はてなキーワード: 4次元とは
午前6:00 - 起床。いつも通り、6時ちょうどに目が覚めた。完璧な生体リズムは、僕の知性の証だ。
午前6:30 - 朝食。シリアルを食べながら、今日の研究計画を立てる。チャーン・サイモンズ理論の新しいアプローチを思いついた。3次元の位相場理論を4次元に拡張できるかもしれない。
午前7:30 - 出発。車中で同居人に、チャーン・サイモンズ理論の美しさについて語る。彼が理解できないのは残念だ。
午前8:30 - 到着。ノートに数式を書き始める。S[A] = k/4π ∫ᴍ Tr(A ∧ dA + ⅔A ∧ A ∧ A)
午後12:00 - 昼食。カフェテリアで友人2人とチェスをしながら食事。彼らの戦略の穴を指摘してあげる。
午後1:00 - 再開。チャーン・サイモンズ理論と量子重力の関連性について考察。エドワード・ウィッテンの論文を再読。
午後6:00 - 帰宅。アパートで隣人に今日の研究成果を説明しようとするが、彼女は理解できないようだ。
午後7:00 - 夕食。タイ料理の火曜日。同居人と隣人と一緒に食事をしながら、最新のSF映画について議論。
位相的弦理論は、宇宙の不思議を解き明かそうとする特別な考え方です。普通の物理学では、物がどう動くかを細かく調べますが、この理論では物の形や繋がり方だけに注目します。
例えば、ドーナツとマグカップを考えてみましょう。形は全然違うように見えますが、どちらも真ん中に1つの穴があります。位相的弦理論では、この「穴が1つある」という点で同じだと考えるんです。
この理論では、宇宙を細い糸(弦)でできていると考えます。でも、普通の弦理論とは違って、糸がどう振動するかは気にしません。代わりに、糸がどんな形をしているか、どう繋がっているかだけを見ます。
これを使って、科学者たちは宇宙の秘密を解き明かそうとしています。難しそうに聞こえるかもしれませんが、実は私たちの身の回りの物の形を観察することから始まるんです。宇宙の謎を解くのに、ドーナツの形が役立つかもしれないなんて、面白いと思いませんか?
位相的弦理論は、通常の弦理論を単純化したモデルで、1988年にEdward Wittenによって提唱されました。この理論の主な特徴は、弦の振動モードの中で位相的な性質のみを保持し、局所的な自由度を持たないことです。
1. A-モデル:ケーラー幾何学と関連し、2次元の世界面を標的空間の正則曲線に写像することを扱います。
2. B-モデル:複素幾何学と関連し、標的空間の複素構造に依存します。
これらのモデルは、時空の幾何学的構造と密接に関連しており、特にカラビ・ヤウ多様体上で定義されることが多いです。
4. グロモフ・ウィッテン不変量など、新しい数学的不変量を生み出す
この理論は、物理学と数学の境界領域に位置し、両分野に大きな影響を与えています。例えば、代数幾何学や圏論との深い関連が明らかになっており、これらの数学分野の発展にも寄与しています。
大学生の段階では、位相的弦理論の基本的な概念と、それが通常の弦理論とどう異なるかを理解することが重要です。また、この理論が物理学と数学の橋渡しをどのように行っているかを把握することも大切です。
位相的弦理論は、N=(2,2) 超対称性を持つ2次元の非線形シグマモデルから導出されます。この理論は、通常の弦理論の世界面を位相的にツイストすることで得られます。
A-モデル:
B-モデル:
両モデルは、ミラー対称性によって関連付けられます。これは、あるカラビ・ヤウ多様体上のA-モデルが、別のカラビ・ヤウ多様体上のB-モデルと等価であるという驚くべき予想です。
大学院生レベルでは、これらの概念を数学的に厳密に理解し、具体的な計算ができるようになることが期待されます。また、位相的弦理論が現代の理論物理学や数学にどのような影響を与えているかを理解することも重要です。
位相的弦理論は、N=(2,2) 超対称性を持つシグマモデルから導出される位相的場の理論です。この理論は、超対称性のR-対称性を用いてエネルギー運動量テンソルをツイストすることで得られます。
1. A-ツイスト:
- スピン接続をR-電荷で修正: ψ+ → ψ+, ψ- → ψ-dz
2. B-ツイスト:
- スピン接続を異なるR-電荷で修正: ψ+ → ψ+dz, ψ- → ψ-
A-モデル:
ここで、M はモジュライ空間、evi は評価写像、αi はコホモロジー類、e(V) はオブストラクションバンドルのオイラー類
B-モデル:
ここで、X はカラビ・ヤウ多様体、Ω は正則体積形式、Ai は変形を表す場
A-モデルとB-モデルの間の等価性は、導来Fukaya圏と連接層の導来圏の間の圏同値として理解されます。これは、Kontsevich予想の一般化であり、ホモロジー的ミラー対称性の中心的な問題です。
最近の発展:
1. 位相的弦理論とGopakumar-Vafa不変量の関係
3. 非可換幾何学への応用
専門家レベルでは、これらの概念を深く理解し、最新の研究動向を把握することが求められます。また、位相的弦理論の数学的構造を完全に理解し、新しい研究方向を提案できることも重要です。
位相的弦理論の究極的理解には、以下の高度な概念と最新の研究動向の深い知識が必要です:
1. 導来圏理論:
- 安定∞圏を用いた一般化
- 非可換幾何学との関連
- SYZ予想との関連
- 導来代数幾何学の応用
- 圏化されたDT不変量
- ∞圏論を用いた定式化
これらの概念を完全に理解し、独自の研究を行うためには、数学と理論物理学の両分野において、最先端の知識と技術を持つ必要があります。また、これらの概念間の深い関連性を見出し、新しい理論的枠組みを構築する能力も求められます。
位相的弦理論の「廃人」レベルでは、これらの高度な概念を自在に操り、分野の境界を押し広げる革新的な研究を行うことが期待されます。また、この理論が量子重力や宇宙論といった基礎物理学の根本的な問題にどのような洞察を与えるかを探求することも重要です。
- 6次元のAモデルとBモデル(トポロジカルストリング理論)。
- Ω = ρ + i · ŕ
- V_S(σ) = ∫_M √(384^{-1} · σ^{a₁a₂b₁b₂}σ^{a₃a₄b₃b₄}σ^{a₅a₆b₅b₆} · ε_{a₁a₂a₃a₄a₅a₆} · ε_{b₁b₂b₃b₄b₅b₆})
- ここで、ε_{a₁...a₆} は6次元のレヴィ・チヴィタテンソルです。
- V₇(Φ) = ∫_X √(det(B))
- ここで、計量 g は次のように3-フォーム Φ から導かれます:
- g_{ij} = B_{ij} · det(B)^{-1/9}
- B_{jk} = - (1/144) Φ^{ji₁i₂} Φ^{ki₃i₄} Φ^{i₅i₆i₇} ε_{i₁...i₇}
- V₇(G) = ∫_X G ∧ *G
定義:Hの分割 {Ai}iεI が存在し、SO(3)の部分群 G が存在して、
1. H = ∪iεI Ai
2. Ai ∩ Aj = ∅ for i ≠ j
3. ∃g1, g2, ..., gn ε G such that ∪k=1n gk(∪iεI1 Ai) = H and ∪k=1n gk(∪iεI2 Ai) = H
ここで、I1 ∪ I2 = I かつ I1 ∩ I2 = ∅
事象の地平面上の量子状態を密度作用素 ρ ε B(H) で表現する。
S(ρ) = -Tr(ρ log ρ)
AdS/CFT対応に基づき、バルク空間の重力理論と境界のCFTの間の同型を考える:
Zgravity[φ0] = ZCFT[J]
I[H] = ∫H √h d³x I(x)
ここで、hはHの誘導計量、I(x)は局所的な情報密度である。
I[H] = I[∪iεI1 Ai] + I[∪iεI2 Ai]
が成り立つ。
プランクスケールでの量子効果を考慮するため、非可換幾何学を導入する。
H上の座標演算子 X̂i に対して:
[X̂i, X̂j] = iθij
limε→0 |I[H] - (I[∪iεI1 Ai] + I[∪iεI2 Ai])| ≤ Cε
ここで、εはプランク長に関連するカットオフパラメータ、Cは定数である。
このモデルは、バナッハ=タルスキーのパラドックスとブラックホールの情報量問題を統合している。
量子効果と非可換幾何学の導入により、情報の保存と量子重力理論との整合性を保ちつつ、事象の地平面上の情報量を記述することが可能となる。
このアプローチは、量子重力理論と情報理論の融合に新たな視座を提供し、ブラックホール情報パラドックスの解決に向けた理論的基盤を提供する。
今日も完璧な一日の始まりだった。朝食は黄金比に基づいて配置されたオートミールとトースト。
同居人が私の聖域を侵した。マイ・プレシャスなラベルメーカーを無断使用したのだ。そのラベルメーカーには「至高のラベリングデバイス」というメタラベルが貼ってある。さらにそのラベルには「メタラベル」というメタメタラベルが。
隣人宅で家具組み立てを強いられた。説明書はまるでバベルの塔。私ならクラインの壺のような4次元家具を設計できるというのに。
パートナーと食事。彼女は私の洗濯機リントトラップ清掃儀式を30分間黙って観察。これぞ真の愛だ。
M理論を用いたビッグバンの数理的解明は、現代理論物理学の最前線に位置する課題である。以下に、より厳密な数学的枠組みを用いてこの問題にアプローチする。
(M¹¹, g) ≅ (R¹,³ × X⁷, η ⊕ h)
ここで、M¹¹は11次元多様体、gはその上の計量、R¹,³はミンコフスキー時空、X⁷はコンパクトな7次元多様体、ηはミンコフスキー計量、hはX⁷上のリッチ平坦計量である。
M理論の超対称性は、以下のスピノール方程式で特徴づけられる:
D_μ ε = 0
ここで、D_μはスピン接続、εは11次元のMajorana-Weylスピノールである。
M2-ブレーンの動力学は、以下のNambu-Goto型作用で記述される:
S[X] = -T_2 ∫_Σ d³σ √(-det(g_αβ))
ここで、T_2はブレーン張力、g_αβ = ∂_αX^μ ∂_βX^ν G_μνはブレーンの誘導計量、G_μνは背景時空の計量である。
ビッグバンを膜の衝突として捉える場合、以下の位相的遷移を考える:
M¹¹ ⊃ M₁ ∪ M₂ → M'
ここで、M₁とM₂は衝突前の膜宇宙、M'は衝突後の統合された宇宙を表す。この遷移は、コボルディズム理論の枠組みで厳密に定式化される。
11次元重力定数G₁₁と4次元重力定数G₄の関係は、以下の積分方程式で表される:
1/G₄ = Vol(X⁷)/G₁₁
ここで、Vol(X⁷) = ∫_X⁷ √det(h) d⁷y はX⁷の体積である。
M理論の無矛盾性は、以下のBianchi恒等式とアノマリー相殺条件によって保証される:
dH = 1/(2π)² [p₁(R) - 1/2 tr F² + tr R²]
ここで、Hは3形式場、p₁(R)は第一ポントリャーギン類、FとRはそれぞれゲージ場と重力場の曲率である。
Multiverse ≅ lim→ (M_i, φ_ij)
ここで、M_iは個々の宇宙、φ_ijは宇宙間の遷移を表す射である。
これらの数学的構造は、M理論を用いたビッグバンの理解に対して厳密な基礎を提供する。しかしながら、完全な証明には至っておらず、特に量子重力効果の非摂動的取り扱いや、実験的検証可能性の問題が残されている。今後、代数幾何学や位相的場の理論などの高度な数学的手法を用いた更なる研究が期待される。
ループ量子重力理論は、4次元ローレンツ多様体 M 上で定義される。この多様体上に、SU(2)主束 P(M,SU(2)) を考え、その上の接続 A を基本変数とする。
A ∈ Ω^1(M) ⊗ su(2)
ここで、Ω^1(M) は M 上の1-形式の空間、su(2) は SU(2)のリー代数である。
Ψ_γ[A] = f(hol_γ[A])
ここで、γ は M 上の閉曲線、hol_γ[A] は γ に沿った A のホロノミー、f は SU(2)上の滑らかな関数である。これらのシリンダー関数の完備化により、運動学的ヒルベルト空間 H_kin が構成される。
H_kin の正規直交基底は、スピンネットワーク状態 |Γ,j,i⟩ で与えられる。ここで、Γ は M 上のグラフ、j はエッジに付随するスピン、i は頂点に付随する内部量子数である。
面積演算子 Â と体積演算子 V̂ は、これらの状態上で離散スペクトルを持つ:
Â|Γ,j,i⟩ = l_P^2 Σ_e √j_e(j_e+1) |Γ,j,i⟩
V̂|Γ,j,i⟩ = l_P^3 Σ_v f(j_v,i_v) |Γ,j,i⟩
ここで、l_P はプランク長さ、f は頂点での量子数の関数である。
時空の発展は、スピンフォーム σ: Δ → SU(2) で記述される。ここで、Δ は2-複体である。物理的遷移振幅は、
Z(σ) = Σ_j Π_f A_f(j_f) Π_v A_v(j_v)
で与えられる。A_f と A_v はそれぞれ面と頂点の振幅である。
W_γ[A] = Tr P exp(∮_γ A)
を通じて特徴づけられる。ここで、P は経路順序付け演算子である。
理論は微分同相不変性を持ち、変換群 Diff(M) の作用の下で不変である。さらに、ゲージ変換 g: M → SU(2) の下での不変性も持つ:
A → gAg^-1 + gdg^-1
理論の数学的構造は、BF理論を通じてトポロジカル場の理論と関連付けられる。これにより、4次元多様体のドナルドソン不変量との関連が示唆される。
量子論の幾何学的側面は、数学的な抽象化を通じて物理現象を記述する試みである。
物理的には、SO(3)は角運動量の保存則や回転対称性に関連している。
SU(2)は、2×2の複素行列で行列式が1である特殊ユニタリ群である。
SU(2)はSO(3)の二重被覆群であり、スピン1/2の系における基本的な対称性を記述する。
SU(2)のリー代数は、パウリ行列を基底とする3次元の実ベクトル空間である。
この群は、SU(2)×SU(2)として表現され、四次元の回転が二つの独立したSU(2)の作用として記述できることを示している。
これは、特にヤン・ミルズ理論や一般相対性理論において重要な役割を果たす。
ファイバー束は、基底空間とファイバー空間の組み合わせで構成され、局所的に直積空間として表現される。
ファイバー束の構造は、場の理論におけるゲージ対称性を記述するために用いられる。
ゲージ理論は、ファイバー束の対称性を利用して物理的な場の不変性を保証する。
例えば、電磁場はU(1)ゲージ群で記述され、弱い相互作用はSU(2)ゲージ群、強い相互作用はSU(3)ゲージ群で記述される。
具体的には、SU(2)ゲージ理論では、ファイバー束のファイバーがSU(2)群であり、ゲージ場はSU(2)のリー代数に値を持つ接続形式として表現される。
幾何学的量子化は、シンプレクティック多様体を量子力学的なヒルベルト空間に関連付ける方法である。
これは、古典的な位相空間上の物理量を量子化するための枠組みを提供する。
例えば、調和振動子の位相空間を量子化する際には、シンプレクティック形式を用いてヒルベルト空間を構成し、古典的な物理量を量子演算子として具体的に表現する。
コホモロジーは、場の理論におけるトポロジー的性質を記述する。
特に、トポロジカルな場の理論では、コホモロジー群を用いて物理的な不変量を特徴づける。
例えば、チャーン・サイモンズ理論は、3次元多様体上のゲージ場のコホモロジー類を用いて記述される。
超弦理論の基本的な空間は、10次元のローレンツ多様体 M として定義されます。
ここで、R^(1,3) は4次元ミンコフスキー時空を、X は6次元のコンパクト多様体を表します。
1. リッチ平坦
2. 複素構造を持つ
3. ケーラー計量を許容する
f(z1, z2, z3) = 0
ここで f は複素多項式です。
超弦理論の空間を、モジュライ空間 M_CY からの射として記述します:
ここで M_CY はカラビ・ヤウ多様体のモジュライ空間です。
特に、ホッジ数 h^p,q = dim H^p,q(X) が重要です。
X を単体的複体として再構築します:
ここで K は単体的複体、|K| はその幾何学的実現です。
ここで g_μν は計量テンソルです。
ここで γ は p と q を結ぶ測地線です。
これらの定義を組み合わせることで、超弦理論の幾何学をより具体的に特徴づけることができます。各アプローチは理論の異なる側面を捉え、全体として超弦理論の豊かな数学的構造を表現しています。
●ディズニーアンダーグラウンド(地下に潜んだミッキーたちと一緒に工作活動をしよう)
●ディズニースペース(宇宙ステーションにある。往復費用含めて1000万円かかる)
●ディズニー4thディメンジョン(4次元世界にあるディズニー。行くと二度と帰ってこれなくなる)
●ディズニーヘブン(死んだ後に行けるディズニー。善行を怠るとディズニーインフェルノに堕とされる)
●ディズニーちいかわ(ミッキーたちとちいかわの国に行こう。草むしり検定も受けられるよ)
●ディズニー温泉(適当に考えてたけど意外と良さそうなので今回はこれイチオシ)
自然界の法則の探索は、一般相対性理論と量子力学の発展の中で行われてきた。
相対性理論はアインシュタインの理論だが、これによれば、重力は時空の曲率から生じることになり、リーマン幾何学の枠組みで与えられる。
相対性理論においては、時空はアインシュタインの方程式に従って力学的に発展することになる。
すなわち初期条件が入力データとして与えられていたときに、時空がどのように発展していくかを決定することが物理学の問題になるわけである。
相対性理論が天体や宇宙全体の振る舞いの理解のために使われるのに対し、量子力学は原子や分子、原子を構成する粒子の理解のために用いられる。
粒子の量子論(非相対論的量子力学)は1925年までに現在の形が整えられ、関数解析や他の分野の発展に影響を与えた。
しかし量子論の深淵は場の量子論にあり、量子力学と特殊相対性理論を組み合わせようとする試みから生まれた。
場の量子論は、重力を除き、物理学の法則について人類が知っているほどんどの事柄を網羅している。
反物質理論に始まり、原子のより精密な記述、素粒子物理学の標準模型、加速器による検証が望まれている予言に至るまで、場の量子論の画期性は疑いの余地がない。
数学の中で研究されている多くの分野について、その自然な設定が場の量子論にあるような問題が研究されている。
その例が、4次元多様体のドナルドソン理論、結び目のジョーンズ多項式やその一般化、複素多様体のミラー対称性、楕円コホモロジー、アフィン・リー環、などが挙げられる。
絵をいわゆる2次元と呼んで、写真や実写映像に加えて我々の世界そのものを3次元と呼ぶのに慣れきってた。今日大学で当たり前のように「我々の世界は四次元ですよね。で〜」という話が出てきて???????ってなった。
縦横高さに時間が加わって4次元ということらしい。諸説はあるらしい。
じゃあ動画ってどうなるんだ。世界を4次元とするなら、厚みはないけど時間軸はある訳だから3次元になるのか。それは時間の流れない立体空間の3次元と同じ?対等?という事になるのか。それとも別種な3次元なのか。
いや厳密に言えば我々の4(3)次元世界に物質として存在する以上は、平面と言ったって紙やインクや電子?にも厚みはあるし、時間が流れないなんて事もないだろうし。でも込み入った物理かなんかの話ではありえるんだろうか。概念上?の話みたいなことになってくるんだろうか。
😎4次元民ワイは見てないやで