなのを判断しているらしいぞ!超すごいな!

○○

ちなみにNMRの性能はほとんど磁石の強さで決まる!同じ物質なら、磁石が強ければ強いほど、原子核を速く回転させることができるぞ!磁石が強いNMRを使えばそれだけ情報量も増えるんだ!だからほとんどのNMRには超電導磁石が入っていて、だから液体ヘリウム磁石を冷やすんだ!NMRを使う研究者にとってヘリウム不足は死活問題だ!NMRが使えないとマジで何も研究ができなくなる人もかなりいると思うぞ!もっとヘリウムが安く安定して買えるようになるといいな!より高温でも超伝導になる磁石があるともっといいな!みんなそれぞれ得意な研究や開発をがんばってくれ!磁石の強さはNMR場合はHzで表すぞ!テトラメチルシランという物質があって、こいつの原子核を1秒間で1億回回転させることができる装置のことを100MHzと表す!5億回なら500MHz、10億回なら1000MHzだな!NMRは数千万円はするし、維持費もヤバいから大学研究所に1つか2つあれば良いほうだ!たいていの場合400MHzから600MHzくらいのNMRを使っている!ほとんどの用途ならこれで十分だぞ!世界で一番いいNMR1020MHzらしい!ジャンジャン稼いでジャンジャン良いNMRを買いたいものだな!分子のカタチや状態分析する方法は他にもいろいろある!とても奥が深い世界だぞ!

2015-08-05

わかめ(作業員一人死亡一人やけどで軽傷@8月4日)

核融研によると、火災が起きたのは、高温のプラズマを封じ込める電磁石を冷やすヘリウムを扱う装置

核融合科学研究所では我が国独自アイデアに基づいて、ねじれたドーナツ形状の磁場超伝導の電磁石で作り、これによって超高温のプラズマを閉じ込める研究を行っています(図1)。これが大型ヘリカ装置(LHD)です。

高温プラズマは、そのままで拡散し容器壁などに触れてエネルギーを失ってしまます。 そこでプラズマを高温・高密度の状態で閉じ込めて核融合反応を起こさせるために、磁場を用いる方法と強力なレーザーを利用する方法提案されています磁場閉じ込め方式は、電気を帯びたプラズマ粒子が磁力線に巻き付いて運動するという性質を利用したもので、 磁力線で編んだ籠状の磁気容器内にプラズマを閉じ込める方法です。 この方式にも磁場の形状によりいくつかの種類があり、本研究所で進めているヘリカル型のほかに、トカマク型、ミラー型などがありますレーザー光を利用する方法は、慣性閉じ込め方式と呼ばれ、強力なレーザー重水素三重水素の氷塊(ペレット)に照射して瞬間的に核融合反応を起こそうというものです。

2015-08-03

http://anond.hatelabo.jp/20150803012604

返事ありがとうございます数学出身なので物理事情に疎く参考になります。今後も色々な所で書いていただければと思います

トンデモ扱いと言うのは、ツイッターなどで見かける核融合核分裂などへの、研究者の反応を指していました。

個人的にはあり得るのではと思う事を、研究者の方は余り相手にしていないのを見かけるのと、話題すらなってないことでもまだまだ応用の可能性があるのではと感じてます

QCD計算が大変ということで難しいからそう簡単に言及できないということなのかもしれませんね。

物性や量子化学辺りは今後やっていきたいと思ってるので人が多いのは知っていますが、「物理理論」というのから省いていました。

素粒子論は加速器などの大きな研究所があるので結構人数が多いかと思っていましたが、全体からするとかなり少ないのですね。

大半が素粒子論を研究しつつ加速器実験もしているのかと思っていました。CERNの人たちも加速器実験研究者ということなのですね。

個人的特に見ている量子化学周辺は余り量子場は(相対論も)使ってないようですが、物性の本に量子場の応用をテーマにしたのがそういえばあったように思います。まだ勉強してませんが。

ニュートン日経サイエンス物理記事結構読んでますが(特に特集は)素粒子関連がかなり多いですね。もっと物性などを取り扱って欲しいですね。個人的QCDをやる予定はないので、素粒子現在関心が低めです。

量子光学関連や超伝導関連のクーパー対を観測したなどはそういえば結構見かけますね。

http://anond.hatelabo.jp/20150803003905

うーん。。。おっしゃっていることがよくわからないのですが、一つずつコメントしてみます

意図を汲みとれていなかったらすみません

QED原子核辺りでももっと色々地道な計算してみるべき事があると思うけど、素粒子論をやってる人たちはその辺基本スルー(むしろトンデモ扱い)しているように思う。



そんなことないです。トンデモ扱いというのは聞いた事がないですね。

まず、QED普通に素粒子分野です。

QEDから標準理論のほころびを探す研究としては g-2 の計算があったと思います

それから原子核は「原子核理論」の人たちが専門ですが、最近素粒子理論(格子QCD)の人たちも研究を進めています

QCD摂動計算が使えないのでスパコン頼みになってしまます

素粒子理論から直接、原子核研究できるようになって来たのはここ数年の話です。

別にスルーしているのではなく、やりたいのはやまやまだけれども難しくて出来ないといったところです。

物理理論に関しては、超弦理論素粒子論(標準理論)に偏り過ぎかなと思う。

量子力学範囲で、レーザー半導体など応用があるように、量子場の領域にも様々な実用的応用があるように思うのだが。



これは何か誤解があるように思います

素粒子分野の研究者はほんの一握りしかいません。

物理学ほとんどの分野が物性物理です。(参考:http://div.jps.or.jp

そして物性理論の多くの分野では場の理論量子力学を使っています

彼らにより薄膜、超伝導半導体など実用的な研究がされています

素粒子分野はニュートン日経サイエンスなどの一部メディア露出度が高いので誤解をされたのではないでしょうか?

素粒子論をやってる人たちは、加速器データ処理などが業務の大半なのでしょうか?


それをしているのはおそらく加速器実験の人たちでしょうね。素粒子理論ではありません。

2015-07-22

西伊豆感電事故の状況が多少分かったのでブコメに突っ込んでみる

http://anond.hatelabo.jp/20150720190643の続編。

電気屋的にはNHKニュースhttp://www3.nhk.or.jp/news/html/20150722/k10010162021000.htmlでほぼ完結で特段疑問は残らないんだけど、ブコメ

http://b.hatena.ne.jp/entry/www3.nhk.or.jp/news/html/20150722/k10010162021000.htmlを見ると結構勘違いしている人が多いようなので多少フォローしてみる。

さらい・なんで人が死んだの?

電気さくではなかったからです。

法令定義されている電気さくではありませんでした。今回の事故の原因となったブツは「交流を流しっぱなしにしてある裸電線」です。

前回書いた平成21年淡路島で起きた死亡事故電気さくの事故でなく「100Vの電気が剥き身で流れている電線」の事故でした。

今回はさらにその上を行く「400Vの電気が抜き身で流れている電線」での事故です。

ツッコミその1:何アンペア電流だったのかって何か大事ことなの?

いいえ。ほとんど何も関係ありません。

前回も書いたとおり、人間感電死する場合、胸部を通過した電流が心筋を誤作動させて心臓を止める、というのが圧倒的1位です。

この時に必要電流値はというと0.1ミリアンペア程度です。理科実験で作ったレモン電池(いまでもやるのか?)程度の電気でも、体内の心臓のすぐそばに電極設置して流せば人は死にます

じゃあなんでレモン電池に触っても死なないかというと、電圧が低くて、それなりに電気抵抗の高い皮膚を突破して体の内部まで電気を流す力がない、というのが一番簡単な説明です。ですので、電流電流とうるさい人たちが批判している、電圧の方を気にした報道の方が、相当に理に適っていると言えます(最初に100Vが流れていたとか飛ばし記事書いたどこぞの新聞、オメーはアウトだ)。

市販の電気柵って4000V使ってるって聞いたけど、それは電流制御してるから安全なの?

いいえ。電気さくに触っても死なないのは電流制御とは別の方法です。というか電流値をそんな高度に制御できたら苦労はないというか次の開発機で頼みたいことあるから連絡よこしやがれ下さい。

報道でも何カ所かで説明されているとおり、市販の電気さくは

「0.9997秒ぐらい電気が流れてない時間→0.0003秒ぐらい4000Vの電気が流れる→0.9997秒ぐらい電気が流れない時間→……」

の繰り返しで動いています

前回貼った基礎資料https://nippon.zaidan.info/seikabutsu/1999/00268/contents/039.htm

最初に、『表4.1.2 電撃時間に対する危険接触電圧危険電流』が掲載されています

見ると分かるとおり、感電危険さは、電流値そのものだけでなく、電気が流れる時間にも大きく左右されるのが分かりますね。

市販の電気柵がショックだけで済む最大の理由は、電気がこんな短い時間しか流れてないからです。電流値とか関係ない。そりゃ4000Vだから、瞬間的には100mAとか1Aとかの、ずっと流れていたら人が死ぬぐらいの電気は流れますよ、そりゃ。普通に売ってる市販品で0.0003秒しか流れない電流値を制御するとか無理の無理無理です。

逆に言うと、今回の事故は「400Vの電気がずーっっと流しっぱなしになっていた」から起きた事故です。電流とか、さらに何一つ関係ない電力とかを気にしてるブコメ貴様の知ってる電流制御方法をよこしやがれ下さいお願いしますと言う感じです。

繰り返しますが、人が感電死ぬのは大火傷するような大電流が流れたような大事故でないかぎり、心臓近くに電気が通って心筋が誤作動してしまたからです。それを引き起こすのは大電力ではありませんし、大電流でもありません。そんな深いところまで電気を届けるだけの高電圧か、あるいは人体の電気抵抗の低下です。

今回は「400Vという高電圧」と「水場で体が濡れて電気抵抗が下がっていた」の合わせ技で起きた悲劇とみるのが普通です。

多少分かってる人向け、なんでブレーカー落ちなかったの?

今回のような感電事故では、普通ブレーカー(やヒューズ)は役に立ちません。普通ブレーカーの役目は大きく二つ、

電気の使いすぎの防止」と「短絡事故ショート)が起きたとき遮断」です。

電気の使いすぎ、というのはよくあるエアコン電子レンジを同時に入れるとブレーカーが落ちる、という奴ですね。電気電線で運ぶのですが、電線超伝導ではないので抵抗があり、電流を流すと発熱します。流れる電流が増えれば増えるだけ発熱し、最終的にはどっかで発火するか溶着するかします。

短絡もほぼ同じですね。コンセントの両極を金属(のような抵抗の低い物)で直結するととんでもない大電流が流れるので、遮断しないとさらに大変なこと(最悪、電柱の上のトランスが焼けるとか)になります

ブレーカーの動作電流は様々ですが、基本的には一般家庭向けの契約だと最小10Aなので、これだと人を何回も殺してお釣りが来ることになりますブレーカー感電事故を防ぐことは望み薄です。

感電事故を防ぐ上でもう少しアテになるのは漏電遮断器です。現状、新築の家であればホーム分電盤は大抵は漏電遮断器がついてて、30mAとか15mAの漏電が起きると止まることになっています

ですので、仮に報道の通り、100Vのコンセントに400Vに電圧上げるためのトランスが直結されていたとしても、本当なら30÷4や15÷4で7.5mAや3.75mAの漏電で作動する、はずです。このぐらいの電気ではなかなか人は死なない、はずです※。

パターンか考えられることはあります

  1. 漏電遮断器が付いてなかった:個人的には最有力候補。今でも漏電遮断器がついてない家はゴロゴロしています
  2. 漏電遮断器が付いていたが動いてなかった:個人的には次点。漏電遮断器というのは結構デリケート部品で、経年劣化します。で、劣化した場合に頻繁に誤作動する方向に行ってくれたらまだ「じゃあ取り替えようか」となるんですが、逆に「漏電してても全然作動しない方向」に劣化するのもよくある話です。
  3. 400Vに昇圧するためのトランスが絶縁トランスとして機能していた:これは「原理上は起きる」という話なんでたぶん関係ないと思ってます。一応説明すると…長いのでやっぱり止めます部分的に説明してるブログとかあるけど、本当は漏電遮断器の動作原理をきちんと説明する必要があるので長杉。

※なお漏電遮断器が本当に人命を守るための機器かというと微妙な部分もありますが、そこ書いてるとやっぱり長くなるので省きます

余談・一部ブコメにあるスライダックって何?

今回の事件にはまず関係ありません。終わり。

技術的に言うと単巻トランスの一種です。出力電圧連続的に変化させることが出来て、交流を使った実験をやるときにはとても便利です。うちにも何台かあります

で、「電圧を変えることが出来る」という文言だけ見て勘違いした人がいただけでしょう。普通スライダックは100V入力でも上限電圧はせいぜい130Vぐらいです。100V入力して400V出て来るとかそんなスライダックがあったら便利だからよこしやがれ下さい。

あの文言を見た電気屋が普通に連想するのは

「2次側(いや実は1次側かもですが)に複数の端子がついていて、どこに繋ぐかで出力電圧が変わる」というよくあるマルチタップトランスでしょう。

余談の余談ですが、スライダックというのは本当は(今話題の)東芝商品名だったんですが、現在は製造されてません。ですが、『出力電圧連続的に変化させられる摺動型単巻トランス』のことはみんながみんなスライダックと読んでて違う呼び方してる人に遭遇したことはないです。

2013-06-21

夢の技術へ向かって

エネルギー分野での、夢のような技術といえば、今のところ次の二つではないでしょうか。

核融合エネルギーを利用した発電システム

超伝導技術を応用した高効率送電システム

原発再稼働は容認できませんが、これらの研究は進めてほしいと思っています。もちろん、もんじゅなんかはすぐにやめて。

http://www.yomiuri.co.jp/national/news/20130621-OYT1T00182.htm

もちろん、放射線物理学でも、もう今の原発システムなんか見てないと思います。それをアピールすればいいのにって思いますが、実際は変わってないってこと??

2012-07-18

そもそもなんで超伝導を酒で煮ようと思ったのか/学会で聞いたこと

「なぜ 酒で煮ると超伝導物質に変わるのか?」

http://www.nims.go.jp/news/press/2012/07/p201207130.html



ブコメでなぜお酒を煮ようと思い立ったのか、疑問に思う声が多くあって、たまたま知っている立場なので書いてみた。

2年くらい前に学会で聞いた話であって、関係者ではないです。

Fe(Se,S)という物質は作った直後は超伝導体ではない。

ところが空気中で放置すると、超伝導化する、というのがこの物質の特徴だった。

しかも、時間がたてばたつほど、少しずつ超伝導がよくなる、ということもわかった。

1ヶ月たってもまだ超伝導はよくなり続けた!

1年たってもまだ超伝導はよくなり続けた!

どこまで変化し続けるの?どうして空気中で超伝導がよくなるの?ということが疑問だったが、

変化がとても遅いことがボトルネックだった。

そこで、この変化を促進させる必要があった。(←ここがポイント

そら最初は、水に直接つけるところから始まったと思う。

実験室にありふれているエタノールで試したりもした。

そういう試行錯誤のなかで、ビールワインなども試してみた。

結果、不思議なことに、赤ワインが最も超伝導をよくすることがわかった。

しかも高級なやつよりも、サントリーの「彩食健美」がよいとも言っていた。

白ワインよりも、ぶどうジュースよりも、水とエタノールの同じ混合割合のものよりも、

赤ワインは優れていた。

ではなんで赤ワインがいいの?ということになって、

今回のプレスリリース「キレート効果を持つ有機酸などが余分な鉄を除去」につながっている。

余分な鉄、っていうのが超伝導に悪さしていた、っていう理解だ。

空気中で超伝導がよくなる件については、たぶん余分な鉄と酸素が結合して酸化鉄をつくって、Fe(Se,S)という超伝導体の本体から析出したのではないかと推測する。

そのへんは論文を読んでみないとわからないけども。

「酒で煮る」っていうのは、反応温度を90℃くらいでキープした、という意味だけども、

これは温度が高いほうが反応が速くなるから

室温でも時間はかかるが、起こることは同じだと思われる。

2011-09-29

大学物理学科について急に語りたくなったので語る。

なんか、誰の役に立つの分からんけど、私が高校生の頃にこういう説明があったら良かったなぁ……とふと思ったので書いてみた。

さて、大学理学部物理学科に入学するとしよう。基本的に物理学科は、専門が進んでいくと、

この2系統x2分野で、4カテゴリだけに全てが収められる。意外に思われるかもしれないが、私も当時(学部3年頃)びっくりした。本当にこの4つしかない。

理論実験

まず理論系と実験系だが、その名の通り。理論系に進むと実験はやらずに、ひたすら理論だけ。本当に紙と鉛筆だけで物理モデルと数式を弄るだけのツワモノもまだいるけど、最近は、第一原理計算などのコンピュータシミュレーションも多い。

一方実験系に進むと、元旦液体窒素を汲んで延々と真空ポンプのお守りをしたり、「吸い込むと死ぬ」「空気に触れると爆発する」とかナチュラル危険すぎるガスをぶぉんぶぉん基板に吹き付けたり、TEM(透過型電子顕微鏡)の試料作成と軸合わせに12時間かけたあとに休憩も取らず深夜3時から測定開始したりする。要するに不死身であるしか給料ももらわずに学費を払ってこれをやるのだから真性マゾである。……話がそれた。

大学院進学の際、実験系には希望すれば誰でも進めるが、理論系へは相当の能力(とりあえずはテストの成績と言って良い)が無いと進むことはできない。まぁ学部3年くらいになれば、物理ができるヤツと物理ができないヤツの本質的な差が自他ともに見えてくるので、みんな自分がどっちに進むべきかはおのずから悟って判断する。そのため、「理論系に進みたかったけど成績が足りずに不本意ながら実験系に行った」って人は、実はほとんどいない((が、一部の実験系の人はやはり理論系の人にコンプレックスを持っており、理論の人を揶揄する実験系の人も時々いる。そういう人は学生時代はあまりそれは出ず、准教授教授クラスになってそうなる人が多い))。私の周りでも、理論系に行った人たちはやはり「天才」と呼べるだけの圧倒的物理センスを持っている人ばかりだった。

なお、実験から理論系へ、または理論から実験系へ移る人も、滅多にいないがいる。そういう人はものすごい変人か、ものすごい優秀かである。もちろん、変人かつ優秀の場合も多い。

物性と素粒子

先ほど言ったように、物理学科ではこの2つの分野しかない。意外だろうけどそうなのである

物性物理学は、モノの性質を「なぜだろう」と問う学問である(と思う)。例えば物性理論の第一原理計算では、「なぜ銅は銅としての性質を持つのか」を、原子番号の29という数字だけ入れて作り上げようとする。一方、物性実験系だった私は、毎日毎日ひたすら真空ポンプのお守りをしながら、ナノ微細構造作成とその電気特性を測定していた((今日作成温度500度、明日は550度、明後日は600度……お、550度が一番いいな。みたいな))。その他、金属半導体、光デバイス、磁性や超伝導電磁気的性質、まぁそのへん全部物性系である。応用例も広く、就職比較マッチングしやすいので、物性実験系が物理学科のもっともスタンダードな専門となる。

一方、素粒子は毛色が違う。「素粒子」と「原子核」で分ける人もいるけど、面倒なので一緒にする。有名なところでは加速器をやってる人たち。高エネルギーと呼んでいる大学もある。要するにモノの性質を問うのではなく、モノを作っている原子の中身とその構造を追っていく学問だ。クォークニュートリノグルーオンなどSF好みな題材が多い。素粒子は物性と違い、その経験を活かして就職しようとしても口が少ないため、アカポス狙いになってなかなか難しい。ただ、学部卒や修士卒で就職するつもりで専門に拘らないなら、分野なんて全然関係ないので気にしなくていい。素粒子から普通にリクルート電通化学企業なんかに行った人はいっぱいいる。しか博士課程に行くと……ポスドク地獄まっしぐらが待っている、気をつけよう。

宇宙論は?

みんな大好き宇宙論は、宇宙地球科学科が無い大学だと物理学科の素粒子に繰り込まれてしまう。高エネルギーとか場の理論とかになると、どうしてもそちらなので。

なお、物理学科に入る人で「宇宙論やりたい」って人はたくさんいるけど、講義が進んで悪魔テンソル計算が山のように出てくると、多くの人が挫折してむしろ宇宙論が嫌いになってしまう。足の上げ下げ、共変・反変、今思い出しても夢に見そうだ。

2011-04-01

原発廃止派に知って欲しいエネルギーの話

原発廃止派に、原発を全部いきなり止めてそれで必要だった電力はどうするの?と聞いても、「再生可能エネルギーがー」といった具合に、"新エネルギーがいきなり原子力を置き換える"と思ってる人がいます。

エネルギーを役立てるには必要な前提がいくつかあります。なぜ必要なのかを理解するためには、知らなければいけないことがいくつかあるので、それをまとめてみました

曖昧表現や間違っている部分がある可能性や、将来の展開について個人的な想像が含まれていることをお断りしておきます

(それは違うだろ、という点があればトラックバックで補足してもらえればと思います)

電気はそのままでは貯められない

現在、実用レベル電気を貯められるのは水力だけ。

水力は電気が余って捨てられている夜間に水をくみ上げて位置エネルギーに変換し、昼間のピークに放出している。水力が他の発電と比べて優れているのがこの"位置エネルギーに変換し、必要な時に即座に生産できる"ところ。

しかし、水力発電に伴うダム建設には環境破壊など大きな問題がある。貯められる電力という水力と同じポジションを担う発電、送電、蓄電技術が今後重要になる。これについては後述する。

調整できる発電と調整できない発電

原子力発電は大きな発電力があるが、ほとんど調整がきかない。火力発電は原子力発電に比べればずっと調整がきくが、それでも出力を変化させるとロスが大きくなる。これら二つは、変化が少ないかわりに大きく安定したベース電力を得られる発電方法といえる。

逆に水力発電は、さほど大きな発電量は見込めないが、位置エネルギーに電力を変換し必要な時に放出するピーク電力対策に優れた発電方法といえる。

現代の発電は、このベース電力とピーク電力対策を組み合わせて需要対応している。

何故ベース電力とピーク電力対策が必要なのか

夜間は電力が捨てられて、昼間は電力が足りない。

電力の需要量は、時間に応じて夜間は低く昼間は高くやまなりの曲線を描いている。仮にベース電力だけで全てを供給すると、ベース電力の必要量は需要のピークに合わせなければならない。需要の谷にあるときには、必要量を発電量が上回った分がそのまま無駄になることになる。

そこで、水力発電のような"夜間のあまった電力を一度保存し、ピークのタイミング生産できる"補助があれば、ベース発電の出力をピークにあわせる必要がなくなる。結果的に無駄にする電力が減り、必要な総発電量も減る。水力発電は少ない発電量しかないが、その特性上見かけよりも必要総発電量の削減に役立っている。

先にも言った通り、ダムを作る事は大きな環境破壊を伴う。いくら水力の貯めができる点や追従性が優れていても、ほいほい増設できるものではない。しかも、火力発電を(ロスを出しながら)調整し、水力発電がフルで頑張っても、夜間と昼間の必要電力のギャップには追いつけない。夜間に大量の電力が捨てられているわけだ。

冬と夏の問題

冬と夏の電力需要にも同じ問題がある。発電所の新設は夏の電力需要のピークを見越して行われる。電力会社が「電力が足りない!新設しなければ!」と言う時、それは「夏の昼間のピークに足りない」ことを示している。

じゃあどうすればいいの?

水力発電の担っている仕事を、企業や個人レベルで行っていく必要がある。しかし、水力なんて大規模なものは普通できない。別の蓄エネルギー方法が必要になる。

現実的なものには氷蓄熱があるだろう。エコアイスと言えば聞いた事があるのではないだろうか。電力会社は数年も前からこの氷蓄熱を普及させるために夜間の蓄熱用の電力を非常に安くしている。

冬と夏の時間スケールでなら、冬の間にためた除雪の山をそのまま夏まで持ち込んで冷房に利用するという手段が北海道では実用化されている。

海外では巨大な電池を設置する例も出てきている。

EUでは時差のある国家間で電力の融通が行われている。そのため、夜間に捨てられる電力は日本に比べて少ない。また、工場の廃熱等で発電する熱→電気の再利用が進んでいる。

日本東西はな南北に長いのでEU間のような時差もピークの差もない。しかも島国なので送電技術進歩しないかぎり隣国と電力を融通しあう事はできない。北海道の電力は余っているが十分に生かされていない。同じく西日本からの変電の問題もある。これらの改善には膨大な金が必要だそうだ。

(送電技術進歩しまくった未来には、電力輸出国がありうるかもしれない。)

個人規模では電気自動車があげられる。夜間のうちに充電できるからだ。ただ電気自動車は高価で、走行条件によっては航続距離が非常に少なくなるなどまだまだ普及するものには思えない。古いクーラー省エネのものに変えていくのは効果があるらしい

もし火力や原発の新設が必要無くなったとしても、原発なくならないじゃないか

その通り。しかし、新エネルギー原発を無くそうといっている人は本気でいきなり代替になると思っているのだろうか?新エネルギーや風力や太陽光などの再生可能エネルギーすぐにはベース電力の代替にはならない。今の技術では、設置コスト生産にかかるコストはもとより、発電量でもベース電力を担うものにはならない。

だけども、新エネルギーが全くの無駄なのではない。新エネルギーは火力や原子力が担うベース電力をいきなり代替するようなものではないが、今の水力が担っているピーク電力を強化することで、結果的にベース電力の必要量を下げ、火力発電所原子力発電所の新設を少なくする可能性がある。

エネルギーが実用化されるとしたら、まずはベース電力の代替ではなくピーク電力の補助ではないだろうか。今後のプロセスは次のようになるのが理想的だと僕は考える。

  1. 蓄熱や雪利用、廃熱利用、送電網の強化などで、夜間や冬季に捨てられる電力を出来るだけ少なくする。
  2. 局地的な電力の融通を行えるようにスマートグリッドの導入と電力自由化を進める。それがあって初めて小規模な新エネルギーが生かせる。
  3. 太陽光発電は昼間に発電するため必然的に電力のピークを補うが、コスト発電効率はまだまだ。しかし開発投資は必要だろう。
  4. 風力発電は充電か蓄エネルギーできる手段とそれをコントロールできるスマートグリッドとセットで導入しなければ十分に生かせない。
  5. これらがピーク電力をカバーすることで捨てられる電力が少なくなり、ベース電力の必要な総発電量を下げる事が出来る。まずは、火力と原子力の新設を止めるのが第一段階だろう。
  6. しばらくはこの段階が続く。
  7. 熱電素子の効率が上がり、廃熱の再利用が低コスト化するかもしれない。
  8. さらに未来に、太陽光や風力発電の発電量と生産コストが今の火力や原子力に匹敵する状態になった時に、徐々にベース電力の置換が行われていく。

参考資料

4/2 追記分

今更ですタイトルはちょっと良くなかった。原発廃止派が余計でした漠然と訴えてる人は廃止派に多いという偏見が確かに僕にあった。ご指摘の通り、極端な推進派廃止派は声が大きいだけで、数で言えば「原発いきなり全部は止められないか現実的に頑張ろう派」「しょうがないと思ってるけど原発はこれ以上増やさない派」「東電政府の問題は追及するけど今安全な原発運用は認める派」のような人達サイレントマジョリティ可能性はあります原発の話題をする時にまず「推進派なのか廃止派なのか」を前提にする今の空気自体が議論を横道に逸れさせるめんどくせー状況を生み出してるともいえそうです。今回タイトル自分がそれを僅かでもやってしまったというのはちょー後悔してます

代替エネルギーについて網羅しきっていない→素人の僕が説明するより資料見てもらったほうがいいと思う。このまとめは"前書き"部分にあたる話だから代替エネルギーやその進歩展望について網羅することはしていない。バイオマスエネルギーの開発状況とそれが発展途上国農業に及ぼす影響、メタンハイドレートは掘れたらすごいけど掘るの難しい国境問題も絡む話、ゼーベック素子の話、超伝導蓄電(これ正直僕は詳しくない)等は調べれば色々出てくるよ。

何れにしても、新エネルギー利用も化石燃料原子力の利用を少なくするのも、エネルギー無駄にしない仕組み→スマートグリッド地域国家間での融通、蓄電技術、熱の再利用などがセットなのは間違いないわけで、その必要性を理解してもらうのに書いたのがこのエントリです

最後

地元から反対されてるのに暴力的な政治力建設してしまうケース、トラブルがあったときの縦割り体勢による不透明さ、フットワークの重さ、補償問題、風評被害への対策…これら社会的な問題は原発技術を認めていても無視してはいけません。

逆に、原発に反対であっても社会的な問題を理由に原発技術面を全く評価しないのは話をややこしくします。技術存在自体が社会的な問題だと捉える人が出てくるからです。そうなると技術不信で一層正確な判断ができなくなり、パニック陰謀論に陥ってしまいます。

原発技術を正しく認める事で、「最新式ならこうできるはずだった」「もっと最善の方法があったのではないか」という人為的なミス運用上の問題が見えてきます

漠然と「原発は安全だ、何故反対するのだ」「原発危険だ、全部信用できない」とならずに、原発社会的な問題と技術的な問題は分けて考えるとパニックにならずに少し落ち着けるのではないでしょうか。

2009-09-19

1990年-25%CO2削減を目指すということ

これらをどう転換するか

後の平成オイルショックである。成功すれば世界でも有数の環境大国になることは間違いない。失敗すれば目も当てられないことになるのは必至。

民主党マニフェスト

29.目的を失った自動車関連諸税の暫定税率は廃止する

【政策目的

○課税の根拠を失った暫定税率を廃止して、税制に対する国民の信頼を回復する。

○2.5兆円の減税を実施し、国民生活を守る。特に、移動を車に依存することの多い地方国民負担を軽減する。

【具体策】

ガソリン税軽油引取税自動車重量税自動車取得税暫定税率は廃止して、2.5兆円の減税を実施する。

○将来的には、ガソリン税軽油引取税は「地球温暖化対策税(仮称)」として一本化、自動車重量税自動車税と一本化、自動車取得税消費税との二重課税回避の観点から廃止する。

【所要額】

2.5兆円程度

42.地球温暖化対策を強力に推進する

【政策目的

国際社会協調して地球温暖化に歯止めをかけ、次世代に良好な環境を引き継ぐ。

○CO2等排出量について、2020年までに25%減(1990年比)、2050年までに60%超減(同前)を目標とする。

【具体策】

○「ポスト京都」の温暖化ガス抑制の国際的枠組みに米国中国インドなど主要排出国の参加を促し、主導的な環境外交を展開する。

キャップトレード方式による実効ある国内排出量取引市場を創設する。

地球温暖化対策税の導入を検討する。その際、地方財政に配慮しつつ、特定の産業に過度の負担とならないように留意した制度設計を行う。

家電製品等の供給・販売に際して、CO2排出に関する情報を通知するなど「CO2の見える化」を推進する。

43.全量買い取り方式の固定価格買取制度を導入する

【政策目的

国民生活に根ざした温暖化対策を推進することにより、国民温暖化に対する意識を高める。

エネルギー分野での新たな技術開発・産業育成をすすめ、安定した雇用を創出する。

【具体策】

○全量買い取り方式の再生可能エネルギーに対する固定価格買取制度を早期に導入するとともに、効率的な電力網(スマートグリッド)の技術開発・普及を促進する。

住宅用などの太陽パネル環境対応車省エネ家電などの購入を助成する。

44.環境に優しく、質の高い住宅の普及を促進する

【政策目的

住宅政策を転換して、多様化する国民価値観にあった住宅の普及を促進する。

【具体策】

リフォームを最重点に位置づけ、バリアフリー改修、耐震補強改修、太陽パネルや断熱材設置などの省エネルギー改修工事を支援する。

建築基準法などの関係法令の抜本的見直し、住宅建設に係る資格・許認可の整理・簡素化等、必要な予算地方自治体に一括交付する。

○正しく鑑定できる人(ホームインスペクター)の育成、施工現場記録の取引時の添付を推進する。

○多様な賃貸住宅を整備するため、家賃補助や所得控除などの支援制度を創設する。

○定期借家制度の普及を推進する。ノンリコース(不遡及)型ローンの普及を促進する。土地価値のみでなされているリバースモーゲージ住宅担保貸付)を利用しやすくする。

木材住宅産業を「地域資源活用産業」の柱とし、推進する。伝統工法を継承する技術者健全な地場の建設建築産業を育成する。

45.環境分野などの技術革新世界リードする

【政策目的

○1次エネルギーの総供給量に占める再生可能エネルギーの割合を、2020年までに10%程度の水準まで引き上げる。

環境技術研究開発・実用化を進めることで、わが国の国際競争力を維持・向上させる。

【具体策】

世界リードする燃料電池超伝導バイオマスなどの環境技術研究開発・実用化を進める。

○新エネルギー省エネルギー技術活用し、イノベーション等による新産業を育成する。

国立大学法人など公的研究開発法人制度改善研究者奨励制度の創設などにより、大学研究機関の教育力・研究力を世界トップレベルまで引き上げる。

46.エネルギーの安定供給体制を確立する

【政策目的

国民生活の安定、経済の安定成長のため、エネルギー安定供給体制を確立する。

【具体策】

エネルギーの安定確保、新エネルギーの開発・普及、省エネルギー推進等に一元的に取り組む。

レアメタル希少金属)などの安定確保に向けた体制を確立し、再利用システムの構築や資源国との外交を進める。

○安全を第一として、国民の理解と信頼を得ながら、原子力利用について着実に取り組む。

2008-02-26

もしも魔の手が伸びてきたなら

全力をもっておやつクッキーを死守するのだ。

貴方が池に落としたのはこのびしょぬれのクッキーですか?

それとも、こっちのチョコチップ入りのクッキーですか?

やつはとんでもないものを盗んで行きました。

それは、貴方のみみかきです。

やや、それは伝説の中でのみ存在するはずの黄金の乾電池!?

ひかえい、ひかえい!

この伝導性能の前にかなうのは超伝導のみ!

そうか!

今、点と点がつながって一つの線に!

手がかりはそろい、すべての謎が明らかになった。

いよいよ最終決戦だ。

野郎ども!

靴下は毎日洗濯しとけよ!

2007-01-30

仲間内だけでしか通用しない言葉を嬉々として使っている奴らが気持ち悪い。

「2バンド超伝導理論」って書いてるお前のことだよ!

死ねばいいのに

ログイン ユーザー登録
ようこそ ゲスト さん