1+1=2なのはなぜかという問いと、一個のあるものにもう一個あるものが手に入ってそれを合わせたら2個になるのはなぜかという問いは似て非なるだと思う。
前者はペアノの公理なり群論なりからなかば定義にみたいにそうだからそうなんだと説明できる。
だが後者はそういう目で見たり手に取ってみれる直観的現象としてなぜそうなるのかという話だ。しかもどんなに巨大な個数あっても同様なことが成り立つわけだ。
しかもこれ、微積分とかの何らかの計算がなぜ成り立つのかというのと問うのはまだ掘り下げてその仕組みを理解することが意義深いものでありうる感じるの違って、やはり問うまでもでもなく当たり前のことでしかないのではないかとも感じてしまう。
しかしそうやって連立方程式がなぜ代入法で解けるのかについて理解することについては素通りして当たり前に成り立つに決まってるとして活用してたのが、実は自明でもなんでもなく理解すべきロジックがきちんとあってそれに対して当たり前と言う言葉に目を曇らせていた事実もあったから、今回その可能性があるのではないかといわゆるジレンマに陥っている。
1+1=2のような足し算しょせんそういう直観的現象に対して辻褄があるように取り決められた演算にすぎない。あくまで直観的現象が先にあってその現象が予想できるように自然数の公理なりが定義されているわけだ。
あるいは5個あったところに1個追加された全体は3人で余りなく分けられるのはなぜかというのも似たような問いだ。6÷2=3だからだというのはその説明になっていない。
実際にそうなることの計算による推論の仕方を言ってるのではなく、なぜそうなるかと聞いてるわけだ。
人間の個数に関する認識が数学の構造にうまい具合に従っているから、認識と数学の集合が同型(雰囲気で言ってる)だから、みたいなことだろうか?数学基礎論を齧ってみたがいまいちこの問いと結びついているようであまり有用な感じもしない。なんかスマートな説明ないか。