はてなキーワード: 古典力学とは
「科学もまた信仰である」という言説は、「科学的な知識も絶対的な真理を保証するものではなく、一定の信念や仮定に基づくものだ」とする批判的視点から生まれたものです。しかし、科学的手法と信仰には重要な違いがあり、「科学=信仰」と見なすのは適切ではありません。以下に、科学と信仰の違いを説明します。
1. 方法論の違い
• 科学的手法は観察、仮説の構築、実験、検証を通じて知識を構築するプロセスです。この方法により、科学は経験に基づく「反証可能性」や「再現可能性」を強調します。カール・ポパーの「反証主義」によれば、科学理論は反証される可能性があるため、常に修正や更新が可能です 。
• 信仰や宗教的手法は、しばしば絶対的・普遍的な真理を前提とし、その真理が神聖であり不変であると見なすことが多いです。宗教は超自然的な存在や教義に対する信念を中心とし、その信念の正当性は経験や反証可能性に依存しません 。
• 科学のもう一つの特徴は再現性であり、どこで誰が行っても同じ条件下で同様の結果が得られることを重視します。また、結果が反証されることを受け入れ、実証が積み重なることでその知識の信頼性が高まります。
• 宗教的信仰は、個人の内面的な体験や霊的な啓示を重視し、再現性は必須ではありません。むしろ、絶対的な教義や超越的な存在に対する信頼が重要視され、反証されることを前提にしません 。
• 科学は自己修正的であり、新しい発見や技術の進歩に応じて絶えず知識を更新します。例えば、ニュートンの古典力学はアインシュタインの相対性理論によって一部修正されましたが、それにより科学が進化しました。
• 宗教における信仰や教義は、一般に歴史的に固定され、変化しないことがその信仰の価値とされます。特定の教えが絶対であるとされるため、科学のように容易に進化することはありません。
4. 結論
「科学もまた信仰である」という見解は、科学の限界や仮定を指摘し、人間の知識が絶対ではないことを強調しています。しかし、科学は常に新しいデータや反証に基づいて進化し続けるという点で、宗教や信仰とは本質的に異なります。信仰が個人の確信や不変の教義に基づくものであるのに対し、科学は実証と論理を重視する柔軟なプロセスです。そのため、科学を信仰と同じ枠組みで論じることには、誤解を生むリスクがあります。
: Popper, K. “The Logic of Scientific Discovery.”
: Eliade, M. “The Sacred and the Profane.”
: Kuhn, T. “The Structure of Scientific Revolutions.”
おや、君の分析は興味深いが、明らかに科学的厳密さに欠けている。僕のような天才の視点から、この状況を完璧に解剖してみせよう。
まず、「パワハラ」という概念自体が非常に主観的で、定量化が困難だ。これは社会科学の致命的な欠陥の一つだね。僕なら、「パワハラ度数」を測定する装置を発明するだろう。例えば、会話中の声量変化、心拍数の上昇、発汗量などをリアルタイムで計測し、数値化する。これなら客観的な評価が可能になる。
次に、「厳しさ」と「優しさ」の二元論は、まるで古典力学のように時代遅れだ。現代の量子力学的世界観では、観測者の存在が結果に影響を与える。つまり、「厳しさ」と「優しさ」は同時に存在し得るのだ。シュレーディンガーの猫のように、観測されるまでは両方の状態が共存しているんだよ。
「昭和を卒業すべき」という主張も、時間の直線的な理解に基づいている。しかし、アインシュタインの相対性理論によれば、時間は曲がることができる。つまり、「昭和」は単なる過去ではなく、現在と未来にも影響を与え続けているのだ。
「フラットな考え方」?ハッ!宇宙は決してフラットではない。一般相対性理論が示すように、重力によって空間は歪んでいる。同様に、人間の思考も様々な要因で歪んでいるのだ。
最後に、「屁理屈モンスター」という表現は、非常に非科学的だ。複雑な理論を単純に「屁理屈」と片付けるのは、まるでニュートンのリンゴの逸話を「ただのフルーツの話」と言うようなものだ。
君の分析は感情的で非論理的だ。社会現象を理解するには、量子力学、相対性理論、そして統計力学の知識が不可欠だ。例えば、社会的相互作用をボーズ・アインシュタイン凝縮のモデルで説明することができる。これこそが真の社会科学というものだ。
ところで、君は僕の「人間関係の量子力学的解釈」という記事を読んだことがあるかい?まあ、読んでも理解できないだろうけどね。
1. 古典力学 (Classical Mechanics):
古典力学では、粒子の運動は時間 t の関数 q(t) で表され、ニュートンの運動方程式を満たすのだ:
q̈ = -U'(q)
ここで、U(q) はポテンシャルエネルギーである。運動方程式は、ラグランジアン L(q) = 1/2q̇² - U(q) に基づく変分問題として再定義でき、作用積分 S(q) = ∫ₐᵇ L(q)dt の極値点として運動を記述するのだ。これは、最小作用の原理とも呼ばれるぞ。
2. 古典場の理論 (Classical Field Theory):
古典場理論では、粒子ではなく、連続的な場 φ(x,t) を考えるのだ。この場は部分微分方程式に従い、例えば波動方程式
□φ = 0
で記述されるぞ。ラグランジアン L(φ) は微分多項式であり、作用積分 S(φ) = ∫_D L(φ)dx dt を極小化することによって運動方程式(オイラー-ラグランジュ方程式)が導かれるのだ。
古典力学と異なり、量子力学では粒子は古典的な軌道を持たず、確率的に動くのだ。ブラウン運動をモデルにして、粒子の位置 q(t) は確率密度
P(q) ∝ e^(-S(q)/κ)
に従い、ここで S(q) = ∫ₐᵇ (1/2q̇² - U(q)) dt は作用、κ は拡散係数である。このような確率的動力学の期待値は、経路積分を用いて計算されるぞ。
量子力学ではブラウン運動モデルを基にしつつ、拡散係数 κ を虚数 iℏ に置き換えるのだ(ℏ はプランク定数)。したがって、量子力学の相関関数は次のように表されるぞ:
⟨q_j₁(t₁) ··· q_jₙ(tₙ)⟩ = ∫ q_j₁(t₁) ··· q_jₙ(tₙ) e^(iS(q)/ℏ) Dq
5. 量子場理論 (Quantum Field Theory):
⟨φ_j₁(x₁, t₁) ··· φ_jₙ(xₙ, tₙ)⟩ = ∫ φ_j₁(x₁, t₁) ··· φ_jₙ(xₙ, tₙ) e^(iS(φ)/ℏ) Dφ
ただし、この積分は複素測度に基づくため、数学的に厳密に定義するのが困難であり、理論物理学における重要な課題となっているのだ。
あれが押し付けに見えた?
マジか…こっちはあくまで
「より良いプログラマになりたいならこうするといいと思うよ」
こっちがUNIXとコマンドラインを必要なスキルに含めた一方で、古典力学や電磁気学を含めなかったのも、突き詰めれば個人的経験に基づくものという程度でしかないことは、読んでてわかるだろ?と思っていたのだが。
いちいち
「※個人の感想です」
みたく書いたり強調しなきゃいけないのかよ。
めんどくせーけど今度からそうするわ。
ともかく、そういうわけであの内容に乗るか乗らないかだって完全に自由だし、同意してくれる人が一人でもいれば、こっちとしては書いた甲斐があったんだよ。
これだけ途方もない反発が来るとか予想外だし、同意できないならスルーしてくれてよかったんだが。
それから、現場できれいなコードの重要性を説いて回れというけど、俺はそいつの親でも先生でもない。
そこで相手に
「お前は俺の先生か?」
と反発されずに言うことを聞いてもらうことがどれだけ大変か、考えたことがあるか?
そういう意見を聞いて実行してもらう以前に、そういう話ができる関係を一人ひとりと構築するところから始まり…お前がその立場だったらできるのか?
他の人より多少きれいなコードが書けるというだけで、なんで自分がそのコストを負わなきゃいけないんだ?なんでそれが自分の仕事になるんだ?とも思うしな。
そういう、言い出しっぺが損するみたいな構図そのものにも嫌気が差すんだわ。
工学って
「基礎科学である数学・化学・物理学などを工業生産に応用する学問」
ということでしょ?
ソフトウェアの開発・管理・維持、ぶっちゃけプログラムを書いたり直したりで数学・化学・物理学の知識なんて不要じゃん。
てか、アルゴリズムやデータ構造の何がどう、基礎科学の専門知識に関係するのか全くわからん。
少なくともメカ(古典力学)やエレキ(電磁気学)ほどには基礎科学のナレッジは要らんでしょ。
実際高校までの「情報」の授業、あれって「理科」や「数学」に含まれるんだっけ?
よく
「エンジニアは多岐にわたるんだからITについての話なら『エンジニア』ではなく『ITエンジニア』と書け」
と言いたいんだが。
みたいな混乱もあるかもしれない
「フーリエ変換なんて役に立たない」 だったらあらゆる分野の人が声を上げるところだけれども三角関数。
普通はexp使いそうじゃないですか、微積簡単だし。あえて三角関数に限るとゲーム制作とかweb要素回転させるとか測量するとかまぁ、かなり特定の分野になってしまいそう。
確かにおっしゃる通り高校数学は役に立たない。役に立たないから大学1回生で基礎数学を無理やり詰め込むわけです。
高校で役に立つ数学を教えろというならば、高校数学をやめて物理数学を教える、という話になりそうですね。(数学科の人怒らないでね)
これらがあれば現状骨抜きになっている高校物理がまともに教えることができるようになります
量子力学があれば化学もきちんと教えることができるようになりますね。
(量子力学を教えていないのに電子軌道や遷移エネルギーの話をするのはどうなのでしょう?)
以前、後付けで理論を修正するのは科学的ではない、って言ってた人がいる。でも科学全体としてみると、ニュートンの古典力学をアインシュタインが上書きしたように、科学はいつだって、理論から漏れる細かい例外をアドホックに修正していく過程にある。Google なり科学的権威が氏のような、毎日ブコメに予測を盛り込んで頻繁に新しい予測を発表していくエネルギーを持たないのは、単一の理論としての科学的適合性にこだわるあまり、状況に合わせて柔軟に対応できる余白を持たないから。だけどそれじゃ足りないんだよ。
「次回の歯医者の予約は、いつにしよう?」の答え。人々が本当に必要としているのそれでしょう?
外れそうならキャンセルするしかないが、それでも予約自体はしなければならない。自分で決めなくてはならない。自分の山勘に従った判断は——実質的に、占いだ。そして個人で個別に独自の占いをするよりは、誰かが統計に基づいて “機械学習” で予測してくれた方が嬉しい。結果へのフィードバックも集中するから社会的な効率性も高い。でも人々の期待と鬱憤の交錯する中に飛び込むのは、間違いなく口で言うほど、簡単じゃない。
過去をほじってくるような連中に対してもサービスを提供しようとする勇気と、それを継続できる根気、対抗言説を突き放して進む情熱。俺は個人的に、拍手を送りたいと思う。