「4次元」を含む日記 RSS

はてなキーワード: 4次元とは

2024-11-19

[] 2024-11-19

午前6:00 - 起床。いつも通り、6時ちょうどに目が覚めた。完璧な生体リズムは、僕の知性の証だ。

午前6:30 - 朝食。シリアルを食べながら、今日研究計画を立てる。チャーン・サイモン理論の新しいアプローチを思いついた。3次元位相理論4次元拡張できるかもしれない。

午前7:30 - 出発。車中で同居人に、チャーン・サイモン理論の美しさについて語る。彼が理解できないのは残念だ。

午前8:30 - 到着。ノートに数式を書き始める。S[A] = k/4π ∫ᴍ Tr(A ∧ dA + ⅔A ∧ A ∧ A)

午後12:00 - 昼食。カフェテリアで友人2人とチェスをしながら食事。彼らの戦略の穴を指摘してあげる。

午後1:00 - 再開。チャーン・サイモン理論と量子重力の関連性について考察エドワードウィッテン論文を再読。

午後6:00 - 帰宅アパートで隣人に今日研究成果を説明しようとするが、彼女理解できないようだ。

午後7:00 - 夕食。タイ料理火曜日同居人と隣人と一緒に食事をしながら、最新のSF映画について議論

午後8:00 - オンラインゲーム時間。他のプレイヤーを圧倒する。僕の戦略完璧だ。

午後10:00 - 就寝準備。パジャマに着替え、歯を磨く。

午後10:30 - 就寝。明日も素晴らしい発見の日になることを願いながら眠りにつく。

2024-11-13

位相的弦理論レベル分け説明

1. 小学6年生向け

位相的弦理論は、宇宙不思議を解き明かそうとする特別な考え方です。普通物理学では、物がどう動くかを細かく調べますが、この理論では物の形や繋がり方だけに注目します。

例えば、ドーナツマグカップを考えてみましょう。形は全然違うように見えますが、どちらも真ん中に1つの穴があります位相的弦理論では、この「穴が1つある」という点で同じだと考えるんです。

この理論では、宇宙を細い糸(弦)でできていると考えます。でも、普通の弦理論とは違って、糸がどう振動するかは気にしません。代わりに、糸がどんな形をしているか、どう繋がっているかだけを見ます

これを使って、科学者たちは宇宙秘密を解き明かそうとしています。難しそうに聞こえるかもしれませんが、実は私たち身の回りの物の形を観察することから始まるんです。宇宙の謎を解くのに、ドーナツの形が役立つかもしれないなんて、面白いと思いませんか?

2. 大学生向け

位相的弦理論は、通常の弦理論単純化したモデルで、1988年にEdward Wittenによって提唱されました。この理論の主な特徴は、弦の振動モードの中で位相的な性質のみを保持し、局所的な自由度を持たないことです。

位相的弦理論には主に2つのバージョンがあります

1. A-モデル:ケーラー幾何学と関連し、2次元世界面を標的空間の正則曲線に写像することを扱います

2. B-モデル:複素幾何学と関連し、標的空間の複素構造依存します。

これらのモデルは、時空の幾何学構造と密接に関連しており、特にラビ・ヤウ多様体上で定義されることが多いです。

位相的弦理論重要性は以下の点にあります

1. 複雑な弦理論計算を簡略化できる

2. 弦理論数学構造をより明確に理解できる

3. ミラー対称性など、重要数学概念との関連がある

4. グロモフ・ウィッテン不変量など、新しい数学的不変量を生み出す

この理論は、物理学数学境界領域位置し、両分野に大きな影響を与えています。例えば、代数幾何学圏論との深い関連が明らかになっており、これらの数学分野の発展にも寄与しています

大学生の段階では、位相的弦理論基本的概念と、それが通常の弦理論とどう異なるかを理解することが重要です。また、この理論物理学数学の橋渡しをどのように行っているかを把握することも大切です。

3. 大学院生向け

位相的弦理論は、N=(2,2) 超対称性を持つ2次元非線形シグマモデルから導出されます。この理論は、通常の弦理論世界面を位相的にツイストすることで得られます

ツイスト操作の結果:

1. 作用素に異なるスピンが与えられる

2. 理論局所的な自由度を失う

3. エネルギー運動量テンソルがQEXACT形式になる

A-モデルとB-モデルの主な特徴:

A-モデル

B-モデル

モデルは、ミラー対称性によって関連付けられます。これは、あるカラビ・ヤウ多様体上のA-モデルが、別のカラビ・ヤウ多様体上のB-モデル等価であるという驚くべき予想です。

位相的弦理論の応用:

1. 量子コホモロジー環の計算

2. グロモフ・ウィッテン不変量の導出

3. ミラー対称性検証

4. 代数幾何学問題への新しいアプローチ

大学院生レベルでは、これらの概念数学的に厳密に理解し、具体的な計算ができるようになることが期待されます。また、位相的弦理論現代理論物理学数学にどのような影響を与えているか理解することも重要です。

4. 専門家向け

位相的弦理論は、N=(2,2) 超対称性を持つシグマモデルから導出される位相的場理論です。この理論は、超対称性のR-対称性を用いてエネルギー運動量テンソルツイストすることで得られます

A-ツイストとB-ツイストの詳細:

1. A-ツイスト

- スピン接続をR-電荷修正: ψ+ → ψ+, ψ- → ψ-dz

- 結果として得られるA-モデルは、ケーラー構造にの依存

2. B-ツイスト

- スピン接続を異なるR-電荷修正: ψ+ → ψ+dz, ψ- → ψ-

- 結果として得られるB-モデルは、複素構造にの依存

モデルの相関関数

A-モデル

ここで、M はモジュライ空間evi評価写像、αi はコホモロジー類、e(V) はオブストラクションバンドルオイラー

B-モデル

ここで、X はカラビ・ヤウ多様体、Ω は正則体積形式Ai は変形を表す場

ミラー対称性

A-モデルとB-モデルの間の等価性は、導来Fukaya圏と連接層の導来圏の間の圏同値として理解されます。これは、Kontsevich予想の一般化であり、ホモロジーミラー対称性の中心的な問題です。

最近の発展:

1. 位相的弦理論とGopakumar-Vafa不変量の関係

2. 位相重力理論との関連

3. 非可換幾何学への応用

4. 位相M理論提案

専門家レベルでは、これらの概念を深く理解し、最新の研究動向を把握することが求められます。また、位相的弦理論数学構造を完全に理解し、新しい研究方向を提案できることも重要です。

5. 廃人向け

位相的弦理論の究極的理解には、以下の高度な概念と最新の研究動向の深い知識必要です:

1. 導来圏理論

- 導来Fukaya圏とD^b(Coh(X))の圏同値

- 安定∞圏を用いた一般

- 非可換幾何学との関連

2. ホモロジーミラー対称性

- Kontsevich予想の一般

- SYZ予想との関連

- 非アーベル的ホッジ理論への応用

3. 位相的場理論の高次元化:

- 4次元Donaldson-Witten理論

- 6次元(2,0)理論との関係

- コホモロジーホール代数との関連

4. 位相的弦理論と量子重力

- AdS/CFT対応との関連

- 位相M理論の構築

- 非摂動効果系統的理解

5. 代数幾何学との深い関係

- 導来代数幾何学の応用

- モチーフ理論との関連

- 圏化されたDT不変量

6. 位相的弦理論数学的基礎:

- ∞圏論を用いた定式化

- 位相的再正規化群の理論

- 量子群位相的弦理論関係

7. 最新の研究トピック

- 位相的弦理論と量子情報理論の接点

- 位相的弦理論を用いた宇宙論的特異点研究

- 非可換幾何学に基づく位相的弦理論一般

8. 計算技術

- 位相的頂点作用素代数の応用

- 局所技法の高度な応用

- 数値的手法機械学習の導入

これらの概念を完全に理解し、独自研究を行うためには、数学理論物理学両分野において、最先端知識技術を持つ必要があります。また、これらの概念間の深い関連性を見出し、新しい理論的枠組みを構築する能力も求められます

位相的弦理論の「廃人レベルでは、これらの高度な概念自在に操り、分野の境界を押し広げる革新的研究を行うことが期待されます。また、この理論が量子重力宇宙論といった基礎物理学根本的な問題にどのような洞察を与えるかを探求することも重要です。

2024-10-27

位相M理論について

1. トポロジカルM理論概要

- 6次元のAモデルとBモデル(トポロカルストリング理論)。

- 4次元自己双対ループ量子重力

- 3次元のチェルン・サイモン重力

2. G₂ホロノミーと特別形式

- dΦ = 0(閉形式形式が外微分ゼロ

- d *Φ = 0(共閉形式、*はホッジ双対を表す)

  • これにより、G₂ホロノミーを持つ計量が得られます

3. 6次元フォーム理論と複素構造

- Ω = ρ + i · ŕ

- ここで、ŕ は ρ から派生する補完的な形式です。

- V_S(σ) = ∫_M √(384^{-1} · σ^{a₁a₂b₁b₂}σ^{a₃a₄b₃b₄}σ^{a₅a₆b₅b₆} · ε_{a₁a₂a₃a₄a₅a₆} · ε_{b₁b₂b₃b₄b₅b₆})

- ここで、ε_{a₁...a₆} は6次元のレヴィ・チヴィタテンソルです。

4. トポロカルストリングとS双対

5. 安定な形式と体積汎関数

- 3-フォーム Φ に基づく体積汎関数

- V₇(Φ) = ∫_X √(det(B))

- ここで、計量 g は次のように3-フォーム Φ から導かれます

- g_{ij} = B_{ij} · det(B)^{-1/9}

- B_{jk} = - (1/144) Φ^{ji₁i₂} Φ^{ki₃i₄} Φ^{i₅i₆i₇} ε_{i₁...i₇}

- 4-フォーム G に基づく体積汎関数

- V₇(G) = ∫_X G ∧ *G

6. ブラックホール物理学とアトラクメカニズム

2024-10-15

次元あんまり詳しいところはしらんけど

創作物とか歌詞とかで

現実世界について「3次元」と表すか「4次元」と表すかってめっちゃ迷うし

他の人のそういうのを見てもあれ?ってなってしま

時間現実存在する4次元目として数えるか否か

2024-09-27

バナッハ=タルスキーパラドックスブラックホール情報量

1. 数学的前提

以下の数学構造定義する:

2. バナッハ=タルスキー分割の形式

H上にバナッハ=タルスキー分割を以下のように定義する:

定義:Hの分割 {Ai}iεI が存在し、SO(3)の部分群 G が存在して、

1. H = ∪iεI Ai

2. Ai ∩ Aj = ∅ for i ≠ j

3. ∃g1, g2, ..., gn ε G such that ∪k=1n gk(∪iεI1 Ai) = H and ∪k=1n gk(∪iεI2 Ai) = H

ここで、I1 ∪ I2 = I かつ I1 ∩ I2 = ∅

3. 量子情報理論の導入

事象の地平面上の量子状態密度作用素 ρ ε B(H) で表現する。

von Neumannエントロピーを以下のように定義する:

S(ρ) = -Tr(ρ log ρ)

4. ホログラフィック原理数学表現

AdS/CFT対応に基づき、バルク空間重力理論境界CFTの間の同型を考える:

Zgravity[φ0] = ZCFT[J]

ここで、φ0はバルクの場、Jは境界ソースである

5. 情報量モデル

事象の地平面上の情報量を以下の汎関数表現する:

I[H] = ∫H √h d³x I(x)

ここで、hはHの誘導計量、I(x)は局所的な情報密度である

6. バナッハ=タルスキー分割と情報量関係

命題:バナッハ=タルスキー分割の下で、

I[H] = I[∪iεI1 Ai] + I[∪iεI2 Ai]

が成り立つ。

7. 量子効果考慮

プランクスケールでの量子効果考慮するため、非可換幾何学を導入する。

H上の座標演算子 X̂i に対して:

[X̂i, X̂j] = iθij

ここで、θijは非可換パラメータである

8. 情報保存の定理

定理:量子効果考慮した場合、以下が成り立つ:

limε→0 |I[H] - (I[∪iεI1 Ai] + I[∪iεI2 Ai])| ≤ Cε

ここで、εはプランク長に関連するカットオフパラメータ、Cは定数である

結論

このモデルは、バナッハ=タルスキーパラドックスブラックホール情報量問題統合している。

量子効果と非可換幾何学の導入により、情報の保存と量子重力理論との整合性を保ちつつ、事象の地平面上の情報量記述することが可能となる。

このアプローチは、量子重力理論情報理論の融合に新たな視座を提供し、ブラックホール情報パラドックス解決に向けた理論的基盤を提供する。

2024-09-24

空間質量によって歪む

これが重力だっていうような話があるけどあれは4次元以降の空間が歪んでるってことだよね?

具体的にはどの次元が歪んでんの?

2024-09-18

anond:20240918191506

俺も命かけるわ。

AIだって急にSF飛び越えてガチ会話出来るようになったし(間違いを言うのはむしろSF準拠だし)

4次元解決したら数々のひみつ道具も出来ると思う。

2024-09-12

[] 2024年9月12日

今日完璧な一日の始まりだった。朝食は黄金比に基づいて配置されたオートミールトースト

同居人が私の聖域を侵した。マイ・プレシャスなラベルメーカー無断使用したのだ。そのラベルメーカーには「至高のラベリングデバイス」というメタベルが貼ってある。さらにそのラベルには「メタベル」というメタメタベルが。

隣人宅で家具組み立てを強いられた。説明書はまるでバベルの塔。私ならクラインの壺のような4次元家具設計できるというのに。

パートナー食事彼女は私の洗濯機リントラップ清掃儀式を30分間黙って観察。これぞ真の愛だ。

眠る前に、シュレディンガーの猫実験を実際の猫で試してみたいと思った。ただし、私の猫アレルギー発症しない量子状態で。

おやすみ日記明日はより秩序のある一日になることを切に願う。抱き枕よ、私を守ってくれ。

2024-09-08

M理論ビッグバン関係

M理論を用いたビッグバンの数理的解明は、現代理論物理学最前線位置する課題である。以下に、より厳密な数学的枠組みを用いてこの問題アプローチする。

1. 多様体位相構造

M理論の基底となる11次元時空は、以下のように定義される:

(M¹¹, g) ≅ (R¹,³ × X⁷, η ⊕ h)

ここで、M¹¹は11次元多様体、gはその上の計量、R¹,³はミンコフスキー時空、X⁷はコンパクトな7次元多様体、ηはミンコフスキー計量、hはX⁷上のリッチ平坦計量である

2. 超対称性とスピノー構造

M理論超対称性は、以下のスピノー方程式で特徴づけられる:

D_μ ε = 0

ここで、D_μはスピン接続、εは11次元のMajorana-Weylスピノーである

3. 膜力学作用汎関数

M2-ブレーンの動力学は、以下のNambu-Goto作用記述される:

S[X] = -T_2 ∫_Σ d³σ √(-det(g_αβ))

ここで、T_2はブレーン張力、g_αβ = ∂_αX^μ ∂_βX^ν G_μνはブレーンの誘導計量、G_μνは背景時空の計量である

4. ビッグバンのトポロジカルモデル

ビッグバンを膜の衝突として捉える場合、以下の位相的遷移を考える:

M¹¹ ⊃ M₁ ∪ M₂ → M'

ここで、M₁とM₂は衝突前の膜宇宙、M'は衝突後の統合された宇宙を表す。この遷移は、コボルディズム理論の枠組みで厳密に定式化される。

5. 重力階層問題

11次元重力定数G₁₁と4次元重力定数G₄の関係は、以下の積分方程式で表される:

1/G₄ = Vol(X⁷)/G₁₁

ここで、Vol(X⁷) = ∫_X⁷ √det(h) d⁷y はX⁷の体積である

6. アノマリー相殺整合性条件

M理論の無矛盾性は、以下のBianchi恒等式アノマリー相殺条件によって保証される:

dH = 1/(2π)² [p₁(R) - 1/2 tr F² + tr R²]

ここで、Hは3形式場、p₁(R)は第一ポントリャーギン類、FとRはそれぞれゲージ場と重力場の曲率である

7. 多元宇宙位相的分類

多元宇宙構造は、以下のような圏論的枠組みで記述される:

Multiverse ≅ lim→ (M_i, φ_ij)

ここで、M_iは個々の宇宙、φ_ijは宇宙間の遷移を表す射である

これらの数学構造は、M理論を用いたビッグバン理解に対して厳密な基礎を提供する。しかしながら、完全な証明には至っておらず、特に量子重力効果の非摂動的取り扱いや、実験検証可能性問題が残されている。今後、代数幾何学位相的場理論などの高度な数学手法を用いた更なる研究が期待される。

2024-09-02

ループ量子重力理論幾何学的基礎

1. 微分多様体接続

ループ量子重力理論は、4次元ローレンツ多様体 M 上で定義される。この多様体上に、SU(2)主束 P(M,SU(2)) を考え、その上の接続 A を基本変数とする。

A ∈ Ω^1(M) ⊗ su(2)

ここで、Ω^1(M) は M 上の1-形式空間su(2) は SU(2)のリー代数である

2. ホロノミーと量子化

接続 A のホロノミーを用いて、シリンダー関数定義する:

Ψ_γ[A] = f(hol_γ[A])

ここで、γ は M 上の閉曲線、hol_γ[A] は γ に沿った A のホロノミー、f は SU(2)上の滑らかな関数である。これらのシリンダー関数の完備化により、運動学的ヒルベルト空間 H_kin が構成される。

3. スピンネットワークと量子幾何学

H_kin の正規直交基底は、スピンネットワーク状態 |Γ,j,i⟩ で与えられる。ここで、Γ は M 上のグラフ、j はエッジに付随するスピン、i は頂点に付随する内部量子数である

面積演算子 Â と体積演算子 V̂ は、これらの状態上で離散スペクトルを持つ:

Â|Γ,j,i⟩ = l_P^2 Σ_e √j_e(j_e+1) |Γ,j,i⟩

V̂|Γ,j,i⟩ = l_P^3 Σ_v f(j_v,i_v) |Γ,j,i⟩

ここで、l_P はプランク長さ、f は頂点での量子数関数である

4. 時空の発展と因果構造

時空の発展は、スピンフォーム σ: Δ → SU(2) で記述される。ここで、Δ は2-複体である物理的遷移振幅は、

Z(σ) = Σ_j Π_f A_f(j_f) Π_v A_v(j_v)

で与えられる。A_f と A_v はそれぞれ面と頂点の振幅である

5. 不変量と位相性質

理論位相性質は、ウィルソンループ不変量

W_γ[A] = Tr P exp(∮_γ A)

を通じて特徴づけられる。ここで、P は経路順序付け演算子である

6. 対称性と変換群

理論微分同相不変性を持ち、変換群 Diff(M) の作用の下で不変であるさらに、ゲージ変換 g: M → SU(2) の下での不変性も持つ:

A → gAg^-1 + gdg^-1

7. コホモロジー理論との関連

理論数学構造は、BF理論を通じてトポロジカル場の理論と関連付けられる。これにより、4次元多様体ドナルドソン不変量との関連が示唆される。

2024-08-16

量子論幾何学

量子論幾何学的側面は、数学的な抽象化を通じて物理現象記述する試みである

SO(3)とSU(2)

SO(3)は、3次元空間の回転を記述する特殊直交である

この群の要素は、3×3の直交行列行列式が1である

物理的には、SO(3)は角運動量の保存則や回転対称性に関連している。

SO(3)のリー代数は、3次元の反対称行列構成される。

SU(2)は、2×2の複素行列で行列式が1である特殊ユニタリである

SU(2)はSO(3)の二重被覆群であり、スピン1/2の系における基本的対称性記述する。

SU(2)のリー代数は、パウリ行列を基底とする3次元の実ベクトル空間である

SO(4)とその表現

SO(4)は、4次元空間の回転を記述する群である

SO(4)の要素は、4×4の直交行列行列式が1である

この群は、SU(2)×SU(2)として表現され、四次元の回転が二つの独立したSU(2)の作用として記述できることを示している。

これは、特にヤンミルズ理論一般相対性理論において重要役割を果たす。

ファイバー束とゲージ理論

ファイバー束は、基底空間ファイバー空間の組み合わせで構成され、局所的に直積空間として表現される。

ファイバー束の構造は、場の理論におけるゲージ対称性記述するために用いられる。

ゲージ理論

ゲージ理論は、ファイバー束の対称性を利用して物理的な場の不変性を保証する。

例えば、電磁場はU(1)ゲージ群で記述され、弱い相互作用SU(2)ゲージ群、強い相互作用SU(3)ゲージ群で記述される。

具体的には、SU(2)ゲージ理論では、ファイバー束のファイバーSU(2)群であり、ゲージ場はSU(2)のリー代数に値を持つ接続形式として表現される。

幾何学量子化

幾何学量子化は、シンプレクティック多様体量子力学的なヒルベルト空間に関連付ける方法である

これは、古典的位相空間上の物理量を量子化するための枠組みを提供する。

例えば、調和振動子位相空間量子化する際には、シンプレクティック形式を用いてヒルベルト空間構成し、古典的物理量を量子演算子として具体的に表現する。

コホモロジー

コホモロジーは、場の理論におけるトポロジー性質記述する。

特に、トポロジカルな場の理論では、コホモロジー群を用いて物理的な不変量を特徴づける。

例えば、チャーン・サイモン理論は、3次元多様体上のゲージ場のコホモロジー類を用いて記述される。

チャーン・サイモン理論

チャーン・サイモン理論は、3次元多様体上のゲージ場を用いて構成され、そのトポロジカル不変量を計算する。

この理論は、結び目不変量や3次元多様体の不変量を具体的に導出するために用いられる。

2024-07-28

AI生成による超弦理論入門

具体的に超弦理論幾何学定義します。

1. 多様体としての定義

超弦理論基本的空間は、10次元ローレンツ多様体 M として定義されます

  • M = R^(1,3) × X

ここで、R^(1,3) は4次元ミンコフスキー時空を、X は6次元コンパクト多様体を表します。

1. リッチ平坦

2. 複素構造を持つ

3. ケーラー計量を許容する

2. スキームとしての表現

X をスキームとして表現します:

  • X = (|X|, O_X)

ここで |X| は位相空間、O_X は構造層です。

f(z1, z2, z3) = 0

ここで f は複素多項式です。

3. 射による記述

超弦理論空間を、モジュライ空間 M_CY からの射として記述します:

  • φ: M → M_CY

ここで M_CY はカラビ・ヤウ多様体のモジュライ空間です。

4. コホモロジー論的アプローチ

X の位相性質を以下のコホモロジー群で特徴づけます

特に、ホッジ数 h^p,q = dim H^p,q(X) が重要です。

5. 組み合わせ論的再構築

X を単体的複体として再構築します:

  • X ≃ |K|

ここで K は単体的複体、|K| はその幾何学的実現です。

6. 対称性群による特徴づけ

超弦理論対称性を以下の群で特徴づけます

  • Diff(M) : M のディフェオモルフィズム群
  • G : ゲージ群(例:E8 × E8 または SO(32))

7. 距離空間としての定義

M 上に擬リーマン計量 g を導入します:

  • ds^2 = g_μν dx^μ dx^ν

ここで g_μν は計量テンソルです。

この計量から、2点間の固有距離定義します:

  • d(p,q) = ∫_γ √(|g_μν dx^μ dx^ν|)

ここで γ は p と q を結ぶ測地線です。

これらの定義を組み合わせることで、超弦理論幾何学をより具体的に特徴づけることができます。各アプローチ理論の異なる側面を捉え、全体として超弦理論の豊かな数学構造表現しています

2024-06-19

ディズニーランドディズニーシーに続く第3のディズニーとは?

ディズニーアンダーグラウンド(地下に潜んだミッキーたちと一緒に工作活動をしよう)

ディズニースペース(宇宙ステーションにある。往復費用含めて1000万円かかる)

ディズニー4thディメンジョン(4次元世界にあるディズニー。行くと二度と帰ってこれなくなる)

ディズニーヘブン(死んだ後に行けるディズニー善行を怠るとディズニーインフェルノに堕とされる)

ディズニーいかわ(ミッキーたちとちいかわの国に行こう。草むしり検定も受けられるよ)

ディズニー温泉適当に考えてたけど意外と良さそうなので今回はこれイチオシ

ディズニーソープ

ディズニー国会ミッキーカチューシャをした政治家さんたちに会える。牛歩体験もあるよ)

ディズニーSAITAMA(埼玉を盛り上げたい)

2024-06-09

理論物理学最前線を探る

自然界の法則の探索は、一般相対性理論量子力学の発展の中で行われてきた。

相対性理論アインシュタイン理論だが、これによれば、重力は時空の曲率から生じることになり、リーマン幾何学の枠組みで与えられる。

相対性理論においては、時空はアインシュタイン方程式に従って力学的に発展することになる。

すなわち初期条件入力データとして与えられていたときに、時空がどのように発展していくかを決定することが物理学問題になるわけである

相対性理論天体宇宙全体の振る舞いの理解のために使われるのに対し、量子力学原子分子原子構成する粒子の理解のために用いられる。

粒子の量子論(非相対論量子力学)は1925年までに現在の形が整えられ、関数解析や他の分野の発展に影響を与えた。

しか量子論深淵は場の量子論にあり、量子力学特殊相対性理論を組み合わせようとする試みからまれた。

場の量子論は、重力を除き、物理学法則について人類が知っているほどんどの事柄網羅している。

反物質理論に始まり原子のより精密な記述素粒子物理学標準模型加速器による検証が望まれている予言に至るまで、場の量子論の画期性は疑いの余地がない。

数学の中で研究されている多くの分野について、その自然な設定が場の量子論にあるような問題研究されている。

その例が、4次元多様体ドナルドソン理論、結び目のジョーンズ多項式やその一般化、複素多様体ミラー対称性、楕円コホモロジー、アフィン・リー環、などが挙げられる。

こういった断片的な研究はあるが、問題間の関係性の理解が困難である

このような関係性の研究において「ラングランズ・プログラム」が果たす役割に期待される。

2023-12-18

絵をいわゆる2次元と呼んで、写真実写映像に加えて我々の世界のもの3次元と呼ぶのに慣れきってた。今日大学で当たり前のように「我々の世界四次元ですよね。で〜」という話が出てきて???????ってなった。

縦横高さに時間が加わって4次元ということらしい。諸説はあるらしい。

じゃあ動画ってどうなるんだ。世界4次元とするなら、厚みはないけど時間軸はある訳だから3次元になるのか。それは時間の流れない立体空間3次元と同じ?対等?という事になるのか。それとも別種な3次元なのか。

いや厳密に言えば我々の4(3)次元世界物質として存在する以上は、平面と言ったって紙やインク電子?にも厚みはあるし、時間が流れないなんて事もないだろうし。でも込み入った物理かなんかの話ではありえるんだろうか。概念上?の話みたいなことになってくるんだろうか。

2023-12-17

世の中11次元らしいじゃん

1次元

2次元 面 xy

3次元 立体 xyz

4次元 立体+時間 xyzt

ここら先がわからないんだけど

2023-09-17

4次元世界に行きたい

2次元は諦めた

3次元は辛いだけ

から4次元

4次元に行けば何かあるはず

頼む!俺を時空の歪みに飛ばしてくれ!

ログイン ユーザー登録
ようこそ ゲスト さん